
Rivulet: A Fault-Tolerant 
Platform for Smart-Home

Applications 
Masoud Saeida Ardekani

Rayman Preet Singh

Nitin Agrawal

Douglas B. Terry

Riza O. Suminto

Middlware 2017



Rivulet

• Fault tolerant distributed platform for smart home application
• Link loss, network partitions, sensor failures, device crashes

• Previous systems are cloud-centric
• Home hub communicates events to cloud where apps run, events flow across 

the WAN

• Slow, failure-prone

• Rivulet is home-centric
• Execute everything in the home



Model

• Hub and/or local processing devices

•

• Sensors/Actuators
• Motion sensors, doors
• Sensors generate event streams

• Problem: fault tolerance
• Reliable communication with sensors, skew
• Process failures (cloud has much stronger guarantees)
• Gaps in event stream (intrusion, elderly person, …)



Communication Demands

• Gap: can tolerate drops

• Gapless: cannot



Challenges

• Home is not a data center
• No central admin

• Limited redundancy

• Unique failure modes: plugs, physical interference, battery, up to 14% downtime

• Diverse wireless networks



Rivulet Design

• Rivulet is a local process, runs on: hub, phone, tablet, some appliances
• Event delivery, execution service

• Rivulets communicate to each other via home wifi

• Failed processes eventually recover

• Sensor crash: no value returns, eventually reboots

• Actuator crash: does not respond to events, eventually reboots

• Sensors/actuators can may communicate to multiple processes 



Rivulet Apps

• DAG
• Sensors, logic, actuators

physical door physical light switch



Inside a Rivulet

Each process creates: 
active node: (solid) if can communicate directly
shadow node (dashed) otherwise

Action:
event must be received by active node

Computation:
logic node (solid) performs computation
shadow node (dashed) inactive can activate on process failure



Delivery Service

• Push (“door is open” event) and pull-based sensors (“get temp” event)

• Event ingest component: fetches sensor events, delivers actuator commands

• Event forwarding component: forwards events to logic nodes

• Gapless: polling based, post-ingest (an event is received by one process)
• Coordinated epoch-based polling; avoid extraneous sensor requests, forward sensor values

• Event forwarding: replicate ingested event at ALL processes



Gap{less} protocol

• Gapless: ring-based (gossip) between processes
• Forward to your reachable neighbors, and so on, … suppress dups

• Fall back to broadcast

• Stronger failure guarantees

• Gap
• Only one active node will poll a given sensor

• If that processes fails, in next epoch, another active node (process) is chosen

• Limited chain communication: e.g. hub, tv, fridge



Application Fault Tolerance

• Primary/second approach for active logic node

• Care must be taken for non-idempotent actions:



Programming Model

• DAG model

• Event model: time window, trigger to deliver them, evictor to purge them



Evaluation: performance

• Java prototype + raspberry pi’s around the home, software sensor

• Delay: time between event emitted by a sensor -> active logic node
Active node furthest away Active node closest



Evaluation: faults



Discussion


