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Overview: Respiratory Rate (RR) Monitoring

e Rate of breathing
e Important in detecting serious health conditions

e Cases
o  Driving safety
o Assessing sleep quality
o Monitoring stress
o Detecting opioid overdose

e |[ssue
o  Monitoring outside of clinical setting is difficult

® Solution: wearable sensing systems for RR monitoring using photoplethysmography (PPG)
sensors on commercial smart-watches



Related Work

e Smartwatch PPG sensors measure signals reflected from the wrist, which lowers signal quality
and introduces noise

e Non-contact sensing approaches developed
o Radio frequency, waves, wifi signals
o Constrained to environment

e Inertial measurement unit (IMU) to capture subtle respiration motions
o Limited to settings with minimum motion

e Deep learning

e PPG-Based RR measurement



Photoplethysmography (PPG) Sensors

e Detects pulsatile blood volume changes in
tissues by measuring optical changes

e PPG sensor consists of a light-emitting diode
(LED) to illuminate the tissue and a photodiode
(PD) to measure the light transmitted through or
reflected by the tissue

| 'skin [P Tissue [ Photodiode

) Artery [532)| Light-emitting diode

e Transmission-mode used in fingertip pulse

oximeters Transmission Mode Reflectance Mode

e Reflectance-mode used on wrist or forehead
for heart rate monitoring Figure 1: Two modes of the PPG sensor [3].



Respiratory-Induced Variations

e Amplitude (RIAV)
o  Changes in peripheral pulse strength
o  Vertical distances from the peak to the valley

for each pulse

e Intensity (RIIV)
o Intrathoracic pressure variation

o Peak heights

e Frequency (RIFV)
o  Autonomic response to respiration
o  Horizontal distances between the successive

peaks
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Figure 2: PPG waveform and respiratory-induced variations
[22]. RIAV: respiratory-induced amplitude variation; RIIV:
respiratory-induced intensity variation; RIFV: respiratory-
induced frequency variation.



RespWatch

e RespWatch: RR monitoring system

e Goals
o Accuracy
o Robustness
o Efficiency

e Developed estimators
o Signhal processing estimator
o Deep learning estimator
o Hybrid estimator



Raw PPG from smartwatches
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Figure 3: Architecture of the signal processing estimator in
RespWatch



Signal Processing Estimator

e Artifact Elimination and Pulse Peak Finding

Algorithm 1: Artifact Elimination & Pulse Peak Finding
Data: 60-second preprocessed PPG waveform

1 Sliding sub-windows with size of 10s and step of 2s;

2 for each sub-window do

/* begin of PPG pattern detector */

3 2nd-order highpass forward-backward filtering;

4 Re-scale the waveform with range of [-1,1];

5 Find the peaks higher than 0;

6 Calculate heart rate, peak intervals, peak-to-valley
distances;

// PPG pattern matching

7 if heart rate < 180 and heart rate > 40

STD(peak intervals)<0.4s and
STD(peak-to-valley distances)<0.4 then
8 | mark the sub-window as valid ;
9 end
10 end

11 Merge the consecutive valid sub-windows into valid
sequences;
12 Merge the peaks from the valid sequences into peak lists;
Result: Valid sequences and corresponding peak lists
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RespWatch



Raw PPG from smartwatches

Signal Processing Estimator .

Preprocessing

e Respiratory-Induced Variation Signals

o  Map the variation signals to the RR estimations with an adaptive peak
. . A 4
finding method to detect respiratory peaks
Artifact Elimination & Pulse Peak Finding

m  Usetocalculate RR for each sequence

sub-window = = = Sliding
5 sub-windows
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RRRixv,i = MEAN (peak_intervals(;))/ f [ PPG patem detetor J
o  Estimation quality index (EQI): assesses the accuracy of measurements Marge e vaid subwinousand pesks .~ Discerd
m  Based on two intuitions
1. Respiration is rhythmic, so standard deviation of the Valid sequences Avtfacts
respiration peak intervals should be small ¥
2. RR measurement is more accurate on the longer Respiratory-Induced Variations Extraction &

