NanolLambda : FaaS at All
Resource scales for loT

Gareth George, Fatih Bakir, Rich Wolski, Chandra Krintz
UC Santa Barbara

Background

* |oT devices are increasingly prevalent producers of data

* Writing code for processing data on loT devices remains a challenge.
 Difficult to implement
* Portability, security and maintainability all are challenges

* Cloud / Edge processing:
* Easy to program
e Easy to scale — Faa$S
* Drawback — Cost of sending data, latency etc.

Background

* Function as a service —
* Easy scalability
* Event driven, Resource conserving
* Faster development

* FaaS is limited to linux based resource rich systems.

* This paper tries to provide uniform FaaS environment for highly
resource constrained loT devices.

NanolLambda

 NanolLambda: platform for running FaaS handlers across all tiers

* On Device
* Cloud / Edge
* Compatible with AWS Lambda

* Goals:
* Ease of development
Portability
Small code and memory footprint
Security (Isolation)
Uniform programming methodology

* At the smallest scales
* ESP8266 with 96KB of ram and 512KB of program flash storage
e CC3220SF with 256KB of ram and 1MB of program flash storage

NanolLambda Architecture

e Based on CSPOQT.

* FaaS deployment model
* Fault resilient distributed storage
* Cloud and Edge portability (Only for Linux based systems)

 Comprises of 2 cores systems:

* NanoLambda Cloud/Edge
* NanoLambda On Device

NanolLambda Architecture

>

CSPOT Backend
Object Store

CSPOT
Handler

S3 API
Emulation
Service

Python 3.6

/

CSPOT WooF
<= |nvocation
Log

Lambda API
I Emulation

Service

loTPy
Code/API
translation
and
packaging
service

loTPY
on device
and remote
execution
capabilities

G —
S

CSPOT WooF:
measurement
logs

with monitoring C++ threads

[Sensors& drivers: custom OS]

NanoLambda Cloud/Edge

Edge Node

NanoLambda On Device

B

{no)

NanolLambda Cloud/Edge

e —— Iy
~

CSPOT WooF

CSPOT Backend a WoRaTR
Object Store Handler Log loTPy
Code/API
translation
and
ackagin
) Lambda API psewi?:e ¢
Emulation Emulation
Service Service
NanoLambda Cloud/Edge

Service provides two REST API servers offering
e S3 emulation
* A FaaS service that deploys functions
written for AWS Lambda
Built with CSPOT
 S3isimplemented as a layer on top
CSPOT’s append only object storage
 Lambda is implemented with event
handlers triggered by invocation log
updates
Handlers are run in Linux containers allowing
for concurrent but isolated execution
Provides a registry of function definitions stored
in S3 service
Binary API for fetching compiled function
bytecode

NanolLambda on Device

loTPY
on device
and remote
execution
capabilities

P
e

CSPOT WocoF:
measurement

logs

\\,______‘_______d_,./

Sensors & drivers: custom OS
with monitoring C++ threads

NanolLambda On Device

Runs python handlers on non-Linux loT devices
Much like NanoLambda Cloud/Edge, invocations triggered
by log events

* Events can originate from sensors on device

* Data can also be delivered remotely over CSPOT’s

network

Each append runs a C-language handler function invoking
loTPy
On cold start function bytecode is requested from
NanoLambda Cloud/Edge
loTPy caches bytecode & interpreter state to accelerate
future runs

l0oTPy

e Extremely lightweight Python interpreter built from the ground up with
embedding in mind.

