CSci 427\W
Development of Secure Software Systems
Day 10: Unix Access Control

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Return address protections, contd

Random canary

©) Can't reproduce because attacker can't guess
) For efficiency, usually one per execution
o) Ineffective if disclosed

XOR canary

£) Want to protect against non-sequential overwrites
£) XOR return address with value c at entry

£) XOR again with ¢ before return

£) Standard choice for ¢: see random canary

Further refinements

) More flexible to do earlier in compiler
©) Rearrange buffers after other variables
® Reduce chance of non-control overwrite

©) Skip canaries for functions with only small variables
® Who has an overflow bug in an 8-byte array?

What's usually not protected?

£) Backwards overflows

£) Function pointers

£) Adjacent structure fields

©) Adjacent static data objects

Where to keep canary value

©) Fast to access
£) Buggy code/attacker can't read or write
©) Linux/x86: %gs:0x14

Complex anti-canary attack

£) Canary not updated on fork in server
£) Attacker controls number of bytes overwritten

Complex anti-canary attack

£) Canary not updated on fork in server

£) Attacker controls number of bytes overwritten
©) ANRY BNRY CNRY DNRY ENRY FNRY

) search 232 — search 4 - 28

Shadow return stack

£) Suppose you have a safe place to store the canary
£) Why not just store the return address there?

£) Needs to be a separate stack

£) Ultimate return address protection

Outline

ASLR and counterattacks

Basic idea

£) "Address Space Layout Randomization”
£) Move memory areas around randomly so attackers
can't predict addresses
£) Keep internal structure unchanged
® Eg, whole stack moves together

Code and data locations

) Execution of code depends on memory location

0 Eg, on x86-64:
® Direct jumps are relative
® Function pointers are absolute
® Data can be relative (%rip-based addressing)

Relocation (Windows)

£) Extension of technique already used in compilation

£) Keep table of absolute addresses, instructions on
how to update

£) Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

£) “Position-Independent Code / Executable”

£) Keep code unchanged, use register to point to data
area

©) Disadvantage: code complexity, register pressure
hurt performance (especially 32-bit)

What's not covered

£) Main executable (Linux PIC)
£) Incompatible DLLs (Windows)
£) Relative locations within a module/area

Entropy limitations

©) Intuitively, entropy measures amount of randomness,
in bits
©) Random 32-bit int: 32 bits of entropy

©) ASLR page aligned, so at most 32 — 12 = 20 bits of
entropy

) Other constraints further reduce possibilities

Leakage limitations

0 If an attacker learns the randomized base address,
can reconstruct other locations

©) Any stack address — stack unprotected, etc.

Outline

Access control: mechanism and policy

Configurability

£) Basic idea: let one mechanism (implementation)
support a variety of security policies

£) e, make security a system configuration

£) Classic example for today: OS access control

£) Flexible mechanism to support different policies

£) Trade-off: an incorrect configuration can lead to
insecurity

Confidentiality and integrity

©) Access control directly serves two security goals:

) Confidentiality, opposite of information disclosure

o) Integrity, opposite of tampering

£) By prohibiting read and write operations respectively

Access control policy

£) Decision-making aspect of OS

£) Should subject S (user or process) be allowed to
access object (e.g, file) O?

£) Complex, since admininstrator must specify what
should happen

Access control matrix

grades.txt | /dev/hda | /usr/bin/bcvi
Alice r w rx
Bob w - rx
Carol r - rx

Slicing the matrix

£) O(nm) matrix impractical to store, much less
administer
£) Columns: access control list (ACL)
® Convenient to store with object
® Eg, Unix file permissions
£) Rows: capabilities
® Convenient to store by subject
® Eg, Unix file descriptors

Groups/roles

©) Simplify by factoring out commonality

) Before: users have permissions

©) After: users have roles, roles have permissions

£) Simple example: Unix groups

©) Complex versions called role-based access control
(RBAC)

Outline

Unix filesystem concepts

One namespace

o) All files can be accessed via absolute pathnames
made of directory components separated by slashes

