Spatula: Efficient Cross-Camera Video Analytics on Large Camera Networks

Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, Paramvir Bahl, Joseph Gonzalez

Authors

- Samvit Jain UC Berkeley, Masters
- Xun Zhang University of Chicago, PhD Student
- Yuhao Zhou University of Chicago, PhD Student
- Ganesh Ananthanarayanan Microsoft Research
- Junchen Jiang University of Chicago, Assistant Professor
- Yuanchao Shu Microsoft Research
- Paramvir Bahl Microsoft Research
- Joseph Gonzalez UC Berkeley, EECS Assistant Professor

ACM/IEEE Symposium on Edge Computing (SEC 2020), November 2020

Overview: Video Analytics

- Applications
 - Localize suspects after security incidents
 - Vehicle tracking
 - Identifying shoppers
- Large data sources
- Cross-camera analytics

Video Analytics Pipelines

- **Object detection module**: extracts and classifies objects of interest in each video frame
- **Re-identification module**: returns positions of co-identical instances of the query in subsequent frames in a query image
 - Identity re-identification: given an image of a query identity, a re-identification (re-id) algorithm ranks every image in a gallery based on its feature distance to the query identity
 - The lower the distance the higher the similarity
 - Trained neural network

Issues

- Network/compute-intensive
- Live video analytics not optimized based on cross-camera relationships
- Accuracy

Spatio-Temporal Correlations

• Spatial Correlations

- Geographical association between cameras
- Probability that objects seen in a source camera will move next to a particular destination camera's field of view

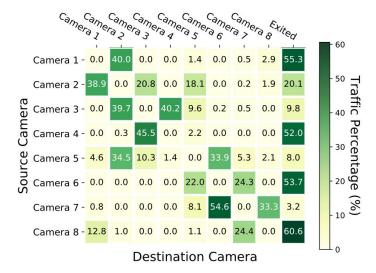
• Temporal Correlations

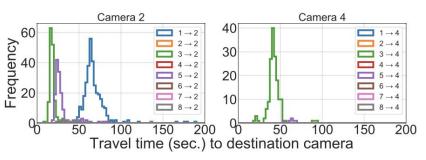
- Association between cameras over time
- Probability that objects seen in a source camera will move next to a destination camera's view at a particular time

Spatio-Temporal Correlations: Duke MTMC Dataset

Figure 2. DukeMTMC camera network [56]. Marked regions show the visual field of view of each camera.

Spatial Correlations





Spatula

- Spatio-Temporal Model
 - Describes the spatial and temporal correlation between cameras
- Forward Analysis
 - Real-time inference on live videos and history video
- Replay Analysis
 - Search over some history videos for error correction
- Costs proportional to the number of cameras that the queried object appears in at any point in time, and not the total number of deployed cameras

Spatula Architecture

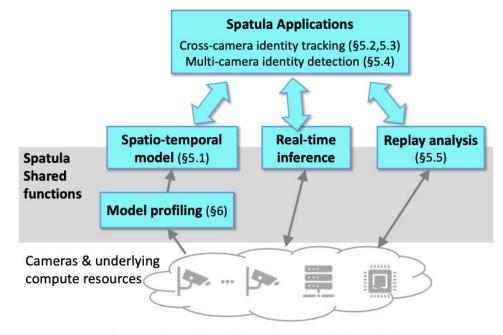


Figure 5. Architecture of Spatula.

Spatial Correlations

The degree of spatial correlation S between two cameras c_s , c_d is quantified by the ratio of: (a) the number of individuals leaving the source camera's stream for the destination camera, $n(c_s, c_d)$, to (b) the total number of entities leaving the source camera:

$$S(c_s, c_d) = \frac{n(c_s, c_d)}{\sum_i n(c_s, c_i)}$$

Spatula exploits spatial correlations by prioritizing cameras that are highly correlated to the last camera where the queried identity was spot.

