
Computer Science 5271
Fall 2024
Midterm exam (solutions)
October 23rd, 2024
Time Limit: 75 minutes, 1:00pm-2:15pm

� Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to. Don’t put any of your answers on this page.

� This exam contains 14 pages (including this cover page) and 4 questions. Once we tell you
to start, please check that no pages are missing.

� You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

� You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

� Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

� By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 2:15pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Sign and date:

Question Points Score

1 30

2 20

3 30

4 20

Total: 100

Mark the icon corresponding to your seat:

Computer Science 5271 Midterm exam (solutions) - Page 2 of 14

1. (30 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a) The number 20 in decimal is represented as 0x14 in hex. All of the following pairs of
32-bit integers, shown in hex, would produce a value of 0x14 when multiplied using the
rules of C for unsigned int on x86-64, except:

A. 0xfffffffb · 0xfffffffc
B. 0x80000002 · 0x8000000a
C. 0x33333333 · 0x00000003
D. 0x00000005 · 0x00000004
E. 0x80000005 · 0x00000004

The shortcut here is to look at the least significant parts of the product. Just like you
may recall from decimal long multiplication in grade school, the least significant digit of a
product depends only on the least significant digits of the factors. When applied to bits, this
corresponds to the fact that the product is even if either of the factors is even, and odd only
if they are both odd. (The odd hex digits are a superset of the odd decimal digits, namely
1, 3, 5, 7, 9, b (11), d (13), and f (15)). If the product is going to be 0x14, one of the
factors has to be even, which is true of those ending in c, 2, a, and 4, but crucially not of
those ending in 3. Since the second factor has only one non-zero digit, and there is a clear
pattern, you may also have been able to compute that the third product will be 0x99999999,
not 0x14. With a bit more computation, you can also see that the other products will all
have a least-significant hex digit of 4. 2 times a and 5 times 4 both multiply to 20. b times
c is a somewhat harder calculation of 11·12 = 132 = 128+4 = 8·16+4. An alternative way
to figure out the product in A is to notice that the numbers would be interpreted as -4 and
-5 respectively in twos-complement. The instructions specify unsigned multiplication, but
twos-complement signed multiplication and unsigned multiplication are the same operation
if you only keep the same number of output bits as you had input bits, so the low 32 bits
of this product will be 20 as well.

(b) Suppose a local variable whose type is an array of 100 characters contains sensitive infor-
mation in the form of short (3-6 character) printable strings separated by null bytes, and
assume the platform is Linux/x86-64. If the function containing the variable also has a
call to printf that is vulnerable to a format string attack, which of these format specifiers
would be the best choice for an attacker to use repeatedly to dump the entire contents of
the array?

A. %lx B. %c C. %ho D. %s E. %x

Repeated format specifiers are the normal way to leak information with a format string
attack, but the key distinction here is how the format specifiers interpret the stack contents,
since the goal is not to miss out on any of the strings in the array. The arguments to
format specifiers, like other arguments passed on the stack, are laid out in units of the
word size, 8 bytes on x86-64. If the format specifier ignores some of those bytes when
printing, the attacker will miss out on some data. %c and %s might both sound initially
appealing because they relate to character data, but neither one works well. %c prints only
the least significant byte of each 8 as a character, so 7/8 of the information is skipped.
Because %s is for printing null-terminated strings, each %s could only print one string.
But there is actually a more basic problem with %s: the argument to %s is a pointer to a
null-terminated string, not the string contents itself. So a %s format specifier would try
to interpret a mixture of string and null terminator bytes as a pointer, and probably just

Page 2

Computer Science 5271 Midterm exam (solutions) - Page 3 of 14

crash. Using an integer-oriented format specifier is a better strategy, since any byte values
can be interpreted as integers; even if the output doesn’t superficially look like strings, an
attacker could use a simple script to convert the data into another base, split back into
bytes, and recover the strings. So the attacker needs an integer format specifier that uses
all 8 bytes of each stack argument slot. %ho only uses 2 bytes, since the h modifier treats
the argument as a short. %x uses 4 bytes, since the unmodified specifiers correspond to a
type int. %lx is best because it prints each 8-byte section of stack as an 8-byte long (and
as a side benefit hex also makes the conversion to characters easier than other bases).

