
TinyEdge



Authors

Wenzhao Zhang

Yuxuan Zhang

Hongchang Fan

Yi Gao

Wei Dong

Jinfeng Wang

Zhejiang University China. Alibaba-Zhejiang University Joint Institute of Frontier Technologies
Technologies



Enabling Rapid Edge System Customization for 
IoT Applications: Quick Overview

1) Using a top-down approach for designing the software and estimating the performance of a customized 
edge system under different hardware specifications. 

1) Developers select and configure modules to specify the critical logic of their interactions, without 
dealing with the specific hardware or software.

1) TinyEdge automatically generates the deployment package and estimates the performance after 
sufficient profiling

1) TinyEdge provides a unified customization framework for modules to specify their dependencies, 
functionalities, interactions, and configurations



Usage



Design



Customization Service



System Level Customization

User first selects modules and provides necessary configurations for them

TinyEdge dependency checker makes sure the dependencies are satisfied



System Level Customization: Key 
Techniques

In order to reduce module configuration time, TinyEdge proposes two configuration reduction 
methods

1) Configuration classification
2) Global Configuration Sharing

In order to resolve fine-grained module dependency dynamically, TinyEdge proposes a 
dependency checking mechanism which contains checking policies and a checking algorithm.



Application Level Customization

User writes application code using TinyEdge Domain Specific Language (DSL)

TinyEdge runtime parses the code into different parts and generates message queue topics, 
then distribute each part to designated execution modules or engines



Dynamic Topic Generation



Performance Estimation 
Service



Module Profile

Contains key information source for the performance models

● Module category
● Customization information (functionality and configuration)
● Performance models for specific module functions

Then TinyEdge splits modules

● System modules - make up essential part of edge system like device mgmt and logging
● Processing modules - take charge of the computation part of an edge system like data 

filter and video analyzing 
● Connecting modules - responsible for accessing IoT devices or transmitting data to the 

cloud



Performance models

TinyEdge chooses to model latency and workload because

1) Both general performance metrics 
2) Can describe two essential edge computing features

Does not measure accuracy



Implementation



Module Selection

Conducted small investigation of 20+ edge computing related papers and 6 mainstream 
industrial edge computing platforms

Findings:

The main functionalities of edge systems for IoT applications include:

1) Connector for both IoT devices and cloud services -> HTTP, Modbus, Bluetooth, 
integrate EMQ

2) Data processing (e.g. stream analytics and ML) -> simple data filter and object 
recognition

3) Traditional database -> MySQL
4) Security -> device authentication module



Module Compaction, OS tools, and Runtime

1) Smaller base images

1) Optimized Dockerfile

TinyEdge runtime -> enables customized system to update

● Message queue engine and serverless engine (Apache Kafka)
● Connector (OpenFaas)



Evaluation



Evaluation Cases

1) Data connection and visualization (IoT)

1) Intelligent data processing (EI)

1) Hybrid-analysis system (GIoTTO)



Module Size Before and After Compaction Comparison



Customization related results



System level customization results



Dependency checking efficiency comparison results



Application-level customization results



Performance estimation related results



Final Results

Final results show that TinyEdge reduces customization time of edge systems, reducing 
44.15% of customization time and 67.79% lines of on average while giving accurate 
performance estimation in various settings



Discussion

1) Effectiveness of evaluation cases and components. Are they representative?
2) Dependency checking efficiency?
3) Irrelevant data? (# of topics vs performance and resources)
4) Effectiveness of configuration reduction methods

Most importantly:

1) What did we learn?
● Customization time of set up, configuration, and deployment can be reduced
● The number of lines of code to customize can be reduced

○ Follow up: Is this a valuable metric?
● Can more accurately estimate performance for the user

1) Does what we learned provide value for the IoT Industry?


