
1

1

Debugging and debuggers

 You have probably already had the experience of making
a mistake in a program

 Speaking roughly, “debugging” is the process:

 After you know that your code is wrong

 But before you know how it is wrong

 Some kinds of debugging that don’t need much tool
support:

 Code review

 Rubber duck debugging

 Printf debugging

2

Debugging in the development cycle

Add
functionality

Edit

Compile

Test

Debug

3

What is a debugger for?

 Not to fix your bugs for you, alas

 Computers aren’t that smart yet

 Instead, helps you examine your program’s execution in
more detail
 See what is happening if something is obviously wrong

 Walk through normal execution, to compare with your
expectations

 Standard practice is source-level debugging
 I.e., the debugger shows your program in terms of its source code

 For binaries, made possible by debugging information (enabled
with compiler option -g)

4

The GNU debugger GDB

 Standard command-line, source and binary-level
debugger on Linux

 Start up with gdb ./my_program

 Supply program arguments to the GDB run command

 Abbreviated just r

 Or, use gdb --args ./my_program arg1 arg2

 This mode doesn’t work for redirection (shell <, >)

 Today: using GDB as a source-level debugger

5

break, step, next, continue

 Normally, GDB will execute your program normally

 To get it to stop to let you look around, turn on a
breakpoint with the command break (b)

 Argument can be function name, file and line number, others

 When the breakpoint is reached, your program will stop
and you can give GDB commands

 Run the program for one line with step (s)
 Variant next (n) does not go into other functions

 To go back to full-speed execution, use continue (c)

6

print

 The most important command for examining program
state is print (p)

 The argument is a source-level (i.e., C) expression

 Some features to know about
 Can do arithmetic

 Can refer to any variable in scope

 Can call functions

 Can do assignments

 p/x prints in hexadecimal (other formats also available)

2

7

Crashes, interrupts, and backtrace

 GDB will automatically stop if the program runs into a
crash like a segfault (technically: a Unix signal)

 To stop in the middle of execution, type Ctrl-C

 Good for debugging infinite loops

 The command backtrace (bt) summarizes all the
currently executing functions
 Similar to what Java and Python print for an unhandled exception

8

Watchpoints

 A watchpoint is sort of like a breakpoint, but based on
data

 The command watch takes an argument like print

 A watchpoint stops execution when that value changes

 Useful for tracking down problems caused to pointers

 If you use a source-level expression, you’ll usually get a
software watchpoint, which is slow
 Later, we’ll see hardware watchpoints

9

Overview: GDB without source code

 GDB can also be used just at the instruction level

Source-level GDB Binary-level GDB

step/next stepi/nexti

break <line number> break *<address>

list disas

print <variable> print with registers & casts

print <data structure> examine

info local info reg

software watch hardware watch

10

Disassembly and stepping

 The disas command prints the disassembly of
instructions
 Give a function name, or defaults to current function, if available

 Or, supply range of addresses <start>,<end> or <start>,+<length>

 If you like TUI mode, “layout asm”

 Shortcut for a single instruction: x/i <addr>, x/i $rip

 disasm/r shows raw bytes too

 stepi and nexti are like step and next, but for
instructions
 Can be abbreviated si and ni

 stepi goes into called functions, nexti stays in current one

 continue, return, and finishwork as normal

11

Binary-level breakpoints

 All breakpoints are actually implemented at the
instruction level
 info br will show addresses of all breakpoints

 Sometimes multiple instructions correspond to one source location

 To break at an instruction, use break *<address>

 Address usually starts with 0x for hex

 The until command is like a temporary breakpoint and
a continue
 Works the same on either source or binary

12

Binary-level printing

 The print command still mostly uses C syntax, even
when you don’t have source
 Registers available with $ names, like $rax, $rip

 Often want p/x, for hex

 Use casts to indicate types
 p (char)$r10

 p (char *)$rbx

 Use casts and dereferences to access memory
 p *(int *)$rcx

 p *(char **)$r8

 p *((int*)$rbx + 1)

 p *(int*)($rbx + 4)

3

13

Examining memory

 The examine (x) command is a low-level tool for
printing memory contents
 No need to use cast notation

 x/<format> <address>

 Format can include repeat count (e.g., for array)

 Many format letters, most common are x for hex or d for decimal

 Size letter b/h/w/gmeans 1/2/4/8 bytes

 Example: x/20xg 0x404100

 Prints first 20 elements of an array of 64-bit pointers, in hex

14

More useful printing commands

 info reg prints contents of all integer registers, flags

 In TUI: layout reg, will highlight updates

 Float and vector registers separate, or use info all-reg

 info frame prints details about the current stack

frame
 For instance, “saved rip” means the return address

 backtrace still useful, but shows less information

 Just return addresses, maybe function names

15

Hardware watchpoints

 To watch memory contents, use print-like syntax with
addresses
 watch *(int *)0x404170

 GDB’s “Hardware watchpoint” indicates a different
implementation
 Much faster than software

 But limited in number

 Limited to watching memory locations only

 Watching memory is good for finding memory corruption

