CSci 427\W
Development of Secure Software Systems
Day 15: Fuzzing and web security part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

More choices for isolation, contd

(System) virtual machines

©) Presents hardware-like interface to an untrusted
kernel

£) Strong isolation, full administrative complexity
0 I/0 interface looks like a network, etc.

Virtual machine designs

£) (Type 1) hypervisor: ‘superkernel’ underneath VMs
) Hosted: reqular OS underneath VMs

£) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

©) Hardware based: fastest, now common
©) Partial translation: e.qg,, original VMware

©) Full emulation: e.g. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

£) Separates “browser kernel” from less-trusted

“rendering engine”
® Pragmatic, keeps high-risk components together

©) Experimented with various Windows and Linux
sandboxing techniques

©) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

Outline

Testing and fuzzing

Testing and security

£) "Testing shows the presence, not the absence of
bugs” - Dijkstra
£) Easy versions of some bugs can be found by
targeted tests:
® Buffer overflows: long strings

® Integer overflows: large numbers
® Format string vulnerabilities: %x

Random or fuzz testing

©) Random testing can also sometimes reveal bugs
©) Original ‘fuzz’ (Miller). program </dev/urandom
) Even this was surprisingly effective

Mutational fuzzing

©) Instead of totally random inputs, make small random
changes to normal inputs

£) Changes are called mutations

£) Benign starting inputs are called seeds

£) Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

©) Observation: it helps to know what correct inputs
look like

©) Grammar specifies legal patterns, run backwards
with random choices to generate

£) Generated inputs can again be basis for mutation

£) Most commonly used for standard input formats
® Network protocols, JavaScript, etc.

What if you don't have a grammar?

£ Input format may be unknown, or buggy and limited
£) Writing a grammar may be too much manual work

£) Can the structure of interesting inputs be figured out
automatically?

Coverage-driven fuzzing

£ Instrument code to record what code is executed

©) An input is interesting if it executes code that was
not executed before

©) Only interesting inputs are used as basis for future
mutation

AFL

£) Best known open-source tool, pioneered
coverage-driven fuzzing

£) American Fuzzy Lop, a breed of rabbits

) Stores coverage information in a compact hash table

£) Compiler-based or binary-level instrumentation

©) Has a number of other optimizations

Outline

Announcements intermission

Wheeler reading questions

£) Due (on Canvas) Thursday night
©) Note no late submissions, so do them on time

<

Midterm 1 grade statistics

=5 | *
6 | 6799

7 | 677778

8 | 00111223444555888
9 | 2222224566666666

©) Mean: 829, Median: 84

Outline

The web from a security perspective

Once upon a time: the static web

©) HTTP: stateless file download protocol
® TCR usually using port 80
©) HTML: markup language for text with formatting and
links
©) All pages public, so no need for authentication or
encryption

Web applications

£) The modern web depends heavily on active software
£) Static pages have ads, paywalls, or “Edit” buttons
£) Many web sites are primarily forms or storefronts

) Web hosted versions of desktop apps like word
processing

Server programs

©) Could be anything that outputs HTML
©) In practice, heavy use of databases and frameworks
£) Wide variety of commercial, open-source, and

custom-written
) Flexible scripting languages for ease of development
® PHP, Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to other uses

£) ActiveX: Windows-only binaries, no sandboxing
® Glad to see it on the way out
£) Flash and Silverlight: last important use was DRM-ed
video

©) Core lanquage: JavaScript

JavaScript and the DOM

£) JavaScript (JS) is a dynamically-typed prototype-O0O
language
® No real similarity with Java
©) Document Object Model (DOM): lets JS interact with
pages and the browser

©) Extensive security checks for untrusted-code model

Same-origin policy

©) Origin is a tuple (scheme, host, port)
® Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed only with the
same origin
) Different sites are (mostly) isolated applications

GET, POST, and cookies

£) GET request loads a URL, may have parameters
delimited with ?, &, =
® Standard: should not have side-effects
£) POST request originally for forms
® Can be larger, more hidden, have side-effects
£) Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

£) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
£) "Network attacker” can view and sniff unencrypted
data
® Unprotected coffee shop WiFi

Outline

Cross-site scripting

XSS: HTML/JS injection

£) Note: CSS is “Cascading Style Sheets”