* Why not an existing interpreter like micropython?
* Lacks key embedding features
* Binary size - micropython 620KB binary vs loTPy 290KB binary

* |oTPy features

* Lean memory footprint by leveraging NanoLambda Cloud/Edge for bytecode
generation

e Object-oriented VM implementation & first class embedding support

* Security
* Python VM provides memory protection and container-like isolation

Deploying Functions

zip edgelambda.zip edgelambda.py

aws lambda create-function \
scheduled_pred_main \
fileb://edgelambda.zip \
edgelambda.new_accel_sample \
python3.6 \

http://<lambda service address>:1100 \
\

programmer deploys code to
NanoLambda Cloud/Edge service
with aws cli

NanoLambda
Cloud/Edge
1. stores code in object store service
2. compiles and caches compact
bytecode representation on-demand

p— R when loT devices find a handler is not cac_hed
locally they request bytecode representation
XXX] XXXl Xxx from NanoLambda service

Evaluation

Configuration

Latency in ms

Nanol.ambda Local Caching
NanolL.ambda No Local Cache
NanolLambda No Server Cache
NanolL.ambda C Handler

6.7 ms
119.5 ms
220.4 ms
0.3 ms

TABLE 1

AVERAGE LATENCY FOR 100 ITERATIONS OF THE HANDLER FUNCTION|

_onhguration Latency (ms) | Power Use (mJ) | Memory Use BB

NanolLambda Local Caching 2094 ms 2.3 mJ 23.6KB

Nanolambda No Local Cache | 7200 ms 85.00 m.J 21.7TKB
TAHBLE II

AVERAGE TIMES/POWER CONSUMPTION OVER 100 ITERATIONS OF THE
HANDLER FUNCTION ON THE CC32205F MICROCONTROLLER WITH A KS
PROBLEM SIZE OF 32 IN EACH CONFIGURATION.

Predictive Maintenance Application

* Predictive Maintenance is a technique using sensors to detect part
failure

* We examine failure detection in motors using accelerometers
* Setup:
* Accelerometer attached to a motor reads vibration magnitude 5 times a
second
» Data is appended to a WooF for persistence, a history of 32 records is kept.
* Each append triggers failure detection handler to run

* Handler is benchmarked running on NanoLambda On Device and
NanolLambda Cloud/Edge for various problem sizes and configurations

Evaluation

Power Use Over Local Request Lifecycle for Problem Size 80

Power Use Over Local Request Lifecycle for Problem Size 20 __ 600
§ 600 = —— Local Request
z —— Local Request E
< 400 - £
o 200 - ‘E 200 l
5 | g - |
z | E |
e 0 2 & 0] T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000 800000 0 100000 200000 300000 400000 500000 600000 700000 800000
Time (us) Time (us)

n Power Use Over Remote Request Lifecycle for Problem Size 20 600 Power Use Over Remote Request Lifecycle for Problem Size 80
s —— Remote Request = —— Remote Request
£
; 400 ~ E 400 -

5 VP :
[
5209 I = 200 -
3 =
a. o
0 - s 0
0 100000 200000 300000 400000 500000 600000 700000 800000

Time (us) 0 100000 200000 300000 400000 500000 600000 700000 800000
Time {us)

Execution offloading

* NanoLambda On Device is code compatible with NanoLambda
Cloud/Edge
* On Device supports devices as small as ESP8266 and the CC3220SF
 NanoLambda Cloud/Edge runs on Linux at the edge and in the cloud

* Portability: The choice to use NanoLambda allows for On Device, at
the Edge, in the private Cloud, or directly on AWS Lambda

Naive scheduler

* Naive algorithm:

* Pick the lowest latency (time to

result) execution strategy based on
history

* Local (On Device) or Remote

e Every 16 invocations reset the
history to allow model to recover
from network spikes

Average Time (MS) Per Invocation vs Problem Size

. —— Local Only Scheduler
—— Remote Only Scheduler
—— Naive Scheduler
500 -
» 400
E
>
|9}
C
2 300
©
-
200 A
100 A

20 40 60 80 100
ks problem size

Fig. 6. Comparison of average invocation latency for local invocation strategy,
remote invocation strategy, and offloading scheduler invocation strategy.

Discussion

e Each handler is run in a separate Python VM, common packages may
be dynamically linked? — Lightweight Isolation

e Support for Python packages.
* Authentication and authorization

