CSci 427\W
Development of Secure Software Systems
Day 1I: Permissions and OS-level Injection Threats

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Unix permissions basics, contd

Octal digits represent access

o
2=

a

1
= =

eco
oAU O N
1

= No access

a

Directory mode bits

£) Same bits, slightly different interpretation

£) Read: list contents (eg., 1s)

£) Write: add or delete files

€) Execute: traverse

©) X but not R means: have to know the names

Other permission rules

©) Only file owner or root can change permissions
©) Only root can change file owner

® Former System V behavior: “give away chown”
£) Setuid/qid bits cleared on chown

® Set owner first, then enable setuid

Non-checks

£ File permissions on stat
) File permissions on link, unlink, rename
£) File permissions on read, write

£) Parent directory permissions generally

® Except traversal
® le, permissions not automatically recursive

Outline

Exercise: using Unix permissions

Setting: files related to this class

£) Student and course staff materials

©) Imagine everything is in Unix files on CSE Labs

® Versus reality of a mixture of Unix with web-based
systems like Canvas

Users and groups

©) Users: smccaman (instructor), tsche043 (TA),
stude003 (student)

£) Groups: cscid271staff (instructor and TAs),
csci4271all (staff and students)

What | want from you

©) Brainstorm sets of octal permissions bits that could
be used

£) For each permission bits set, give user, owner, and
file/directory contents/use that would be sensible

Outline

Announcements intermission

Upcoming activities

£) Lab instructions for tomorrow are now posted

£) Problem set 1 will be posted tomorrow, and due
Friday October 21st

£) Midterm exam 1is a week from today

Midterm 1 on October 18th

©) Next Tuesday in class, 4-5:15pm exactly

£) Open book, notes, any paper, but no electronics

) Will cover memory safety and threat modeling, both
lecture and labs

£) Sample/practice from last semester posted on
Piazza

Outline

More Unix permissions

Process UIDs and setuid(2)

©) UID is inherited by child processes, and an
unprivileged process can't change it

©) But there are syscalls root can use to change the
UID, starting with setuid

) E.g, login program, SSH server

Setuid programs, different UIDs

£) If 04000 “setuid” bit set, newly execd process will
take UID of its file owner
® Other side conditions, like process not traced
) Specifically the effective UID is changed, while the
real UID is unchanged
® Shows who called you, allows switching back

More different UIDs

£) Two mechanisms for temporary switching:
® Swap real UD and effective UID (BSD)
® Remember saved UID, allow switching to it (System V)
£) Modern systems support both mechanisms at the
same time

Setgid, games

£) Setgid bit 02000 mostly analogous to setuid
£) But note no supergroup, so UID O is still special

©) Classic application: setgid games for managing
high-score files

Special case: /tmp

£) Wed like to allow anyone to make files in /tmp
£) So, everyone should have write permission

£) But don't want Alice deleting Bob's files

©) Solution: “sticky bit” 01000

Special case: group inheritance

£) When using group to manage permissions, want a
whole tree to have a single group
£) When 02000 bit set, newly created entries with
have the parent’s group
® (Historic BSD behavior)

) Also, directories will themselves inherit 02000

Other permission rules

©) Only file owner or root can change permissions
©) Only root can change file owner

® Former System V behavior: “give away chown”
£) Setuid/qid bits cleared on chown

® Set owner first, then enable setuid

Outline

Shell code injection and related threats

Two kinds of privilege escalation

©) Local exploit: give higher privilege to a reqular user
® Eg, caused by bug in setuid program or OS kernel
©) Remote exploit: give access to an external user
who doesn't even have an account
® Eg, caused by bug in network-facing server or client

Shell code injection

©) The command shell is convenient to use, especially
in scripts
® In C: system, popen
£)But it is bad to expose the shell's power to an
attacker
©) Key pitfall: assembling shell commands as strings

£) Note: different from binary “shellcode”

Shell code injection example

©) Benign: system("cp $argl $arg2"), argl =
"filel.txt"

£) Attack: argl = "a b; echo Gotcha"

©) Command: "cp a b; echo Gotcha file2.txt"

£) Not a complete solution: prohibit *;"

The structure problem

£) What went wrong here?

£) Basic mistake: assuming string concatenation will
respect language grammar
® Eg, that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

©) Avoid letting untrusted data get near a shell

©) For instance, call external programs with lower-level
interfaces
mEg, fork and exec instead of system

©) May constitute a security/flexibility trade-off

Less reliable: text processing

©) Allow-list: known-good characters are allowed,
others prohibited

® Eg, username consists only of letters
® Safest, but potential functionality cost

£) Deny-list: known-bad characters are prohibited,
others allowed
® Easy to miss some bad scenarios
£) “Sanitization”: transform bad characters into good
® Same problem as deny-list, plus extra complexity

Terminology note

©) Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

©) These terms have been criticized for a problematic
“white=good"”, “black=bad" association

©) The push to avoid the terms got significant additional
attention in summer 2020, but is still somewhat
political and in flux

Different shells and multiple interpretation

£) Complex Unix systems include shells at multiple
levels, making these issues more complex

® Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

£) Other shell-like programs also have caveats with
levels of interpretation
® Tcl before version 9 interpreted leading zeros as octal

Related local dangers

©) File names might contain any character except / or
the null character

£) The PATH environment variable is user-controllable,
S0 cp may not be the program you expect

©) Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

£) In Unix, splitting a command line into words is the
shell's job
® String — argv array
®mgrep a b cVs. grep ’a b’ ¢
) Choice of separator characters (default space, tab,
newline) is configurable
£) Exploit system("/bin/uname")
£ In modern shells, improved by not taking from
environment

