
Special Topics:
Trends in edge computing

Jon B. Weissman (jon@cs.umn.edu)

Department of Computer Science
University of Minnesota

Cloudlets

• Developed at CMU by Mahadev Satyanarayan
“Satya” (http://elijah.cs.cmu.edu/)

• Three edge scenarios
– Mobile -> edge
– Cloud -> edge
– Edge native

http://elijah.cs.cmu.edu/

Two papers

Cloudlets: at the Leading Edge of Mobile-
Cloud Convergence

Just-in-Time Provisioning
for Cyber Foraging

3

Cloud Offloading
Rich, interactive applications are emerging in mobile context

• Apple’s Siri, AR apps

• Wearable devices

Cloud offloading
• These applications are too expensive to run on clients alone!

• Offload computation to a back-end server at cloud

Today’s remote cloud is a suboptimal place; high latency and limited bandwidth

Optimize for user’s attention

Cloudlet as a Nearby Offload Site
Cloudlet: a nearby offloading site dispersed at the edges of the Internet
 Let’s bring the cloud closer!

WAN Cloud

Cloudlet

How to launch a custom back-end server at an arbitrary edge?

Cloudlet

Focus on deployment and infrastructure

Challenge
• To make this viable and scalable, we need an edge

infrastructure (maybe 3rd party)
– Wide-area: think mobiles and travel
– Shared: multiple apps running on the edge
– Enable any apps in any language in any OS + software

libraries, etc.
– Robust

• Secure
• Disconnected fallback

• Need to encapsulate apps in VMs
• Granularity?

Options

• Static provisioning
– Store all possible VMs on the edge nodes
– Feasible?
– Advantages?

• Dynamic provisioning
– Issues?

1. Support widest range of user customization including OS, language, and
library

2. Strong isolation between untrusted computations
3. Access control, metering, dynamic resource management, …

 VM (virtual machine) cleanly encapsulates this complexity, but delays
provisioning : why?

too expensive to send/boot a complete VM!

Just-in-Time Provisioning

GOAL : Just-in-time provisioning of a custom VM for offloading. Ideally
10s latency

Cloudlet

A traveler wants to use natural language
translation with speaker-trained voice
recognition

VM Synthesis
VM Synthesis: dividing a custom VM into two pieces
1) Base VM: Vanilla OS that contains kernel and basic libraries
2) VM overlay: A binary patch that contains customized parts

Base
Disk

Base
Memory

Modified
Disk

Modified
Memory

Base VM
Customized VM

(Launch VM)

Diff
Memory

Diff Disk

– =

Binary delta

Overlay
Memory

Overlay
Disk

VM overlay

Compress

VM Synthesis
Steps for VM synthesis

with pre-populated
base VM

Synthesize VM
- Decompress
- Apply delta

Resume
launch VM

User

Offload operations

Cloudlet

Backend
Server in VM

VM Synthesis – Baseline
Performance

• Base VM: Windows 7 and Ubuntu 12.04

– 8GB base disk and 1GB base memory

Application Install size
(MB)

Overlay Size Synthesis
time (s)Disk (MB) Memory (MB)

OBJECT 39.5 92.8 113.3 62.8

FACE 8.3 21.8 99.2 37.0

SPEECH 64.8 106.2 111.5 63.0

AR 97.5 192.3 287.9 140.2

FLUID 0.5 1.8 14.1 7.3

Overlay size reduced by order of magnitude

What does this table tell us?

Overview of Optimizations
1. Minimize VM overlay size

Deduplication

Reducing
Semantic Gaps

Launch
VM

Creating VM overlay (offline)

new site

VM synthesis (runtime)

Pipelining

Launch
VMVM

overlay

VM
overlay

Early Start

file save

transfer

2. Accelerate VM synthesis

Deduplication

Approach
• Remove redundancy in the VM overlay

– problem: same bits in base VM and VM overlay but
in different locations in the respective images =>
delta fails

• Sources of redundancy
Within base VM

• Shared library copied from base disk
• Loaded executable binary from base disk

Between VM overlay’s memory and disk
• Page cache, disk I/O buffer

type offset reference Data or
pointer

mem 4096 unique data

mem 16384 self

mem 20480 Base disk

mem 28672 Base memory

mem 36864 unique data

…

disk 0 unique data

disk 16384 overlay mem

Deduplication
1. Get the list of modified (disk, memory) chunks at the customized VM (delta)

2. Perform deduplication to reduce this list to a minimum

Compare to 1) base disk, 2) base memory, 3) other chunks within itself
Compare between modified memory and modified disk

type offset Data

mem 4096 data

mem 16384 data

mem 20480 data

mem 28672 data

mem 36864 data

…

disk 0 data

disk 16384 data

<Modified chunks> <Overlay chunks>

Base VM

Dedup Results

Reducing Semantic Gaps
VM is a black box
• VMM cannot interpret high-level information of memory and disk

