Rivulet: A Fault-Tolerant
Platform for Smart-Home
Applications

Masoud Saeida Ardekani
Rayman Preet Singh
Nitin Agrawal
Douglas B. Terry
Riza O. Suminto

Middlware 2017

Rivulet

* Fault tolerant distributed platform for smart home application
* Link loss, network partitions, sensor failures, device crashes

* Previous systems are cloud-centric

* Home hub communicates events to cloud where apps run, events flow across
the WAN

* Slow, failure-prone

* Rivulet is home-centric
* Execute everything in the home

Model

* Hub and/or local processing devices

* Sensors/Actuators
* Motion sensors, doors
* Sensors generate event streams

* Problem: fault tolerance
e Reliable communication with sensors, skew
* Process failures (cloud has much stronger guarantees)
e Gaps in event stream (intrusion, elderly person, ...)

Communication Demands

Application Primary Function Sensor Type Type Delivery Type
Occupancy-based HVAC | Set the thermostat set-point based on the occupancy [58] Occupancy Efficiency Gap
User-based HVAC Set the thermostat set-point based on the user's clothing level [32] | Camera Efficiency Gap
Automated lighting Tumn on lights if user is present, e.g., SmartLights [1] Occupancy, camera, microphone | Convenience Gap
Appliance alert Alert user if appliance is left on while home is unoccupied [60] Appliance, whole-house energy Efficiency Gap
Activity tracking Periodically infer physical activity using microphone frames [42] | Microphone Convenience Gap
Fall alert Issue alert on a fall-detected event [27, 51, 62] Wearables [27] Elder care Gapless
Inactive alert Issue alert if motion/activity not detected [1] Motion, door-open [15] Elder care Gapless
Flood fire alert Issue alert on a water(or fire) detected event [2] Water, smoke [4, 12] Safety Gapless
Intrusion-detection Record imape/issue alert on a door/window-open event Door-window [4] Safety Gapless
Energy billing* Update energy cost on a power-consumption event [61] Energy [4] Billing Gapless
Temperature-hased HVAC | Actuate heating/cooling if temperature crosses a threshold [36] Temperature Efficiency Gapless
Adr (or light) monitoring | Issue alert if CO2/CO level surpasses a threshold [1, 66) CO, Co2 Safety Gapless
Surveillance Record image if it has an unknown object [24) Camera Safety Gapless

Table 1. Desired delivery types for selected example applications.

* Gap: can tolerate drops

* Gapless: cannot

Challenges

* Home is not a data center
* No central admin
* Limited redundancy
* Unique failure modes: plugs, physical interference, battery, up to 14% downtime

* Diverse wireless networks

Rivulet Design

* Rivulet is a local process, runs on: hub, phone, tablet, some appliances

* Event delivery, execution service
* Rivulets communicate to each other via home wifi

* Failed processes eventually recover

* Sensor crash: no value returns, eventually reboots

_________________ L
o @8
L 28
' = g
__________________ -

Light Actuatar

D5 : Door sensor node TL - TumLizhtOnOff logic node LA Lizht actuator node

Figure 2. Rivulet System

* Actuator crash: does not respond to events, eventually reboots
» Sensors/actuators can may communicate to multiple processes

Rivulet Apps

* DAG

* Sensors, IOgiC, actuators
DoorSensor = TurnLightOnOff = LightActuator

l l

physical door physical light switch

Inside a Rivulet

¢ Bivuletonbmb ¢ Rivuleton TV _'\\I # Rivulet on fridge™,

1
A

Each process creates:
active node: (solid) if can communicate directly

shadow node (dashed) otherwise

H

=]
(AN
DAL
LRI

o
i
o
i
[=]
i
i
1A G AL ||(||:

ll/"I___________

LL(E

‘ |

\"E‘_

pim
1K
L

A

a

K
|

E Action:
isht Actuatar Dwovor Sensor . .
e event must be received by active node
D% : Door sensor node TL :TumLizhtOnOff logic node LA:Tight actuator node
Figure 2. Rivulet System Com putation :

logic node (solid) performs computation
shadow node (dashed) inactive can activate on process failure

Delivery Service

Push (“door is open” event) and pull-based sensors (“get temp” event)
Event ingest component: fetches sensor events, delivers actuator commands

Event forwarding component: forwards events to logic nodes

Gapless: polling based, post-ingest (an event is received by one process)
* Coordinated epoch-based polling; avoid extraneous sensor requests, forward sensor values
* Event forwarding: replicate ingested event at ALL processes

Gap{less} protocol

* Gapless: ring-based (gossip) between processes
* Forward to your reachable neighbors, and so on, ... suppress dups
 Fall back to broadcast
e Stronger failure guarantees

* Gap
* Only one active node will poll a given sensor
* If that processes fails, in next epoch, another active node (process) is chosen
 Limited chain communication: e.g. hub, tv, fridge (777 (777 (™

Light Actuator

D5 : Door sensornode TL -TumLizhtOnOiF logic node LA:Lizht acmator node

Figure 2. Rivulet System

Application Fault Tolerance

* Primary/second approach for active logic node
e Care must be taken for non-idempotent actions:

Programming Model

* DAG model
* Event model: time window, trigger to deliver them, evictor to purge them

Window

TimeWindow(Time-span, [TriggerPolicy], [EvictorPolicyl) | Imitializes a Time Window with the given timespan and optional
trigger and evictor policies

CountWindow(Count, [TriggerPolicyl], [EvictorPolicyl) Initializes a Count Window with the given count and optional
trigger and evictor policies

Operator
Operator{Mame, [Combinerl) Initializes an operator with a name and optional Combiner
addUpstreamlperator(Operator, Window) Connects the operator to the given upstream operator

addSensor(Sensor, GAP|GAPLESS, Window, [PollingPolicyl) | Connects the operator to an upstream sensor with the provided
delivery guarantee and optional polling policy

addactuator(Actuator, GAP|GAPLESS) Connects the operator to a downstream actuator with the provided
delivery guarantee

handleTriggeredWindow(Window) Callback to handle a triggered window.

emitWindow(Window, Operators[], Actuators[]) Emits the outcome to downstream operators, and actuators

Table 2. Operator and Window API

int n=Rivulet.getSensors("door").size();
Operator intruder=new Operator("Intrusion", new FTCombiner(n-1));
for (Sensor s: Rivulet.getSensorsWithName("door™))

intruder. addSensor(s,GAPLESS, new CountWindow(1));

Listing 1. Intrusion Detection

Evaluation: performance

* Java prototype + raspberry pi’s around the home, software sensor
* Delay: time between event emitted by a sensor -> active logic node

Active node furthest away . Active node closest
140,
120 5
100,
:E 20
i 60
=]
an
20
o 1 2 3 Y 5
Taotal Number of Hosts Total Mumber of Hosts
[Gap, 4B E== Gap, lOKB EEel Gapless, BB] Gap. 48 EEEY Gap, 10 KB ERR Gapless, 8 B
EFR Gap, 88 [Gapless, 4 B EEER Gapless, 10 K8 EEFR Gap, 8B 1 Gapless, 4 B == deless. 10 KB
(a) Worst topology. (b} Best topology.

Figure 4. Delay incurred with increasing number of processes, for different event sizes.

Evaluation: faults

o8 Gap
| = Gapless

1Ly
bt
un

Humbers of Events Recebhed
—
o

10 70 30 0 T
Thm {in s8conds)

Figure 7. Number of events received by an active logic node.
Induced process failure at ¢ = 24 seconds.

Discussion

