Sentinel: A Robust Intrusion Detection System for IoT Networks Using Kernel-Level System Information

Adrien Cosson, Amit Kumar Sikder, Leonardo Babun, Z. Berkay Celik, Patrick McDaniel, A. Selcuk Uluagac

Authors

- Adrien Cosson Penn State University, Graduated with Master's
- Amit Kumar Sikder Florida International University, Postdoctoral Fellow
- Leonardo Babun Florida International University, Received Doctoral Degree
- Z. Berkay Celik Purdue University, Assistant Professor
- Patrick McDaniel Penn State University, Professor, Director of the Institute for Networking and Security Research (INSR)
- A. Selcuk Uluagac Florida International University, Assistant Professor

IoTDI 2021 - ACM/IEEE Conference on Internet of Things Design and Implementation, 2021

IoT & Cyber Attacks

- IoT devices becoming more common
- Influenced by economics and speed to market
- Devices are resource-constrained
- Developers don't have direct access to the hardware to integrate security measures
- Attacks
 - Node-level
 - Network-level
 - Application-level

• Mirai Botnet: launched a series of DDoS attacks

Intrusion Detection

- Intrusion detection detects a system for malicious behavior
 - Architectures
 - Network-based IDS (NIDS): monitor the state of an entire network
 - Host-based IDS (HIDS): run on a specific host and search for malware operating inside of it through the use of system-level and process-level information
 - Approaches
 - Signature-based: compares the collected data pattern to a list signatures of known threats
 - Anomaly-based: builds an internal representation of the system compared to an expected baseline state
 - Specification-based: has set of baseline and threshold values and compares to the current situation

Sentinel Overview

- The idea of using low-level host data for intrusion detection is not new, but it hasn't been implemented for IoT environments
- Sentinel uses a Linux-based kernel module (SKM) to collect low-level host data which is used to detect node and network level attacks
- The heavy work of analyzing the data using ML is offloaded to the hub to differentiate between benign and malicious attacks

Sentinel Architecture

- Uses Linux, which has high market share for IoT devices (43%)
- SKM is lightweight and easily implemented on other OS platforms
- File-based view of kernel data structures provides an easier interface for developers
- SKM is low overhead and needs less computing power
- Uses commonly found pub-sub protocol (MQTT) to make information accessible to the hub
 - Naming convention example: home/mqtt_lock/available

Sentinel Features

- Configurable polling rates: low-high, dynamic polling rate
- PostgreSQL database collects data and allows for concurrent access
- ML-based detection techniques used: Naïve Bayes, Rule-Based, Regression Model. Neural Network, Tree-Based Classifiers
- IDS collects data from the database, trains the ML model, learns benign device behavior, pushes a notification to the user interface via the hub in case of a malicious attack

Sentinel Framework

Using Mirai Effects to Test Sentinel

• Network scan/pivoting

• Attack 1: the attacked device continuously scans a server to find other devices

• Exfiltration

• Attack 2: send large UDP packets to a server that discards them

• C&C Keep-alive

- Attack 3: periodically ping an infected device that responds with an empty payload
- Black/Grey Hole Attack: disrupt the network by compromising a device
 - Attack 4: server floods network with large message
 - Attack 5: send out random messages to simulate the partial packet drops

Evaluation Setup & Methodology

- 2 IoT Platforms: Home Assistant and WebThings
- Binary Classification
 - The datasets contain samples recorded every second over a time window and are labeled if there is an attack or not
 - 7 performance metrics: True Positive Rate (TPR), False
 Negative Rate (FNR), True Negative Rate (TNR), False Positive
 Rate (FPR), Accuracy, F-score, and Average Computation
 Time (Avg. CT)
- Multi-Class Classification
 - 5 Attacks + No Attack
 - For each device/attack/framework combination, run each device for 20 min. of traces for attack scenarios and record metrics

1: HVAC 2: Light 3: Door Lock 4: Outlet 5: Presence Sensor 6: Weather Station 7: Smoke Detector 8: Switch 9: TV