©) le, everything is a descendant of a root directory
named /

Filesystems and mounting

©) There may be multiple filesystems, like disk partitions
or removable devices

£) One filesystem is the root filesystem that includes
the root directory

£) Other filesystems are mounted in place of a

directory
® Eg, /media/smccaman/mp3player/podcast.mp3

Special files and devices

£) Some hardware devices (disks, serial ports) also
look like files
® Usually kept under /dev
©) Some special data sources look like devices
® /dev/null, /dev/zero, /dev/urandom
©) Some OS data also available via /proc and sys
filesystems
® Eg, /proc/self/maps

Current directory, relative paths

£) At a given moment, each process has a current
working directory
® Changed by cd shell command, chdir system call
£) Pathnames that do not start with / are interpreted
relative to the current directory

Inodes

©) Most information about a file is a structure called an
inode

©) Includes size, owner, permissions, and a unigue inode
number

©) Inodes exist independently of pathnames

Directory entries and links

©) A directory is a list of directory entries, each
mapping from a name to an inode

£) These mappings are also called links

) "Deleting a file” is really removing a directory entry
® The system call unlink

Entries . and ..

©) Every directory contains entries named . and ..
©) . links back to the directory itself

0 .. links back to the parent directory, or itself for the
root

(Hard) links

£) Multiple directory entries can link to the same inode

£) These are called hard links

£) Only allowed within one filesystem, and not for
directories

Symbolic links

©) Symbolic links are a different linking method
) A symbolic link is an inode that contains a pathname

£) Most system calls follow symbolic as well as hard
links to operate on they point to

Outline

Unix permissions basics

UIDs and GIDs

©) To kernel, users and groups are just numeric
identifiers
£) Names are a user-space nicety
® Eg, /etc/passwd mapping
©) Historically 16-bit, now 32
©) User O is the special superuser root
® Exempt from all access control checks

File mode bits

£) Core permissions are 9 bits, three groups of three
£) Read, write, execute for user, group, other

£ 1s format: rwx r-x r—-

£) Octal format: 0754

Interpretation of mode bits

) File also has one user and group ID

£) Choose one set of bits

® If users match, use user bits
® If subject is in the group, use group bits
® Otherwise, use other bits

£) Note no fallback, so can stop yourself or have
negative groups

Directory mode bits

£) Same bits, slightly different interpretation

£) Read: list contents (eg., 1s)

©) Write: add or delete files

©) Execute: traverse

£) X but not R means: have to know the names

Other permission rules

©) Only file owner or root can change permissions
©) Only root can change file owner

® Former System V behavior: “give away chown”
©) Setuid/qgid bits cleared on chown

® Set owner first, then enable setuid

Non-checks

©) File permissions on stat
) File permissions on link, unlink, rename
) File permissions on read, write

£) Parent directory permissions generally

® Except traversal
® le, permissions not automatically recursive

Outline

More Unix permissions

Process UIDs and setuid(2)

£) UD is inherited by child processes, and an
unprivileged process can't change it

£) But there are syscalls root can use to change the
UID, starting with setuid

£ Eqg. login program, SSH server

Setuid programs, different UIDs

©) If 04000 “setuid” bit set, newly execd process will
take UID of its file owner
® Other side conditions, like process not traced
o) Specifically the effective UID is changed, while the

real UD is unchanged
® Shows who called you, allows switching back

More different UIDs

£) Two mechanisms for temporary switching:

® Swap real UID and effective UID (BSD)
® Remember saved UID, allow switching to it (System V)

£) Modern systems support both mechanisms at the
same time

Setgid, games

©) Setgid bit 02000 mostly analogous to setuid
©) But note no supergroup, so UID O is still special

©) Classic application: setgid games for managing
high-score files

Special case: /tmp

£) Wed like to allow anyone to make files in /tmp
£) So, everyone should have write permission

£) But don't want Alice deleting Bob's files

£) Solution: “sticky bit” 01000

Special case: group inheritance

£) When using group to manage permissions, want a
whole tree to have a single group
£) When 02000 bit set, newly created entries with
have the parent's group
® (Historic BSD behavior)

£) Also, directories will themselves inherit 02000

Other permission rules

£) Only file owner or root can change permissions
£) Only root can change file owner

® Former System V behavior: “give away chown”
£) Setuid/qid bits cleared on chown

® Set owner first, then enable setuid