£) Another use of injection template

) Attacker supplies HTML containing JavaScript (or
occasionally CSS)

£) OWASP's most prevalent weakness

® A category unto itself
® Easy to commit in any dynamic page construction

Why XSS is bad (and named that)

£) attacker.com can send you evil JS directly
£) But XSS allows access to bank. com data

) Violates same-origin policy

©) Not all attacks actually involve multiple sites

Reflected XSS

£ Injected data used immediately in producing a page
£) Commonly supplied as query/form parameters
£) Classic attack is link from evil site to victim site

Persistent XSS

©) Injected data used to produce page later
o) For instance, might be stored in database

£) Can be used by one site user to attack another user
® Eg, to gain administrator privilege

DOM-based XSS

) Injection occurs in client-side page construction
£) Flaw at least partially in code running on client

£) Many attacks involve mashups and inter-site
communication

No string-free solution

©) For server-side XSS, no way to avoid string
concatenation
£) Web page will be sent as text in the end
® Research topic: ways to change this?

£) XSS especially hard kind of injection

Danger: complex language embedding

£) JS and CSS are complex languages in their own
right
£) Can appear in various places with HTML
® But totally different parsing rules
©) Example: ". . ." used for HTML attributes and JS
strings
® What happens when attribute contains JS?

Danger: forgiving parsers

©) History: handwritten HTML, browser competition
©) Many syntax mistakes given “likely” interpretations
©) Handling of incorrect syntax was not standardized

Sanitization: plain text only

£) Easiest case: no tags intended, insert at document
text level

£) Escape HTML special characters with entities like
&1t; for <

) OWASP recommendation: & < > " * /

Sanitization: context matters

£) An OWASP document lists 5 places in a web page
you might insert text
® For the rest, “don't do that”

©) Each one needs a very different kind of escaping

Sanitization: tag allow-listing

£) In some applications, want to allow benign markup
like

£) But, even benign tags can have JS attributes

£) Handling well essentially requires an HTML parser
® But with an adversarial-oriented design

Don't deny-list

©) Browser capabilities continue to evolve

©) Attempts to list all bad constructs inevitably
incomplete

©) Even worse for XSS than other injection attacks

Filter failure: one-pass delete

©) Simple idea: remove all occurrences of <script>
©) What happens to <scr<script>ipt>?

Filter failure: UTF-7

©) You may have heard of UTF-8
® Encode Unicode as 8-bit bytes

©) UTF-7 is similar but uses only ASCII

©) Encoding can be specified in a <meta> tag, or some
browsers will guess

€) +ADw-script+AD4-

Filter failure: event handlers

£) Put this on something the user will be tempted to
click on

€) There are more than 100 handlers like this
recognized by various browsers

Use good libraries

) Coding your own defenses will never work
©) Take advantage of known good implementations

) Best case: already built into your framework
® Disappointingly rare

Content Security Policy

©) Added HTTP header, W3C recommendation

£) Lets site opt-in to stricter treatment of embedded

content, such as:
® No inline JS, only loaded from separate URLs
® Disable JS eval et al.

£) Has an interesting violation-reporting mode

Outline

More cross-site risks

HTTP header injection

£) Untrusted data included in response headers

£) Can include CRLF and new headers, or premature
end to headers

©) AKA “response splitting”

Content sniffing

©) Browsers determine file type from headers,
extension, and content-based guessing
® Latter two for ~ 1% server errors
©) Many sites host “untrusted” images and media

©) Inconsistencies in guessing lead to a kind of XSS
® Eg, “chimera” PNG-HTML document

Cross-site request forgery

£) Certain web form on bank. com used to wire money

€ Link or script on evil.com loads it with certain
parameters
® Linking is exception to same-origin

o) If 'm logged in, money sent automatically
£) Confused deputy, cookies are ambient authority

CSRF prevention

©) Give site’s forms random-nonce tokens

® Eg, in POST hidden fields
® Not in a cookie, that's the whole point

©) Reject requests without proper token
® Or, ask user to re-authenticate

£) XSS can be used to steal CSRF tokens

Open redirects

£) Common for one page to redirect clients to another

©) Target should be validated
® With authentication check if appropriate
£) Open redirect target supplied in parameter with no
checks
® Doesn't directly hurt the hosting site
® But reputation risk, say if used in phishing
® We teach users to trust by site