Figure 3: Floor plan of the experimental testbed

Impacts

- Model Parameters
- Platform Configurations
- Power Consumption
- Polling Rate

Results - Binary and Multi-Class Classification

		Γ				WebThi	ings			Home Assistant							
RF have	Algo	ML orithm	TPR	FNR	TNR	FPR	Acc.	F-Score	Avg. CT (s)	TPR	FPR	TNR	FNR	Acc.	F-score	Avg. CT (s)	
ccuracies	N Ba	aive ayes	0.8	0.2	0.94	0.06	0.87	0.864	21.6	0.77	0.23	0.92	0.08	0.845	0.838	27	
	· ·	ART	0.85	0.15	0.94	0.06	0.895	0.892	24.5	0.75	0.25	0.88	0.12	0.815	0.809	34.6	
		LR · · ·	0.91	0.09	0.9	0.1	0.905	0.905	34	0.88	0.12	0.91	0.09	0.895	0.894	48	
	1	MP	0.89	0.11	0.95	0.05	0.92	0.919	68.5	0.86	0.14	0.94	0.06	0.9	0.898	81.7	
]	DT	0.95	0.05	0.97	. 0.03	0.96	0.959	35.6	0.92	0.08	0.95	0.05	0.935	0.934	51.5	
	1	RF	0.95	0.05	0.98	0.02	0.965	0.964	87.9	0.91	0.09	0.97	0.03	0.94	0.939	94	
	L	MT	0.94	0.06	0.92	0.08	0.93	0.92	102.5	0.92	0.08	0.95	0.02	0.93	0.929	112	

RF has high CT

Table 3: Performance of SENTINEL in binary classification.

		Decision Tree							Random Forest						
		Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 No Attack								Attack 2	Attack 3	Attack 4	Attack 5	No Attack	
	Attack 1	98.76	0.17	0.02	0.00	0.00	1.06		98.51	0.42	0.05	0.00	0.00	1.02	
97% average	Attack 2	0.167	96.13	0.74	0.20	0.11	2.65	ſ	0.27	97.42	0.63	0.17	0.11	1.40	
accuracy of	Attack 3	0.00	0.00	96.19	0.35	0.02	3.33	ſ	0.00	0.00	96.84	0.47	0.02	2.67	
otocting attack	Attack 4	0.00	0.17	0.48	96.56	0.15	2.65	Ĩ	0.00	0.17	0.89	96.71	0.15	2.08	
	Attack 5	0.02	0.00	0.04	0.07	97.46	2.41	Ĩ	0.00	0.00	0.14	0.15	97.03	2.69	
	No Attack	0.05	0.26	0.18	0.17	0.20	99.15		0.08	0.39	0.12	0.17	0.27	98.97	

Highest accuracy detecting network scan/pivoting actions

Lowest accuracy

detecting exfiltration

96% average
accuracy of
detecting attack

DT & highest

det

Table 4: Confusion matrix for WebThings multi-class classification.

Low FPR & FNR

			Decisi	on Tree				Random Forest							
	Attack 1	Attack 2	Attack 3	Attack 4	Attack 5	No Attack		Attack 1	Attack 2	Attack 3	Attack 4	Attack 5	No Attack		
Attack 1	99.35	0.13	0.00	0.00	0.00	0.52		99.12	0.13	0.00	0.00	0.00	0.75		
Attack 2	0.00	91.31	0.41	0.00	0.00	8.28		0.00	93.87	0.74	0.00	0.00	5.39		
Attack 3	0.04	0.43	96.67	0.04	0.00	2.83	11	0.06	1.06	97.08	0.12	0.00	1.74		
Attack 4	0.00	0.00	0.13	99.11	0.02	0.74		0.00	0.00	0.17	98.75	0.14	0.94		
Attack 5	0.00	0.00	0.00	0.00	98.15	1.85		0.00	0.00	0.06	0.07	98.09	1.78		
No Attack	0.04	1.36	0.15	0.06	0.09	98.31		0.09	0.87	0.16	0.08	0.12	98.68		

Table 5: Confusion matrix for Home Assistant multi-class classification.

Results - Model Parameters

- DT: accuracy increases with the number of tree depths
- RF: accuracy increases with number of trees, but computation time increases significantly with number of trees
- Accuracy is insignificant compared to the computation time

Figure 5: Impact of model parameter in SENTINEL: (a) tree depth vs accuracy using decision tree, (b) number of tree vs accuracy using random forest, and (c) number of tree vs computation time using random forest.

Results - Platform Configurations

- Accuracy drops as sampling rate increases
- Sentinel can effectively run on a low core-count IoT device

Figure 6: Detection Accuracy for (a) different polling rate (1s and 10s), (b) different computation power (1 and 4 cores).

Results - Power Consumption

- As polling frequency decreases, the power consumption overhead incurred decreases
- Inactive devices have large overhead because of sleep mode
- Can correlate the running processes to reduce overhead by reducing the polling rate

Figure 7: Power overhead caused by Sentinel for various polling periods, expressed as absolute and relative values

Results - Polling Rate

- Accuracy and power consumption are proportional for different polling rates
- Small tradeoff between accuracy and power consumption

Figure 8: Fixed polling vs dynamic polling in SENTINEL

Positive Points

- Low-Cost
- Lightweight Framework
- Scalable for different configurations

Negative Points

- Device Malfunctions
- Attackers could falsify SKM data
- Any user on device can access the exposed data

Discussion

- How secure is the system?
- What are important features for the customer that Sentinel should have in terms of security?
- Is ~95% accuracy good enough?
- Are there any other metrics that could be considered, in addition to low-level system information?