
CSci 4271W
Development of Secure Software Systems

Day 23: Networks and protocols
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Introduction to networking, cont’d

Some classic network attacks

Announcements intermission

Cryptographic protocols

Key distribution and PKI

SSH

Layered model: TCP/IP TCP

Transmission Control Protocol: provides reliable
bidirectional stream abstraction

Packets have sequence numbers, acknowledged in
order

Missed packets resent later

Flow and congestion control

Flow control: match speed to slowest link
“Window” limits number of packets sent but not ACKed

Congestion control: reduce traffic jams
Lost packets signal congestion
Additive increase, multiplicative decrease of rate

Routing

Where do I send this packet next?
Table from address ranges to next hops

Core Internet routers need big tables

Maintained by complex, insecure, cooperative
protocols

Internet-level algorithm: BGP (Border Gateway Protocol)

Below IP: ARP

Address Resolution Protocol maps IP addresses to
lower-level address

E.g., 48-bit Ethernet MAC address

Based on local-network broadcast packets

Complex Ethernets also need their own routing (but
called switches)

DNS

Domain Name System: map more memorable and
stable string names to IP addresses
Hierarchically administered namespace

Like Unix paths, but backwards

.edu server delegates to .umn.edu server, etc.



DNS caching and reverse DNS

To be practical, DNS requires caching
Of positive and negative results

But, cache lifetime limited for freshness

Also, reverse IP to name mapping
Based on special top-level domain, IP address written
backwards

Classic application: remote login

Killer app of early Internet: access supercomputers
at another university
Telnet: works cross-OS

Send character stream, run regular login program

rlogin: BSD Unix
Can authenticate based on trusting computer connection
comes from
(Also rsh, rcp)

Outline

Introduction to networking, cont’d

Some classic network attacks

Announcements intermission

Cryptographic protocols

Key distribution and PKI

SSH

Packet sniffing

Watch other people’s traffic as it goes by on network

Easiest on:
Old-style broadcast (thin, “hub”) Ethernet
Wireless

Or if you own the router

Forging packet sources

Source IP address not involved in routing, often not
checked

Change it to something else!

Might already be enough to fool a naive UDP
protocol

TCP spoofing

Forging source address only lets you talk, not listen

Old attack: wait until connection established, then
DoS one participant and send packets in their place
Frustrated by making TCP initial sequence numbers
unpredictable

But see Oakland’12, WOOT’12 for fancier attacks, keyword
“off-path”

ARP spoofing

Impersonate other hosts on local network level

Typical ARP implementations stateless, don’t mind
changes

Now you get victim’s traffic, can read, modify, resend

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?



rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

Remember, ownership of reverse-DNS is by IP
address

Outline

Introduction to networking, cont’d

Some classic network attacks

Announcements intermission

Cryptographic protocols

Key distribution and PKI

SSH

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

Introduction to networking, cont’d

Some classic network attacks

Announcements intermission

Cryptographic protocols

Key distribution and PKI

SSH

A couple more security goals

Non-repudiation: principal cannot later deny having
made a commitment

I.e., consider proving fact to a third party

Forward secrecy: recovering later information does
not reveal past information

Motivates using Diffie-Hellman to generate fresh keys for
each session

Abstract protocols

Outline of what information is communicated in
messages

Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

Describes honest operation
But must be secure against adversarial participants

Seemingly simple, but many subtle problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K

Example: simple authentication

A! B : A; fA;NgKA
E.g., Alice is key fob, Bob is garage door

Alice proves she possesses the pre-shared key KA
Without revealing it directly

Using encryption for authenticity and binding, not
secrecy



Nonce

A! B : A; fA;NgKA
N is a nonce: a value chosen to make a message
unique

Best practice: pseudorandom

In constrained systems, might be a counter or
device-unique serial number

Replay attacks

A nonce is needed to prevent a verbatim replay of a
previous message
Garage door difficulty: remembering previous nonces

Particularly: lunchtime/roommate/valet scenario

Or, door chooses the nonce: challenge-response
authentication

Middleperson attacks

Older name: man-in-the-middle attack, MITM

Adversary impersonates Alice to Bob and
vice-versa, relays messages

Powerful position for both eavesdropping and
modification

No easy fix if Alice and Bob aren’t already related

Chess grandmaster problem

Variant or dual of middleperson

Adversary forwards messages to simulate
capabilities with his own identity

How to win at correspondence chess

Anderson’s MiG-in-the-middle

Anti-pattern: “oracle”

Any way a legitimate protocol service can give a
capability to an adversary

Can exist whenever a party decrypts, signs, etc.

“Padding oracle” was an instance of this at the
implementation level

Outline

Introduction to networking, cont’d

Some classic network attacks

Announcements intermission

Cryptographic protocols

Key distribution and PKI

SSH

Public key authenticity

Public keys don’t need to be secret, but they must
be right

Wrong key ! can’t stop middleperson

So we still have a pretty hard distribution problem

Symmetric key servers

Users share keys with server, server distributes
session keys

Symmetric key-exchange protocols, or channels

Standard: Kerberos

Drawback: central point of trust



Certificates

A name and a public key, signed by someone else
CA = SignS(A;KA)

Basic unit of transitive trust

Commonly use a complex standard “X.509”

Certificate authorities

“CA” for short: entities who sign certificates

Simplest model: one central CA

Works for a single organization, not the whole world

Web of trust

Pioneered in PGP for email encryption

Everyone is potentially a CA: trust people you know

Works best with security-motivated users
Ever attended a key signing party?

CA hierarchies

Organize CAs in a tree

Distributed, but centralized (like DNS)

Check by follow a path to the root

Best practice: sub CAs are limited in what they
certify

PKI for authorization

Enterprise PKI can link up with permissions

One approach: PKI maps key to name, ACL maps
name to permissions

Often better: link key with permissions directly, name
is a comment

The revocation problem

How can we make certs “go away” when needed?

Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

Introduction to networking, cont’d

Some classic network attacks

Announcements intermission

Cryptographic protocols

Key distribution and PKI

SSH

Short history of SSH

Started out as freeware by Tatu Ylönen in 1995

Original version commercialized

Fully open-source OpenSSH from OpenBSD

Protocol redesigned and standardized for “SSH 2”



OpenSSH t-shirt SSH host keys

Every SSH server has a public/private keypair

Ideally, never changes once SSH is installed

Early generation a classic entropy problem
Especially embedded systems, VMs

Authentication methods

Password, encrypted over channel

.shosts: like .rhosts, but using client host key

User-specific keypair
Public half on server, private on client

Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

1.x had only CRC for integrity
Worst case: when used with RC4

Injection attacks still possible with CBC
CRC compensation attack

For least-insecure 1.x-compatibility, attack detector

Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

IV chaining: IV based on last message ciphertext
Allows chosen plaintext attacks
Better proposal: separate, random IVs

Some tricky attacks still left
Send byte-by-byte, watch for errors
Of arguable exploitability due to abort

Now migrating to CTR mode

SSH over SSH

SSH to machine 1, from there to machine 2
Common in these days of NATs

Better: have machine 1 forward an encrypted
connection

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

When you connect to a host freshly, a mild note

When the host key has changed, a large warning

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!
It is also possible that a host key has just been changed.


