
CSci 4271W
Development of Secure Software Systems
Day 15: Fuzzing and web security part 1

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

More choices for isolation, cont’d

Testing and fuzzing

Announcements intermission

The web from a security perspective

Cross-site scripting

More cross-site risks

(System) virtual machines

Presents hardware-like interface to an untrusted
kernel

Strong isolation, full administrative complexity

I/O interface looks like a network, etc.

Virtual machine designs

(Type 1) hypervisor: ‘superkernel’ underneath VMs

Hosted: regular OS underneath VMs

Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

Hardware based: fastest, now common

Partial translation: e.g., original VMware

Full emulation: e.g. QEMU proper
Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

Separates “browser kernel” from less-trusted
“rendering engine”

Pragmatic, keeps high-risk components together

Experimented with various Windows and Linux
sandboxing techniques

Blocked 70% of historic vulnerabilities, not all new
ones

http://seclab.stanford.edu/websec/chromium/

Outline

More choices for isolation, cont’d

Testing and fuzzing

Announcements intermission

The web from a security perspective

Cross-site scripting

More cross-site risks

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Random or fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Mutational fuzzing

Instead of totally random inputs, make small random
changes to normal inputs

Changes are called mutations

Benign starting inputs are called seeds

Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

Observation: it helps to know what correct inputs
look like

Grammar specifies legal patterns, run backwards
with random choices to generate

Generated inputs can again be basis for mutation

Most commonly used for standard input formats
Network protocols, JavaScript, etc.

What if you don’t have a grammar?

Input format may be unknown, or buggy and limited

Writing a grammar may be too much manual work

Can the structure of interesting inputs be figured out
automatically?

Coverage-driven fuzzing

Instrument code to record what code is executed

An input is interesting if it executes code that was
not executed before

Only interesting inputs are used as basis for future
mutation

AFL

Best known open-source tool, pioneered
coverage-driven fuzzing

American Fuzzy Lop, a breed of rabbits

Stores coverage information in a compact hash table

Compiler-based or binary-level instrumentation

Has a number of other optimizations

Outline

More choices for isolation, cont’d

Testing and fuzzing

Announcements intermission

The web from a security perspective

Cross-site scripting

More cross-site risks

Wheeler reading questions

Due (on Canvas) Thursday night

Note no late submissions, so do them on time

Midterm 1 grade statistics

<=5 | *

6 | 6799

7 | 677778

8 | 00111223444555888

9 | 2222224566666666

Mean: 82.9, Median: 84

Outline

More choices for isolation, cont’d

Testing and fuzzing

Announcements intermission

The web from a security perspective

Cross-site scripting

More cross-site risks

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with formatting and
links

All pages public, so no need for authentication or
encryption

Web applications

The modern web depends heavily on active software

Static pages have ads, paywalls, or “Edit” buttons

Many web sites are primarily forms or storefronts

Web hosted versions of desktop apps like word
processing

Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and frameworks

Wide variety of commercial, open-source, and
custom-written
Flexible scripting languages for ease of development

PHP, Ruby, Perl, etc.

Client-side programming

Java: nice language, mostly moved to other uses

ActiveX: Windows-only binaries, no sandboxing
Glad to see it on the way out

Flash and Silverlight: last important use was DRM-ed
video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed prototype-OO
language

No real similarity with Java

Document Object Model (DOM): lets JS interact with
pages and the browser

Extensive security checks for untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed only with the
same origin

Different sites are (mostly) isolated applications

GET, POST, and cookies

GET request loads a URL, may have parameters
delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have side-effects

Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff unencrypted
data

Unprotected coffee shop WiFi

Outline

More choices for isolation, cont’d

Testing and fuzzing

Announcements intermission

The web from a security perspective

Cross-site scripting

More cross-site risks

XSS: HTML/JS injection

Note: CSS is “Cascading Style Sheets”

Another use of injection template

Attacker supplies HTML containing JavaScript (or
occasionally CSS)
OWASP’s most prevalent weakness

A category unto itself
Easy to commit in any dynamic page construction

Why XSS is bad (and named that)

attacker.com can send you evil JS directly

But XSS allows access to bank.com data

Violates same-origin policy

Not all attacks actually involve multiple sites

Reflected XSS

Injected data used immediately in producing a page

Commonly supplied as query/form parameters

Classic attack is link from evil site to victim site

Persistent XSS

Injected data used to produce page later

For instance, might be stored in database

Can be used by one site user to attack another user
E.g., to gain administrator privilege

DOM-based XSS

Injection occurs in client-side page construction

Flaw at least partially in code running on client

Many attacks involve mashups and inter-site
communication

No string-free solution

For server-side XSS, no way to avoid string
concatenation
Web page will be sent as text in the end

Research topic: ways to change this?

XSS especially hard kind of injection

Danger: complex language embedding

JS and CSS are complex languages in their own
right
Can appear in various places with HTML

But totally different parsing rules

Example: "..." used for HTML attributes and JS
strings

What happens when attribute contains JS?

Danger: forgiving parsers

History: handwritten HTML, browser competition

Many syntax mistakes given “likely” interpretations

Handling of incorrect syntax was not standardized

Sanitization: plain text only

Easiest case: no tags intended, insert at document
text level

Escape HTML special characters with entities like
< for <

OWASP recommendation: & < > " ' /

Sanitization: context matters

An OWASP document lists 5 places in a web page
you might insert text

For the rest, “don’t do that”

Each one needs a very different kind of escaping

Sanitization: tag allow-listing

In some applications, want to allow benign markup
like

But, even benign tags can have JS attributes

Handling well essentially requires an HTML parser
But with an adversarial-oriented design

Don’t deny-list

Browser capabilities continue to evolve

Attempts to list all bad constructs inevitably
incomplete

Even worse for XSS than other injection attacks

Filter failure: one-pass delete

Simple idea: remove all occurrences of <script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta> tag, or some
browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

Put this on something the user will be tempted to
click on

There are more than 100 handlers like this
recognized by various browsers

Use good libraries

Coding your own defenses will never work

Take advantage of known good implementations

Best case: already built into your framework
Disappointingly rare

Content Security Policy

Added HTTP header, W3C recommendation

Lets site opt-in to stricter treatment of embedded
content, such as:

No inline JS, only loaded from separate URLs
Disable JS eval et al.

Has an interesting violation-reporting mode

Outline

More choices for isolation, cont’d

Testing and fuzzing

Announcements intermission

The web from a security perspective

Cross-site scripting

More cross-site risks

HTTP header injection

Untrusted data included in response headers

Can include CRLF and new headers, or premature
end to headers

AKA “response splitting”

Content sniffing

Browsers determine file type from headers,
extension, and content-based guessing

Latter two for � 1% server errors

Many sites host “untrusted” images and media

Inconsistencies in guessing lead to a kind of XSS
E.g., “chimera” PNG-HTML document

Cross-site request forgery

Certain web form on bank.com used to wire money

Link or script on evil.com loads it with certain
parameters

Linking is exception to same-origin

If I’m logged in, money sent automatically

Confused deputy, cookies are ambient authority

CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens

Open redirects

Common for one page to redirect clients to another

Target should be validated
With authentication check if appropriate

Open redirect: target supplied in parameter with no
checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

