CSci 427\W
Development of Secure Software Systems
Day 22: Networking and Security

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Preview question

Which of the following would have to be completely abandoned if
scalable quantum computers become widely available?

A. one-time pads

B. RSA

C. AES

D ROTI3

E. SHA-3

Outline

Public key primitives, contd

General description

£) Public-key encryption (generalizes block cipher)

® Separate encryption key EK (public) and decryption key
DK (secret)

£) Signature scheme (generalizes MAC)

® Separate signing key SK (secret) and verification key VK
(public)

Hybrid encryption

£) Public-key operations are slow

©) In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time
— Breaks at either level are fatal

Padding, try #1

£) Need to expand message (e.g., AES key) size to
match modulus

£) PKCS#1 v. 15 scheme: prepend 00 O1 FF FF .. FF

£) Surprising discovery (Bleichenbacher'98). allows
adaptive chosen ciphertext attacks on SSL
® Variants recurred later (cf. "ROBOT" 2018)

Modern “padding”

£) Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

£) Common examples: OAEP for encryption, PSS for
signing

£) Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

£) “Key encapsulation mechanism” (KEM)

£) For common case of public-key crypto used for
symmetric-key setup

® Also applies to DH

£) Choose RSA message r at random mod n,
symmetric key is H(r)

— Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

£) One thing quantum computers would be good for is
breaking crypto
£) Square root speedup of general search
® Countermeasure: double symmetric security level
) Factoring and discrete log become poly-time
® DH, RSA, DSA, elliptic curves totally broken
® Totally new primitives needed (lattices, etc.)

©) Not a problem yet, but getting ready

Box and locks revisited

£) Alice and Bob's box scheme fails if an intermediary
can set up two sets of boxes
® Middleperson (man-in-the-middle) attack
£) Real world analogue: challenges of protocol design
and public key distribution

Outline

Good technical writing (pt. 1)

Writing in CS versus other writing

£) Key goal is accurately conveying precise technical
information

£) More important: careful use of terminology,
structured organization

©) Less important: writer's personality, persuasion,
appeals to emotion

Still important: concise expression

©) Don't use long words or complicated expressions
when simpler ones would convey the same meaning.
Negative examples:
® necessitate
® utilize
® due to the fact that

) Beneficial for both clarity and style

Know your audience: terminology

£) When technical terminology makes your point clearly,
use it

£) Provide definitions if a concept might be new to
many readers

® Be careful to provide the right information in the definition
® Define at the first instead of a later use

£) But, avoid introducing too many new terms
® Keep the same term when referring to the same concept

Precise explanations

©) Don't say "we” do something when it's the computer
that does it
® And avoid passive constructions
©) Don't anthropomorphize (computers don't “know")

) Use singular by default so plural provides a
distinction:
- The students take tests
+ Each student takes a test
+ Each student takes two tests

Provide structure

£) Use plenty of sections and sub-sections

o) It's OK to have some redundancy in previewing
structure
£ Limit each paragraph to one concept, and not too
long
® Start with a clear topic sentence

£) Split long, complex sentences into separate ones

Know your audience: Project 1

©) For projects in this course, assume your audience is

another student who already understands general
course concepts
® Up to the current point in the course
® le, don't need to define “buffer overflow” from scratch
£) But you need to explain specifics of a vulnerable
program

® Make clear what part of the program you're referring to

® Explain all the specific details of a vulnerability

Inclusive language

£) Avoid words and grammar that implies relevant
people are male

£) My opinion: avoid using he/him pronouns for
unknown people

£) Some possible alternatives

® “he/she”

® Alternating genders

® Rewrite to plural and use “they” (may be less clear)
® Singular “they” (least traditional, but spreading)

Outline

Brief introduction to networking

The Internet

£) A bunch of computer networks voluntarily
interconnected
£) Capitalized because there’s really only one

©) No centralized network-level management
® But technical collaboration, DNS, etc.

Layered model (OSI)

. Application (HTTP)

. Presentation (MIME?)
. Session (SSL?)

. Transport (TCP)

. Network (IP)

. Data-link (PPP)

. Physical (IOBASE-T)

- N W h O O

Layered model: TCP/IP

Application protocol (e.g. HTTP)

Application PP P 9 A

TCP or UDP
Transport T
P IP

Network N N
802.11 (WiFi) Ethernet

Link L L

Packet wrapping

application data

[|
segments / /
TCP| data | [TCP| data | [TCP| data |

packets [IP_ [TCP[data]

frames [etH] 1P [TCP] data |EthT

IP(v4) addressing

©) Interfaces (hosts or routers) identified by 32-bit

addresses
® Written as four decimal bytes, e.g. 192168.10.2

£ First k bits identify network, 32 — k host within
network
® Can't (anymore) tell k from the bits

) We'll run out any year now

IP and ICMP

©) Internet Protocol (IP) forwards individual packets

) Packets have source and destination addresses,
other options

©) Automatic fragmentation (usually avoided)

£) ICMP (I Control Message P) adds errors, ping
packets, etc.