(c) The set of all subsets of the letters A though J forms a lattice when the ordering operation
v is defined to be the subset operation ⊆. Under this definition, what is the least upper
bound {A,B} t {E,F}?

A. ∅ (the empty set)

B. {A,B}
C. {A,B,E, F}
D. {A,B,C,D,E, F}
E. {A,B,C,D,E, F,G,H, I, J}

This kind of structure is called a subset lattice, and it is a very commonly occurring kind of
finite lattice; specifically in security we’ve seen it occurs when you can have any combina-
tion of specialized compartments. It’s not a coincidence that the common generic notation
for lattice operators looks like squared-off versions of the standard set operations, since the
least upper bound in a subset lattice always corresponds to set union ∪. To be an upper
bound, it needs to include all the elements that were in either of the inputs, but to be the
least upper bound it shouldn’t include any others.

(d) Why would password capabilities be an appropriate kind of capability-based access control
to be used in a large-scale networked system?

A. Object-aggregated authority management scales to having many objects

B. A centralized server can immediately revoke password capabilities

C. Capabilities automatically provide ambient authority

D. Password capabilities don’t need to be managed by an OS kernel

E. Password capabilities cannot be transferred via network messages

Recall that password capabilities are contrasted with the more standard object capabilities.
Both kinds of capabilities designate an object along with representing the permission to
access that object. The difference is that object capabilities are managed on behalf of a
process by an OS kernel to prevent forgery: the kernel has the authoritative information
on which capabilities a process holds. The example of Unix file descriptors are like object
capabilities in this way. By contrast, a password capability is just a string of bits that can
be passed like any other data; a password capability is only hard to forge because the bit
pattern is chosen unpredictably with high entropy, like a password (thus the name) or a
cryptographic key. Answers A and C are the opposites of true statements about capabilities
in general: capabilities are subject-aggregated rather than object-aggregated, and capabilities
are desirable because they avoid depending on ambient authority. Answers B and E are the
opposites of true statements about password capabilities: password capabilities aren’t based
on a centralized server and do not directly support revocation, and password capabilities
can be transferred in network messages.

Page 3

Computer Science 5271 Midterm exam (solutions) - Page 4 of 14

(e) Random stack canaries and ASLR share all of the following features except:

A. They are more resistant to guessing if they are re-randomized frequently

B. They make some control-flow hijacking attacks more difficult

C. They require kernel support to implement

D. They are more resistant to guessing if they have more entropy

E. Their protection is compromised if information leaks to an attacker

Answers B states the general purpose of both stack canaries and ASLR. Answers A, D,
and E are all features that random canaries and ASLR have in common because they are
based on randomization that needs to be unknown to an attacker to be an effective defense.
By contrast C is not true of either defense. Stack canaries are usually implemented by
a compiler with no OS involvement at all. ASLR could potentially be implemented either
with user-space logic or with changes to a kernel; it has been common for ASLR to be
implemented in the kernel because that is an easy place to enable it without having to
change or recompile user-space programs.

(f) All of these attack techniques were predecessors of ROP, except:

A. Control-flow bending

B. Return to libc

C. ret2pop

D. Chained return to libc

E. Stack smashing

“Stack smashing” is a synonym for a stack buffer overflow that overwrites a return address,
which is the most basic kind of attack of this kind. Return to libc, chained return to libc,
and ret2pop are all simple kinds of code retuse attacks involving return instructions that
predate the general form of ROP. On the other hand, control-flow bending is a more recent
and advanced form of attack that uses only valid control-flow transfers.

(g) Suppose a program on an x86-32 platform has a hard-to-control memory safety vulnera-
bility that leads to a return address being overwritten by a uniformly random 32-bit value.
An attacker is able to set up a heap spray by allocating 1000 memory objects, each of
which is 1 MiB (220 = 1048576 bytes) long, containing a NOP sled and a 100 byte-long
shellcode. These objects are placed at non-overlapping locations in the address space. If
the attacker repeats the attack 10 times, what is the probability of succeeding at least
once?