Temporal Correlations

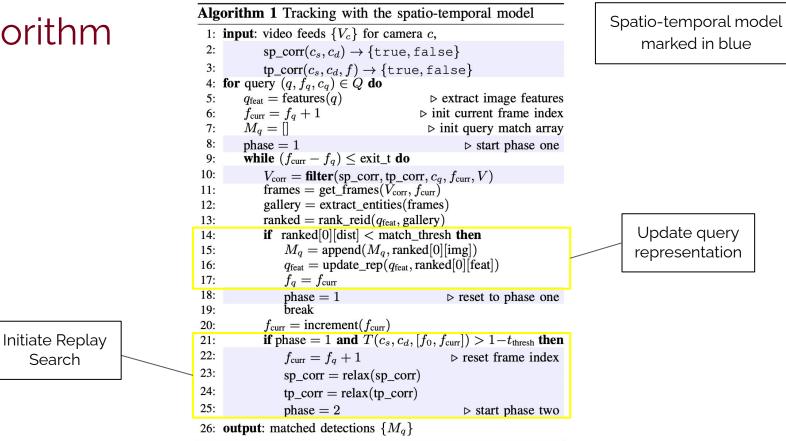
The degree of temporal correlation T between two cameras c_s , c_d during a window $[t_1, t_2]$ is the ratio of: (a) individuals reaching c_d from c_s within a duration window $[t_1, t_2]$ to (b) total individuals reaching c_d from c_s :

$$T(c_s, c_d, [t_1, t_2]) = \frac{n(c_s, c_d, [t_1, t_2])}{n(c_s, c_d)}$$

Spatula exploits temporal correlations by prioritizing the time window $[t_1, t_2]$ in which a destination camera is most correlated with the query camera.

Replay Analysis

- Go back to camera that last camera that the queried identity was seen and find all correlated cameras and time windows of correlation with thresholds decreased
- If still can't find it, search the entire camera network until the exit threshold
- To avoid delay
 - Skip frame mode
 - Parallelism mode



AnonCampus Testbed

- AWS DeepLens cameras
- Testbed includes five cameras connected to each other via Wi-Fi and deployed on AnonCampus (school building)
- Video analytics modules run on DeepLens's on-chip GPU and CPU
- Spatula controller is responsible for profiling and maintaining the spatio-temporal model of correlations among cameras
 - Trigger message: triggers the camera to start or stop searching for a specified query identity in its video within a specified time interval
 - Feedback message: notifies the controller on an interesting incident in real-time

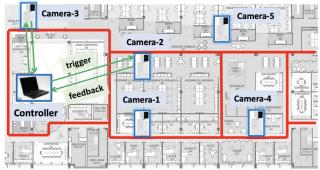


Figure 7. Spatula testbed at AnonCampus with five AWS DeepLens smart cameras. The red lines show walkways in the building, and we learn the spatio-temporal correlation of people traversing the walkways. The *controller* and all the cameras exchange "trigger" and "feedback" messages.

Evaluation Methodology - Datasets

- AnonCampus dataset is captured by 5 DeepLens cameras deployed in a school building
- DukeMTMC dataset is a video surveillance dataset from eight cameras in the Duke University
- Porto dataset is a simulated dataset generated from GPS trajectories obtained from 442 taxis running in the city of Porto, Portugal
 - Manually pin 130 cameras at intersections of the city
- Beijing dataset is a simulated large dataset from 17,621 GPS trajectories
 - Manually pin 600 cameras at intersections of the city

Evaluation Methodology - Models & Workload

- Models
 - Apply the MTMC tracker to label a subset of the dataset
 - Implement algorithm
 - Use a ResNet-50-based implementation of person re-id, trained in PyTorch at inference time
- Workload
 - Run a set of tracking queries drawn from each of the test query partition datasets
 - Each tracking query consists of multiple iterations

Evaluation Methodology - Metrics

- Compute cost number of video frames processed, aggregated over all queries
- Network cost average network bandwidth usage of transmitting encoded videos required by search algorithms
- Recall ratio of query instances retrieved to all query instances in dataset
- Precision ratio of query instances retrieved to all retrieved instances
- Delay (sec.) lag between position of tracker and current video frame, in seconds, at the end of a tracking query