UDP

) User Datagram Protocol: thin wrapper around IP

£) Adds source and destination port numbers (each
16-bit)

©) Still connectionless, unreliable

£) OK for some small messages

TCP

©) Transmission Control Protocol: provides reliable
bidirectional stream abstraction

©) Packets have sequence numbers, acknowledged in
order

©) Missed packets resent later

Flow and congestion control

£) Flow control: match speed to slowest link
® “"Window" limits number of packets sent but not ACKed
) Congestion control: avoid traffic jams

® Lost packets signal congestion
® Additive increase, multiplicative decrease of rate

Routing

©) Where do | send this packet next?
® Table from address ranges to next hops

©) Core Internet routers need big tables

©) Maintained by complex, insecure, cooperative
protocols
® Internet-level algorithm: BGP (Border Gateway Protocol)

Below IP: ARP

£) Address Resolution Protocol maps IP addresses to
lower-level address
® Eg, 48-bit Ethernet MAC address

) Based on local-network broadcast packets

£) Complex Ethernets also need their own routing (but
called switches)

DNS

©) Domain Name System: map more memorable and
stable string names to IP addresses
©) Hierarchically administered namespace
® Like Unix paths, but backwards

£) .edu server delegates to .umn.edu server, etc.

DNS caching and reverse DNS

£) To be practical, DNS requires caching
® Of positive and negative results

£) But, cache lifetime limited for freshness

©) Also, reverse IP to name mapping

® Based on special top-level domain, IP address written
backwards

Classic application: remote login

o) Killer app of early Internet: access supercomputers
at another university
©) Telnet: works cross-0S
® Send character stream, run reqular login program
©) rlogin: BSD Unix
® Can authenticate based on trusting computer connection

comes from
® (Also rsh, rep)

Outline

Some classic network attacks

Packet sniffing

£) Watch other people’s traffic as it goes by on network

©) Easiest on:
® Old-style broadcast (thin, “*hub”) Ethernet
® Wireless

o) Or if you own the router

Forging packet sources

©) Source IP address not involved in routing, often not
checked

£) Change it to something else!

£) Might already be enough to fool a naive UDP
protocol

TCP spoofing

©) Forging source address only lets you talk, not listen

©) Old attack: wait until connection established, then
DoS one participant and send packets in their place
©) Frustrated by making TCP initial sequence numbers
unpredictable
® Fancier attacks modern attacks are “off-path”

ARP spoofing

£) Impersonate other hosts on local network level

£) Typical ARP implementations stateless, don't mind
changes

£) Now you get victim's traffic, can read, modify, resend

rlogin and reverse DNS

©) rlogin uses reverse DNS to see if originating host is
on whitelist

£) How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

£) rlogin uses reverse DNS to see if originating host is
on whitelist

£) How can you attack this mechanism with an honest
source IP address?

£) Remember, ownership of reverse-DNS is by IP
address

Outline

Cryptographic protocols

A couple more security goals

£) Non-repudiation: principal cannot later deny having
made a commitment
® le, consider proving fact to a third party
£) Forward secrecy: recovering later information does
not reveal past information

® Motivates using Diffie-Hellman to generate fresh keys for
each session

Abstract protocols

©) Outline of what information is communicated in
messages
® Omit most details of encoding, naming, sizes, choice of
ciphers, etc.
) Describes honest operation
® But must be secure against adversarial participants

£) Seemingly simple, but many subtle problems

Protocol notation

A —B: NB,{T(),B, NB}KB
©) A — B: message sent from Alice intended for Bob
£) B (after :): Bob's name
0 {- - - Jx: encryption with key K

Example: simple authentication

A — B:A{A, N},
©) Eg, Alice is key fob, Bob is garage door
©) Alice proves she possesses the pre-shared key K
® Without revealing it directly
©) Using encryption for authenticity and binding, not
secrecy

Nonce

A — B:A{A, Nk,
©) N is a nonce: a value chosen to make a message
unique
£) Best practice: pseudorandom
£ In constrained systems, might be a counter or
device-unigue serial number

Replay attacks

©) A nonce is needed to prevent a verbatim replay of a
previous message
©) Garage door difficulty: remembering previous nonces
® Particularly: lunchtime/roommate/valet scenario
©) Or, door chooses the nonce: challenge-response
authentication

Middleperson attacks

£) Older name: man-in-the-middle attack, MITM

£) Adversary impersonates Alice to Bob and
vice-versa, relays messages

©) Powerful position for both eavesdropping and
modification

£) No easy fix if Alice and Bob aren't already related

Chess grandmaster problem Anti-pattern: “oracle”

©) Variant or dual of middleperson ©) Any way a legitimate protocol service can give a
©) Adversary forwards messages to simulate capability to an adversary

capabilities with his own identity ©) Can exist whenever a party decrypts, signs, etc.
© How to win at correspondence chess) "Padding oracle” was an instance of this at the

£) Anderson’s MiG-in-the-middle implementation level