A. (1− (1000 · (220 − 100)/232))10 ≈ 6%

B. 10 · 100 · 220/232 ≈ 24%

C. (10 · 100 · 1000/220)10 ≈ 62%

D. 1− (1− ((1000− 100) · (220)/232))10 ≈ 92%

E. 1− (1− (1000 · (220 − 100 + 1)/232))10 ≈ 94%

The best layout for each of the megabyte-long attack objects is to have the shellcode at the
end and a NOP sled filling all the space before it: in this layout, jumping to any byte of the
NOP sled or the first byte of the shellcode will be sure to execute the shellcode correctly,
while jumping into the middle of the shellcode will usually not work. So we can estimate
the number of usable jump targets as 220 − 100 + 1 for each of the 1000 objects, which
is about 1 billion. The total address space is 232 or about 4 billion bytes, so jumping to
a random byte location will give control to the attacker with probability about 1/4. If the

Page 4

Computer Science 5271 Midterm exam (solutions) - Page 5 of 14

attacker gets to try this 10 times and only has to succeed once, those are pretty good odds.
To calculate them precisely, think about the complementary probabilities: the attacker only
fails if they fail on all 10 tries, and those tries are independent, so the failure probabilities
of about 3/4 each just multiply, so we take the 10th power, and then the final success
probability is 1 minus the total failure probability. These operations are answer E.

(h) All of the following situations are specified to constitute undefined behavior in the C
language standard except:

A. Dereferencing a null pointer

B. Accessing a memory region after it has been free()d

C. An unhandled case in a switch statement

D. Accessing outside the bounds of an array

E. Integer overflow of a signed integer

Undefined behaviors are ones where the language standard says nothing about what should
happen. This makes them always risky from a security perspective, and so from a pro-
gramming perspective they should be avoided. But the details of what will actually happen
depends on the design and choices made by a compiler. Answers A, B, and D are both
undefined and likely to cause the program to crash. Integer overflow in E would usually not
be an operation that itself causes a crash (though it could on some less common CPUs),
but the fact that it is an undefined behavior means that compilers are allowed to optimize
under the assumption that it won’t happen. By comparison, the language requires (defines)
that values in a switch that do not correspond to any of the listed cases cause control to
go to then end of the switch.

(i) Applying the metric of net risk reduction implies that a security protection becomes more
worthwhile when any of these happen, except:

A. The expected damage caused by an attack increases

B. The attack becomes more frequent

C. The cost of carrying out the attack goes up

D. The defense becomes less expensive

Net risk reduction is a specific kind of cost benefit analysis, where we measure the benefit
from a defense in reducing the expected damage from an attack (risk reduction) against
the cost of the defense. Scenarios A and B would increase the expected damage, and so
increase the benefit of a defense, while scenario D is that the cost decreases, so any of these
make the cost-benefit tradeoff more favorable. Choice C talks about the cost of carrying out
the attack, which is a cost that doesn’t directly figure into a net risk reduction calculation,
since net risk reduction is about the defender’s choices rather than the attacker’s choices.
However if you think about an indirect effect, it would probably go in the opposite direction:
if the cost of carrying out an attack goes up, attackers will attempt the attack less often,
and so the risk and net risk reduction would go down.

(j) Some laptops and smartphones now encourage users to log in via facial recognition or a
fingerprint instead of with a password or PIN. These are examples of:

A. Single sign-on

B. Two-factor authentication

C. Biometric authentication

D. Compromise recording

Page 5

Computer Science 5271 Midterm exam (solutions) - Page 6 of 14

E. CAPTCHAs

Facial recognition and fingerprints are the most common examples of biometric authenti-
cation. If for instance you had to use both your fingerprint and a password, that would be
an instance of two-factor authentication, but the question asked about a biometric factor
replacing a knowledge-based factor (which is probably more common in consumer devices:
it is a primary selling point of biometric authentication that it is more convenient than a
password.)

Page 6

Computer Science 5271 Midterm exam (solutions) - Page 7 of 14

2. (20 points) A race condition attack.

