MLIoT: An End-to-End Machine Learning
System for the Internet-of-Things

Sudershan Boovaraghavan, Anurag Maravi, Prahaladha Mallela, Yuvraj Agarwal

UNIVERSITY OF MINNESOTA
Driven to Discover:

Authors

Sudershan Boovaraghavan
PhD Student

Anurag Maravi
Research Intern

Prahaladha Mallela
Master's Student

Yuvraj Agarwal
Associate Professor

Carnegie Mellon University
Institute for Software Research

loTDI 2021 - ACM/IEEE Conference on
Internet of Things Design and
Implementation, 2021

%
NS
=

What is loT?

- Internet of Things

- System of internet-connected
objects that are able to collect
and transfer data over a wireless
network

- Make predictions based on ML
training

Limitations/Issues with loT Applications

- Issues:

- Current systems rely on general-purpose pre-trained ML models

- Retraining based on the sensors and events in a dynamic setting isn't possible due to the
architecture of the systems

- Accurate pre-trained models need a significant amount of labeled training data, and
computation resources, which is uncommon in loT scenarios

- These systems are optimized for specific, and often dedicated hardware resources, and do
not adapt to changes in resource availability

- Goal
- Train a generalized ML model once and then deploy it to make predictions and have it
adapt to environmental changes over time

Proposal: MLIoT

- End-to-end ML System tailored towards supporting the entire lifecycle of
loT applications including initial training, serving, and retraining processes

- Adapts to changes in loT environments or compute resources by enabling
retraining, and updating models on the fly

- Maintains accuracy and performance

Key Contributions

1. Design and implementation of MLIoT
2. Propose optimizations for training and serving, and report on their efficacy

3. Evaluate MLIoT on several hardware devices and across a set of loT benchmark
datasets (image, audio, multi-modal sensor data)

loT Applications

- Activity Recognition using Multi-Modal sensors
- Use multiple datasets from the Mites to evaluate MLIoT

- Audio Based Activity Recognition
- Use audio benchmarks and compare MLIoT with Ubicoustics

- Object Recognition using Image Data
- Use the MNIST dataset which has labelled images for handwritten digits to
evaluate MLIoT

Challenges for ML systems in loT Settings

- Adapting to Different loT Application Requirements

- Adapting to Device Capabilities and Resource Availability
- Adapting to Changes in Environmental Context

- Customization to loT Data Types

- Need for an End-to-End ML Service for loT

MLIoT Goals

- Balance user requirements with the available resources

- Use various devices and models to see how results compare

- Enable both the initial training, and re-training and re-optimizations of the
models based on user driven corrective feedback

Related Work

- Serving-Only
These systems place the trained models in containers and optimize model inference requests
fail to address one or more key requirements for |oT scenarios: focus on serving static pre-trained models,
no adaptation to environmental changes, do not support heterogeneous devices, or have limited, if any,
support for policies

- Training-Only
Most of the training focused systems optimize for deep neural network models with many
hyperparameters, which is very resource and time intensive
the available data is sparse to train complex models, the trained models need to be specific to the sensor
sources, environmental context, application requirements and thus need more closely coupled
(re-)training and serving systems

- Hybrld Training-Serving
simplify ML development through a general-purpose machine learning system with both training and
serving of models
generally run on the cloud incurring a higher cost for better workload environments and restrict users to a
specific set of algorithms or libraries, so users are on their own when they step outside these boundaries
not designed to adapt to unpredictable operational environments

Related Work Requirements in IoT
Approach Sources Adaptive Expressive | Adaptation to | Adaptation End-to-
Model Polices Heterogeneous to Environ- | End
Selection Hardware ment

Clipper [14] Serving Any Src v * X X X
InferLine [15] Hybrid Any Src v * 4 X X
2 Ubicoustics [38] Serving Audio X X L 4 X X
8| Helix [66] Training Text X X v X X
:>)~ Project Adam [11] Training Image X X . X X
2| KeystoneML [63] Training Text X X X 4 X
5[Mites [49] Hybrid Multimodal | X X X 7 7
8| Velox [13] Hybrid Any Src X X X v v
<[TLaser [67] Hybrid Text(Ads) X X X L 4 v
~ | TensorFlow Serving [51] Serving Any src X 4 X X X
‘S| AWS IoT Greengrass [5] Serving Any Src X X v X *
QE) Microsoft’s ML.Net [2] Hybrid Any Src X X X L 4 v
5| Google’s Cloud ML [26] Hybrid Any Src X X X v v
Ol Google’s TFX [6] Hybrid Any Src v X X v v
| | MLIoT | Hybrid | AnySrc |V % % v v

v/: Available X: Not Available #: Partial features available

MLIoT Design

Device
. selection ——
Device Selection Layer request
) —
Training and Serving Layer
Machine 1
5 1 - prediction|
g;n Training e_arn»[. |.\ Serving | | [——» %
= <
<] =
= ek ladaptatlon feedback S
) =
* &
> <
Machine N | o data

M—» L) lewm| Serving
feedback
@ l«m} Servmg

T [
|

b
)
o0
<
=
<
=

feedback

Device
selection
request

'Various Feedback;
sources

Heterogenous
Data Sources

Mu1t1 Modal
Sensors

DSL Benchmarks

- CPU and Memory Utilization
- Prediction Latency
- Training Time and Accuracy

- Runtime Metrics

TSL

- Training Worker

creates initial model training using labeled data
retrains models when corrective feedback is
provided by users to improve accuracy
streamline model training to provide high-quality
ML models that are tailored to the specific loT
task

goal with TW model selection is to create an
ensemble of models to send to the Serving
Worker