Adaptive Peak Finding

sequence
ANAAAANANANA, ==

R e s PMaRaflR R A 8 A

RIIV

o~ STD(peak_interovals;))
Orxva= e ety O AT AA AR R AN — v

where « is a fixed scaling factor, STD(:) is the standard deviation O
of -, seq_lengthy;) is the length of the ith valid sequence. The final [ RR and EQI calculation }
EQIRxv is the sum of EQIgyxv,; for each valid sequence:

EQIpixv = Z EQIprxv.i (4) Figure 3: Architecture of the signal processing estimator in
i RespWatch



Raw PPG from smartwatches
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Figure 7: Architecture of the deep learning estimator in Re-
spWatch



Raw PPG from smartwatches

Deep Learning Estimator e R e

Preprocessing
e CNN model
o 1D convolutional layer down-samples input and reduces computation AMWWAMMAWWMNW
complexity
o 16 basic blocks sharing the same topology with residuals bypass and | LRUE fha0co )
1D convolutions applied 1.2%;‘:52":55%)
o  Batch normalization (Batch Norm) and a rectified linear unit (ReLU) Batch Norm
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Figure 7: Architecture of the deep learning estimator in Re-
spWatch
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Hybrid Estimator

Automatically switches from signal processing to deep learning to take advantage of its higher level of robustness, and
switches back to signal processing when noise artifact diminishes to benefit from its higher efficiency and accuracy
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Figure 8: Architecture of hybrid estimator. RespWatch_RIIV
is the output from signal processing estimator with RIIV;
RespWatch_DL is the output from deep learning estimator.



User Study

e 30 participants
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Figure 9: (A). Sequence of activities of the collecting proce-
dure. (B). Fossil Gen4 Explorist smartwatch instrumented
for this study. (C). Vernier Respiratory Go Direct Respira-
tion Belt as ground truth.
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Figure 10: RR measurements, motion intensity, and EQI of
one user participating in the study.



RespWatch Evaluation

e Accuracy - mean absolute error
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Figure 11: MAE vs. Yield. Different colors represent the es-
timations from RIAV, RIIV and RIFV, respectively. The line
styles indicate different sorting criterion (Motion, EQI). The
baselines are illustrated as dots with different shapes and
colors.



Results - Accuracy & Robustness
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Figure 12: MAE vs. Yield based on EQI ranking.



Results - Efficiency

Table 3: Profile of Signal Processing Estimator

; . Art.Elim* & RIXV* Extraction & >
Devices Preprocessing Pulse Peak Finding Adaptive Peak Pindi Total Time Ave. CPU( %) Ave. Energy Consumption
Fossil Gend (H) 5.836ms 19.139ms 19.919ms 44.895ms  53.53% Light to Medium
Fossil sport (H) 5385ms 16.058ms 16.621ms 38.064ms  50.25% Light to Medium

*Art. Elim.: Artifact Elimination
"RIXV: Respiratory-Induced Variations (RIAV, RIIV, RIFV).

Table 4: Profile of Deep Learning and Hybrid Estimator

3 ’ Deep learning Hybrid with  Hybrid with
Devices Preprocessing CNN model Total Time Ave. CPU (%) Ave. Energy EQI" Motion Intensity"
Fossil Gend4 (H) 8.856ms 6504.262ms  6592.828ms 85.34% Above Medium  2879811ms  5780.655ms
Fossil sport (H) 8.472ms 7934.962ms 7943 .434ms 70.23% Around Medium  3453.740ms  6948.851ms

“The running time of hybrid estimator is the expected running time based on our dataset with the corresponding best switching threshold.



Poslitives Negatives

e Able to handle noise e 30 participants in user study

e Multiple approaches used e Further elaboration of their

' i V lon
e Non-invasive evaluations



Discussion

e Are there other major applications that PPG sensing could be applied to?
e What factors could be contributing to noise?
e Are there any other metrics for accuracy that could be used?

e The method is mathematically dependable with low error rate, but does it
match real-life experiences?