The following high-level C code attempts to copy the contents of one temporary file belonging
to the Alice (username alice) into a new file that will also be owned by Alice. However, you
may be able to see that it has TOCTTOU/race condition problems.

char data[32000]; size_t data_len;

void copy_alice_file(char *input_file, char *output_file) {

/*** point A ***/

if (!file_exists(input_file))

print_error_and_exit();

/*** point B ***/

if (!is_alice_owned_and_readable(input_file))

print_error_and_exit();

/*** point C ****/

if (!file_exists(output_file))

create_alice_file(output_file);

/*** point D ****/

FILE *input_fh = fopen(input_file, "r");

if (!input_fh)

print_error_and_exit();

read_data(input_fh, data, &data_len, sizeof(data));

fclose(input_fh);

/*** point E ***/

FILE *output_fh = fopen(output_file, "w");

if (!output_fh)

print_error_and_exit();

write_data(output_fh, data, data_len);

fclose(output_fh);

}

int main(int argc, char **argv) {

/* ... */

copy_alice_file("/tmp/alice.in", "/tmp/alice.out");

return 0;

}

Suppose that the program containing this code runs with superuser privileges, and your goal
as an attacker with the username bob is to trick the program into doing something else. Specif-
ically Bob wants the program to copy the contents of the secret file /etc/shadow, which con-
tains information about other users’ passwords, into a file that he (Bob) can read. (To start,
/etc/shadow is only readable by the superuser.) Assume that Bob triggers the execution of
this program at a time when initially neither the input file /tmp/alice.in nor the output file
/tmp/alice.out exists yet. But a different file named /tmp/alice-recipes owned by Alice
with 0600 permissions does exist. Bob is able to run other programs, using his write access to
/tmp, at the same time this code is running. In particular, to achieve his attack, Bob will try
to get certain file system operations to occur in between the vulnerable program’s operations,
namely at the points marked point A through point E.

Page 7

Computer Science 5271 Midterm exam (solutions) - Page 8 of 14

In the parts below, describe which racing attacker actions Bob should take at each point for a
successful attack. You may not need to use all of the points. Suggestion: use symbolic links.

Here is one possible complete answer:

(a) At point A:

Create /tmp/alice.in as a symlink to /tmp/alice-recipes.

(b) At point B:

(c) At point C:

Create /tmp/alice.out as a file owned by bob with 0600 permissions.

(d) At point D:

Redirect /tmp/alice.in to point to /etc/shadow.

(e) At point E:

More generally, we were looking for operations in three areas to make a successful attack:

1. Pass the checks after points A and B by creating a file as /tmp/alice.in that would pass
those checks. Since later steps of the attack require this file to be a symlink, the require-
ments can be fulfilled in a single step by creating the file as a symlink to /tmp/alice-recipes.
Alternatively, Bob could create any file at all at point A, and then later replace it at step
B. Creating a symlink to another file owned by Alice is the best approach because could not
create a new file owned by Alice himself.

2. Update the /tmp/alice.in symlink to point to the file whose contents Bob wants to leak,
/etc/shadow. /etc/shadow is not owned by Alice, so this check has to come after point
B, but it has to come before the program opens the file for reading, so point C and point
D are the two viable locations for this change.

3. Create an output file for the leaked data to be written into. Bob has to create some file
with the name /tmp/alice.out no later than point C, because if the file does not exist
after point C, the program will create an Alice-owned file at this location that Bob will
not be able to read. The final Bob-readable file needs to be created before step E when the
program will open it. Our solution shows one action creating a suitable file at step C, but
creating a file earlier and then changing it later could also work.

Page 8

Computer Science 5271 Midterm exam (solutions) - Page 9 of 14

Assume that all of the functions whose names contain underscores do what their name sounds
like they do: The function file_exists returns true if a file exists with a given pathname,
and false otherwise. The function print_error_and_exit prints an error message and then
causes the program to exit. The function is_alice_owned_and_readable returns true if its
pathname argument is owned by alice and has read permissions for alice. Otherwise it
returns false. The function create_alice_file creates a file with the given name suitable for
storing information private to Alice: the owner of the file is alice and only alice has read or
write permissions. The function read_data reads the contents from an open file handle into a
memory buffer, keeping track of the amount of data it reads. You don’t have to worry about
the possibility of the file contents being bigger than the buffer. The function write_data is the
matching operation to read_data and similar to the standard library function fwrite, writing
data from memory back into a file handle open for writing.