E.g: Download 100 MB file over network and delete it
• Ideally, it should result in no increase in VM overlay size
• However, VMM will see 200 MB of modifications:

– 100 MB of changed disk state
– 100 MB of changed memory state (in-memory I/O buffer cache)

 Include only the state that actually matters to the guest OS

Reducing Semantic Gaps – Disk

Disk semantic gap bet. VMM and Guest OS
• File deletion operations only mark blocks as deleted, without discarding the

contents
• VMM can’t distinguish between deleted and valid contents

Approach
• Exploit TRIM commands

– Allows an OS to inform a disk device which blocks of data are no longer in use
– Captured the TRIM commands so host knows about deleted data

• File system introspection
– Exploit knowledge of FS disk layout to find free-map, etc.

Reducing Semantic Gaps – Memory

Memory semantic gap between VMM and
Guest OS
• Released memory is moved to the OS’s free page list, but is still filled with

garbage
• VMM can’t distinguish between valid memory and garbage data
• No way to communicate free page information between the guest and VMM

Approach
• Scan memory snapshot: locate frame free list data structure in kernel memory
• Requires kernel mods in guest OS (Linux only for now)

Semantic Gap Results

VM Overlay Size

• Deduplication optimization reduces the VM overlay size to 44%
• Using semantic knowledge reduces the VM overlay size to 55%
• Both applied together, overlay size is reduced to 28% of baseline

48%
51%

22% 33% 37% 30%

52% 52%

30%

61% 64%

41%

28% 70% 16%

0

100

200

300

400

500

(MB)

overlay disk
overlay memory

OBJECT FACE SPEECH AR FLUID

Overview of Optimizations
1. Minimize VM overlay size 
2. Accelerate VM synthesis

Deduplication

Reducing
Semantic Gaps

Launch
VM

Creating VM overlay (offline)

new site

VM synthesis (runtime)

Pipelining

Launch
VMVM

overlay

VM
overlay

Early Start

file save

transfer

VM synthesis time is still too large

Pipelining
• Steps for VM synthesis

① Transfer VM overlay ② Decompress ③ Apply delta

Memory
Transfer

Memory
Decomp

Memory
Delta

VM
Resume

Disk
Transfer

Disk
Decomp

Disk
Delta

Memory
Delta

Disk
Transfer

Disk
Delta

Memory
Decomp

Disk
Decomp

Memory
Transfer

<Sequential>

<Pipelined> VM
Resume

• Unit of transfer: segment. How big?
• Bigger more efficient; finer better on latency

Pipelining Results

Early Start

Idea
• From user’s perspective, first response time of

offloading is most important
• Starting VM even before finishing VM synthesis

Do not wait until VM synthesis finishes, but start
offloading immediately and process the request
while synthesis is ongoing

Early Start

Approach
1) Reorder the chunks in estimated access-order
2) Break the ordered overlay into smaller segments for

demand fetching

 Start the VM and begin streaming the segments in
order, but also allow out-of-order demand fetches to
preempt the original ordering
Downside of demand fetching?

FUSE

Filling overlay

Transfer VM overlay

Diagram of Early Start
VM (back-end server)

VMM (KVM)

Disk

Base Disk

Memory

Base
Memory

Synthesis
Server

Mobile

Offload Request
Application

Synthesis client

Overlay
Disk

Overlay
Memory

Review of Optimizations

Deduplication

Reducing
Semantic Gaps

Launch
VM

Creating VM overlay (offline)

new site

VM synthesis (runtime)

Pipelining

Launch
VMVM

overlay

VM
overlay

Early Start

file save

transfer

First-response vs. baseline

Time between starting VM synthesis and receiving the first offload result
• It is faster than remote installation
• Except AR, we can get first-response within 10 seconds (up to 8x

improvement)

* Chunks are ordered with segment size of 1 MB

144

0

25

50

75

100

OBJECT FACE SPEECH AR FLUID

Ti
m

e
(s

)

Baseline synthesis
Fully optimized synthesis
Remote install

10

Remote install:
Add libraries and packages
to base – very error prone

Next week

Edge Fault Tolerance

Volunteers please?

Have a great weekend!

	�Special Topics:�Trends in edge computing�
	Cloudlets
	Two papers
	Cloud Offloading
	Cloudlet as a Nearby Offload Site
	Cloudlet
	Challenge
	Options
	Just-in-Time Provisioning
	VM Synthesis
	VM Synthesis
	VM Synthesis – Baseline Performance
	Overview of Optimizations
	Deduplication
	Deduplication
	Dedup Results
	Reducing Semantic Gaps
	Reducing Semantic Gaps – Disk
	Reducing Semantic Gaps – Memory
	Semantic Gap Results
	VM Overlay Size
	Overview of Optimizations
	Pipelining
	Pipelining Results
	Early Start
	Early Start
	Diagram of Early Start
	Review of Optimizations
	First-response vs. baseline
	Next week