- Serving Worker

obtains the trained models from the TW

uses model ensemble to make predictions
collects user feedback on the ensemble-based
predictions and forwards them to the TW

Untrained
Models

SF

Manager

i

™
Lazy “@ » Modelé
raining @ - [l
t*

-[Dimensionality Reduction

Hyperparameter T P a}te
Optimization raming
ry _Data

]

Not
Background"

Selection Models

~
3 » T —
s ~
3

-

(" Model Ensemble)

ir)

v
/ Trained Models\ Update / 2 Stage\
Serving System [T Prediction

Prediction
Input

Background
Prediction

Ensemble

rAggregate Serving Side

~

prediction

Feedback

J

\[Training Data]/

Training Worker

(| Data/Feedback
=

Serving Worker

Optimizations

- Hyper-parameter optimization and dimensionality reduction of models
- Lazy training to increase accuracy over time, while reducing latency to start serving
- Model adaptation to account for drift using corrective feedback from users
- Two-stage serving that increases accuracy while improving serving latency
- First Stage is a binary classifier with two classes - "“Background” vs. other
classes

- Second Stage uses the model ensemble obtained to serve predictions

w is the weight

n
fmisthepredicion Prediction = argmaxc(z wi(if f(x)m; =c¢))
i=1

made by model m
c is the class

Experiment

- Five traditional models (KNN, Ridge Regression, RandomForest, SVM-Linear, SVM-RBF)
- Two Neural Networks (MLP & XGboost)

Table 2: Summary of IoT Benchmark Data Characteristics

Dataset Data Type Features | Training Testing Classes
Samples Samples
MNIST [40] Image 2828 42000 18000 10
Mites [49] Multimodal 1172 25787 16735 16
Microphone | Audio 96 * 64 2633 1734 14

Table 3: Hardware platforms used in our experiments

Device Type Processors Memory Average Local
RTT /Cloud
M1 Raspberry-Pi 4 4x ARM A72 4GB ~3ms Local
M2 Intel NUC 4 x 15-5250U 8GB ~14ms Local
M3 Virtual Machine 2 core 4GB ~128ms Cloud
M4 Virtual Machine 8 core 16GB ~64ms Cloud
M5 Virtual Machine 16 core 32GB ~84ms Cloud

Results

- Training time, CPU and memory usage vary widely

based on the models

- Performance is machine dependent and data type

dependent

- The average latency with a two-stage system is
65ms, compared to the average latency of the
baseline system of 105ms

- MLloT improves accuracy 50% - 75%

- MLloT (DSL) does not schedule any more
additional tasks on a machine since servicing
them would lead to a higher serving latency than
the threshold

SSY KNN E§ MLP Ridge EHA RNF SVMRBF E=I SVM Lin

Togscale| Togscale| Togscale|

Training Time(s)

z
S 0.
g
3
)
S% 0% & o =% O ot =%
0 O AU 2200 8O LA A e
Do B > U0 2 .) (A0
P ev;c,e@ V’;c,%“?' ee® @;‘Ge“? V’;ge‘*y' RS
Image Data Multimodal Sensor Data Audio Data
Training | Training] Training Training]
0.901 RNF MLP { SVM Lin SVM 1
0.85 :
2 0.80 | —e= MLIT
£ 0.75 | —&— Baseline
3 1 H [N
3 0.70 | 5 2!
< _ p = =y
0.65 /\ f] o
‘/;‘ o >}
0.60 £ 2 5
B E=H 3|
0.55 < < <
0 500 1000 1500 2000

Time(s)

Figure 6: Change in accuracy with Lazy training. The latency to start
serving is reduced while accuracy improves as the ensemble is up-
dated with more models trained in the background.

—— With 2 stage system Baseline ---- Avg. Baseline —— Overall 2 stage latency

175 { — Stage 2

Latency (ms)
>SN @
S o o
=
=
e
S5 —
Stage

v \ W
75 P
50 l
wlwnals H b T P Y
25 - 1
0 200 400 600 800
Time (s)

Figure 8: Effect of Two-stage serving on the End-to-End Latency of
MLIoT and the corresponding stage where the prediction is made
(green line). The Two-stage system’s binary model classifies back-
ground with lower latency when compared to baseline.

*Note: baseline model is without DR and HPO

Results (Part 2)

Table 4: Comparing MLIoT with other ML systems: Ubicoustics [38]
Mites.io [49] and a general-purpose system: TensorFlow Extended
[6]. Numbers in parenthesis are percentage increase/decrease in ac-

curacy (higher is better) or latency (lower is better).

| System | Top 1 Accuracy | Latency (s) |
Audio Data
Ubicoustics [38] - Pretrained Model 0.52 0.08
MLIoT- Best Effort (7 ensemble) 0.89 (+71%) 0.1 (+25%)
MLIoT- Low Latency (3 ensemble) 0.86 (+65%) 0.06 (-25%)

TFX [6] - General Purpose

0.67 (+29%)

0.35 (+337%)

| Multi-modal Sensor Data

Mites [49] - Supervised Model

0.48

0.05

MLIoT- Best Effort (7 ensemble)

0.84 (+75%)

0.09 (+80%)

MLIoT- Low Latency (3 ensemble)

0.72 (+50%)

0.04 (-20%)

Discussion

What improvements are needed
to make it ~100% effective?

Are there any alternate
architectures that can improve the
efficacy?

Are the experimental results
representative and achievable in
real-world implementation at
scale?

What is the cost of implementing
this?