The standard library function fopen opens a file handle used to read from or write to a file
(specified by the second argument). It returns a null pointer if the file cannot be opened, such
as if it does not exist. The standard library function fclose is used to close a file handle
opened by fopen. We have left off error handling for fclose because it is not important to
this vulnerability.

Page 9

Computer Science 5271 Midterm exam (solutions) - Page 10 of 14

3. (30 points) Function preconditions.

Each of the following short C functions performs some operations that are potentially unsafe,
but could be performed correctly if appropriate properties of the function arguments, precon-
ditions, are checked by the code calling the function. For each function, write one or more
preconditions that are sufficient to guarantee that no safety or security problems will happen
when running the function, but allow appropriate uses of the function to occur. Use the syntax
of C to represent the preconditions whenever possible, and in other cases write clear text such
as might appear in documentation.

You don’t have to mention any properties that are already checked with the assert function
inside the function, and the number of blank lines is not intended to signal the number of
preconditions we expect. We’ve done the first function as an example.

n >= 0

unsigned int fib(int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return fib(n - 1) + fib(n - 2);

}

}

(a) strlen(s1) + strlen(s2) + strlen(s3) < (size of the buffer pointed to by buf)

void strcat3(char *buf, const char *s1, const char *s2, const char *s3) {

assert(buf && s1 && s2 && s3);

strcpy(buf, s1);

strcat(buf, s2);

strcat(buf, s3);

}

The assert here already checks that the pointers are non-null, so the most important
precondition we were looking for was ensuring that there would be enough space in the
output buffer for all the strings that are going to be copied into it. strlen counts the
number of bytes in a string up to but not including the null terminator, so it is the right
operation to use to compute how many characters will be copied from s1, s2, and s3. But
it would not make sense to call strlen on buf, since that would count the length of the
string that was already written there; by contrast we probably don’t want to assume that
the output buffer has been initialized at all, since the purpose of this code is to overwrite it.
(Or it could have previously held a shorter string.) We gave full credit for sizeof(buf),
but note that sizeof would only do the right thing if the buffer was a local or global array
whose size was fixed by the compiler, and sizeof was applied to that array. Applying
sizeof to the character pointer char *buf would not give the right result, since pointers

Page 10

Computer Science 5271 Midterm exam (solutions) - Page 11 of 14

are always a fixed size (8 bytes on x86-64), regardless of what they’re pointing to. After all
the copying is done there also needs to be space for a null terminator byte after the copy
of s3: you can handle this by using a strict < comparison, or by adding 1 to the sum of
the lengths and using <=.

(b) size <= 0x1fffffffffffffff

long *alloc_and_zero_array(size_t size) {

long *p = malloc(size * sizeof(long));

assert(p);

for (size_t i = 0; i < size; i++) {

p[i] = 0;

}

return p;

}

The main problem we should worry about here is integer overflow in the multiplication
leading to buffer overflow when writing to a too-small array. Our sample answer shows a
numeric bound that is right when size_t is unsigned long and longs are 64 bits, as they
are on x86-64. We did not intend to require that your answer be portable to other plat-
forms, but many students chose to express this result in terms of the macros for the sizes
of various types. For this style our preferred answer would be SIZE_MAX/sizeof(long),
since SIZE_MAX is the maximum value of a size_t variable. Some other pitfalls to men-
tion: this wouldn’t have been a good case for trying to detect overflow by doing calcula-
tions on a different type, since integers wider than 64 bits aren’t consistently available,
and double floating point variables can’t represent all 64-bit integer values exactly. It is
also not correct in general to base an overflow check on assuming that an overflowed re-
sult will have a different ordering relative to the operands as a non-overflow result: this
is true about adding two integers, but not may other operations. For instance in this
case, the computation 8 * size could overflow and still be larger than size; for instance
8 * 0x8800000000000000’ gives 0x4000000000000000. On current x86-64 systems such
overflows would probably still be large enough that malloc would fail, but they would become
an exploitable vulnerability if future systems support larger allocations.

