

MLIoT: An End-to-End Machine Learning
System for the Internet-of-Things

Sudershan Boovaraghavan, Anurag Maravi, Prahaladha Mallela, Yuvraj Agarwal

Authors
Sudershan Boovaraghavan

PhD Student

Anurag Maravi
Research Intern

Prahaladha Mallela
Master’s Student

Yuvraj Agarwal
Associate Professor

Carnegie Mellon University

Institute for Software Research

IoTDI 2021 - ACM/IEEE Conference on
Internet of Things Design and
Implementation, 2021

What is IoT?
- Internet of Things

- System of internet-connected
objects that are able to collect
and transfer data over a wireless
network

- Make predictions based on ML
training

Limitations/Issues with IoT Applications
- Issues:

- Current systems rely on general-purpose pre-trained ML models
- Retraining based on the sensors and events in a dynamic setting isn’t possible due to the

architecture of the systems
- Accurate pre-trained models need a significant amount of labeled training data, and

computation resources, which is uncommon in IoT scenarios
- These systems are optimized for specific, and often dedicated hardware resources, and do

not adapt to changes in resource availability

- Goal:
- Train a generalized ML model once and then deploy it to make predictions and have it

adapt to environmental changes over time

Proposal: MLIoT
- End-to-end ML System tailored towards supporting the entire lifecycle of

IoT applications including initial training, serving, and retraining processes

- Adapts to changes in IoT environments or compute resources by enabling
retraining, and updating models on the fly

- Maintains accuracy and performance

Key Contributions
1. Design and implementation of MLIoT

2. Propose optimizations for training and serving, and report on their efficacy

3. Evaluate MLIoT on several hardware devices and across a set of IoT benchmark
datasets (image, audio, multi-modal sensor data)

IoT Applications
- Activity Recognition using Multi-Modal sensors

- Use multiple datasets from the Mites to evaluate MLIoT

- Audio Based Activity Recognition
- Use audio benchmarks and compare MLIoT with Ubicoustics

- Object Recognition using Image Data
- Use the MNIST dataset which has labelled images for handwritten digits to

evaluate MLIoT

Challenges for ML systems in IoT Settings
- Adapting to Different IoT Application Requirements

- Adapting to Device Capabilities and Resource Availability

- Adapting to Changes in Environmental Context

- Customization to IoT Data Types

- Need for an End-to-End ML Service for IoT

MLIoT Goals
- Balance user requirements with the available resources

- Use various devices and models to see how results compare

- Enable both the initial training, and re-training and re-optimizations of the
models based on user driven corrective feedback

Related Work
- Serving-Only

- These systems place the trained models in containers and optimize model inference requests
- fail to address one or more key requirements for IoT scenarios: focus on serving static pre-trained models,

no adaptation to environmental changes, do not support heterogeneous devices, or have limited, if any,
support for policies

- Training-Only
- Most of the training focused systems optimize for deep neural network models with many

hyperparameters, which is very resource and time intensive
- the available data is sparse to train complex models, the trained models need to be specific to the sensor

sources, environmental context, application requirements and thus need more closely coupled
(re-)training and serving systems

- Hybrid Training-Serving
- simplify ML development through a general-purpose machine learning system with both training and

serving of models
- generally run on the cloud incurring a higher cost for better workload environments and restrict users to a

specific set of algorithms or libraries, so users are on their own when they step outside these boundaries
- not designed to adapt to unpredictable operational environments

MLIoT Design

DSL Benchmarks
- CPU and Memory Utilization

- Prediction Latency

- Training Time and Accuracy

- Runtime Metrics

TSL
- Training Worker

- creates initial model training using labeled data
- retrains models when corrective feedback is

provided by users to improve accuracy
- streamline model training to provide high-quality

ML models that are tailored to the specific IoT
task

- goal with TW model selection is to create an
ensemble of models to send to the Serving
Worker

- Serving Worker
- obtains the trained models from the TW
- uses model ensemble to make predictions
- collects user feedback on the ensemble-based

predictions and forwards them to the TW

Optimizations
- Hyper-parameter optimization and dimensionality reduction of models
- Lazy training to increase accuracy over time, while reducing latency to start serving
- Model adaptation to account for drift using corrective feedback from users
- Two-stage serving that increases accuracy while improving serving latency

- First Stage is a binary classifier with two classes - “Background” vs. other
classes

- Second Stage uses the model ensemble obtained to serve predictions

- w is the weight
- 𝑓(𝑥)𝑚𝑖 is the prediction

made by model 𝑚
- c is the class

Experiment
- Five traditional models (KNN, Ridge Regression, RandomForest, SVM-Linear, SVM-RBF)
- Two Neural Networks (MLP & XGboost)

Results
- Training time, CPU and memory usage vary widely

based on the models

- Performance is machine dependent and data type
dependent

- The average latency with a two-stage system is
65ms, compared to the average latency of the
baseline system of 105ms

- MLIoT improves accuracy 50% - 75%

- MLIoT (DSL) does not schedule any more
additional tasks on a machine since servicing
them would lead to a higher serving latency than
the threshold

*Note: baseline model is without DR and HPO

Results (Part 2)

Discussion

- What improvements are needed
to make it ~100% effective?

- Are there any alternate
architectures that can improve the
efficacy?

- Are the experimental results
representative and achievable in
real-world implementation at
scale?

- What is the cost of implementing
this?