Evaluation Methodology - Baselines

- 1. Baseline (all) searches for query identity in all cameras at every frame step (no spatio-temporal filtering)
- 2. Baseline (GP) searches for query identity only in the cameras that are in geographical proximity to the query camera at every frame step
- 3. Spatula searches for query identity only on cameras that are currently spatio-temporally correlated with camera with query detected

Results

- Spatula significantly outperforms both baselines by
 - Reducing compute and network cost
 - Improving precision, while maintaining comparable recall
 - Delay increase

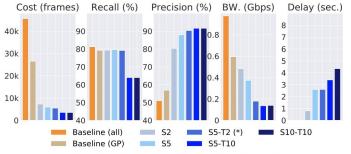


Figure 8. Results for all-camera baseline (orange), geoproximity baseline (tan) vs. five versions of Spatula (blues) on the DukeMTMC dataset. We argue S5-T2 (*) offers the best trade-off on all metrics.

Figure 9. Results for all-camera baseline (tan) vs. five versions of Spatula (blues) on the AnonCampus dataset. We argue S30-T1 (*) offers the best trade-off on all metrics.

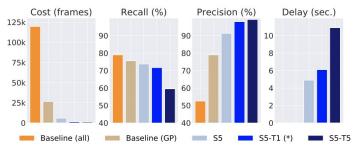


Figure 10. Results for all-camera baseline (orange), geoproximity baseline (tan) vs. three versions of Spatula (blues) on the Beijing dataset. We argue S5-T1 (*) offers the best trade-off on all metrics.

Spatula Evaluation Highlights

Dataset	Comp. sav.	Netw. sav.	Prec.	Recall
AnonCampus DukeMTMC Porto Beijing	3.4x 8.3x 22.7x 85.5x	3.0x 5.5x n/a n/a	$21.3\%\uparrow\ 39.3\%\uparrow\ 36.2\%\uparrow\ 45.5\%\uparrow$	$\begin{array}{c} 2.2\% \downarrow \ 1.6\% \downarrow \ 6.5\% \downarrow \ 7.3\% \downarrow \end{array}$

Spatula at Scale

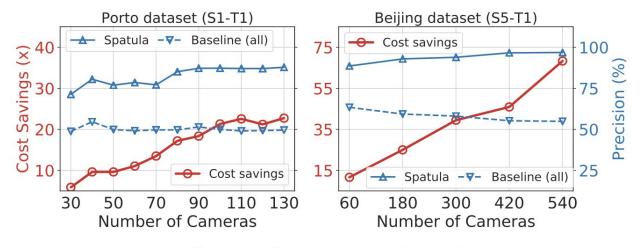


Figure 13. Cost savings vs. number of cameras.

Cost savings steadily grows with increasing number of cameras, achieving up to 68× lower cost than baseline (all) in Spatula S5-T1 for 540 cameras.

Results - Replay Search

- Skip frame mode 0.5x frame sampling rate to increase throughput on historical frames (2x skip)
- Parallelism mode 2x frame processing rate to increase throughput (increased resource usage) (2x ff)



Figure 14. Replay search. Schemes compared: baseline, Spatula-O (normal replay search), Spatula-O ($2 \times$ skip), Spatula-O ($2 \times$ fast-forward). Scheme $2 \times$ skip outperforms $2 \times$ fast-forward on both compute cost and delay.

Positives

- Can be utilized for large camera deployments
- Decrease costs
- Improve precision
- Able to successfully recover from misses

- Likelihood thresholds, that makes it vulnerable to missing "outliers"
- Model needs to be tailored to each environment
- Slight decrease in recall

Discussion

- What other types of applications could benefit from this model?
- How does a simulated data compare to a real-world dataset of the same scale?
- What kinds of issues would impact the efficacy of the model?