Page 11

Computer Science 5271 Midterm exam (solutions) - Page 12 of 14

(c) p != NULL

p points to a writeable char

void poke(char *p, char c) {

*p = c;

}

Checking for the pointer p to be non-null was the most commonly-given part of this answer.
But being non-null is not enough to ensure that a pointer can be safely written to: for
instance it might point to an object that was allocated and then freed, or it could point to
a read-only string constant.

(d) p != NULL

p points to a readable char

char peek(char *p) {

return *p;

}

This question was intended to be similar to the previous one, except that the memory access
is a read rather than a write.

(e) x != 0

int abs_dynamic(int x) {

int *pos_ptr = malloc(sizeof(int));

int result;

assert(pos_ptr);

if (x >= 0) {

*pos_ptr = x;

result = *pos_ptr;

free(pos_ptr);

}

if (x <= 0) {

*pos_ptr = -x;

result = *pos_ptr;

free(pos_ptr);

}

return result;

}

This absolute value function was written to weirdly require dynamic memory allocation,
and the problem we were hoping you would notice is that the non-negative and non-positive
cases will both be executed when the input is 0, leading to both a use-after-free problem and
a double-free problem. This would probably be classified as a bug, but it can be avoided by
not passing 0 as an input.

Page 12

Computer Science 5271 Midterm exam (solutions) - Page 13 of 14

It wasn’t part of our intended answer, but some students also pointed out that the value
of 0x80000000 for x also has a problem. It isn’t something that would likely cause a
crash on most systems, but this most negative twos-complement value has no corresponding
representable positive value, so the usual behavior of negation is to overflow back to leaving
the value unchanged. This is undefined behavior under the rules of C, and it also risks
triggering problems in code that uses this function which would otherwise assume that the
result of this function is non-negative.

Here are some reminders about some C functions that appear in the question. assert (which
is technically a macro) takes as an argument a boolean condition that is supposed to be true.
If the condition is true nothing happens, and if the condition is false the program immediately
stops with an error message. malloc takes a number of bytes as an argument, and allocates
that much memory, returning a pointer to the allocated memory. The pointer returned by
malloc should be passed to free when the program is done with it. strcpy and strcat both
copy a string into a destination buffer in their first argument. The difference between them is
that strcpy overwrites the buffer from the beginning, while strcat performs concatenation by
copying its second argument after the end of the string already in the destination buffer.

Page 13

Computer Science 5271 Midterm exam (solutions) - Page 14 of 14

4. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) S Library function to execute a string with a shell

(b) C System call to change user and group associated with a file

(c) R Exempt from all discretionary access-control checks

(d) G Virtual machine underneath a normal kernel

(e) B Allow-list-style mechanism to stop control-flow hijacking

(f) K x86-64 register pointing to the beginning of a stack frame

(g) H CPU mode where all memory is accessible

(h) E Specifying which inputs constitute an attack

(i) Q Subject to buffer overflow and format string bugs

(j) O Stores CPU registers in a memory buffer

(k) J Compilation mode where all code is position-independent

(l) M Added to password hash to conceal equality

(m) D Allows information to flow in only one direction

(n) A A value which, if overwritten, indicates an attack

(o) L x86-64 register pointing to the top of the stack

(p) P Architecture vulnerability related to, e.g., branch prediction

(q) N An isolated environment for untrusted code

(r) T CPU mode where page tables cannot be changed

(s) I Trusted Computer System Evaluation Criteria

(t) F Point where false-positive and false-negative rates are equal

A. canary B. CFI C. chown D. data diode E. deny list F. EER G. hypervisor
H. kernel mode I. Orange Book J. PIE K. %rbp L. %rsp M. salt N. sandbox
O. setjmp P. Spectre Q. sprintf(3) R. superuser S. system(3) T. user mode

Page 14

