
NanoLambda : FaaS at All 
Resource scales for IoT

Gareth George, Fatih Bakir, Rich Wolski, Chandra Krintz

UC Santa Barbara



Background

• IoT devices are increasingly prevalent producers of data

• Writing code for processing data on IoT devices remains a challenge.
• Difficult to implement

• Portability, security and maintainability all are challenges

• Cloud / Edge processing:
• Easy to program

• Easy to scale – FaaS

• Drawback – Cost of sending data, latency etc.



Background
• Function as a service –

• Easy scalability

• Event driven, Resource conserving

• Faster development

• FaaS is limited to linux based resource rich systems. 

• This paper tries to provide uniform FaaS environment for highly 
resource constrained IoT devices.



NanoLambda

• NanoLambda: platform for running FaaS handlers across all tiers
• On Device
• Cloud / Edge
• Compatible with AWS Lambda

• Goals :
• Ease of development
• Portability
• Small code and memory footprint
• Security (Isolation)
• Uniform programming methodology

• At the smallest scales
• ESP8266 with 96KB of ram and 512KB of program flash storage
• CC3220SF with 256KB of ram and 1MB of program flash storage



NanoLambda Architecture

• Based on CSPOT. 
• FaaS deployment model

• Fault resilient distributed storage

• Cloud and Edge portability (Only for Linux based systems)

• Comprises of 2 cores systems:
• NanoLambda Cloud/Edge

• NanoLambda On Device



NanoLambda Architecture

Edge Node



NanoLambda Cloud/Edge
• Service provides two REST API servers offering

• S3 emulation
• A FaaS service that deploys functions 

written for AWS Lambda
• Built with CSPOT

• S3 is implemented as a layer on top 
CSPOT’s append only object storage

• Lambda is implemented with event 
handlers triggered by invocation log 
updates

• Handlers are run in Linux containers allowing 
for concurrent but isolated execution

• Provides a registry of function definitions stored 
in S3 service

• Binary API for fetching compiled function 
bytecode



NanoLambda on Device

• Runs python handlers on non-Linux IoT devices
• Much like NanoLambda Cloud/Edge, invocations triggered 

by log events
• Events can originate from sensors on device
• Data can also be delivered remotely over CSPOT’s 

network
• Each append runs a C-language handler function invoking 

IoTPy
• On cold start function bytecode is requested from 

NanoLambda Cloud/Edge
• IoTPy caches bytecode & interpreter state to accelerate 

future runs



IoTPy
• Extremely lightweight Python interpreter built from the ground up with 

embedding in mind.

• Why not an existing interpreter like micropython?
• Lacks key embedding features
• Binary size - micropython 620KB binary vs IoTPy 290KB binary

• IoTPy features
• Lean memory footprint by leveraging NanoLambda Cloud/Edge for bytecode 

generation
• Object-oriented VM implementation & first class embedding support

• Security
• Python VM provides memory protection and container-like isolation



Deploying Functions



Evaluation



Predictive Maintenance Application

• Predictive Maintenance is a technique using sensors to detect part 
failure

• We examine failure detection in motors using accelerometers

• Setup:
• Accelerometer attached to a motor reads vibration magnitude 5 times a 

second

• Data is appended to a WooF for persistence, a history of 32 records is kept.

• Each append triggers failure detection handler to run

• Handler is benchmarked running on NanoLambda On Device and 
NanoLambda Cloud/Edge for various problem sizes and configurations



Evaluation



Execution offloading

• NanoLambda On Device is code compatible with NanoLambda
Cloud/Edge
• On Device supports devices as small as ESP8266 and the CC3220SF

• NanoLambda Cloud/Edge runs on Linux at the edge and in the cloud

• Portability: The choice to use NanoLambda allows for On Device, at 
the Edge, in the private Cloud, or directly on AWS Lambda



Naïve scheduler

• Naive algorithm:
• Pick the lowest latency (time to 

result) execution strategy based on 
history

• Local (On Device) or Remote

• Every 16 invocations reset the 
history to allow model to recover 
from network spikes



Discussion

• Each handler is run in a separate Python VM, common packages may 
be dynamically linked? – Lightweight Isolation

• Support for Python packages.

• Authentication and authorization


