
Home, SafeHome: Smart Home Reliability
with Visibility and Atomicity

Shegufta B. Ahsan, Rui Yang, Shadi A. Noghabi, and Indranil Gupta

Department of Computer Science, University of Illinois at Urbana-Champaign
Microsoft Research

* slides taken from authors and modified

SafeHome

- A first step towards Smart Home OS
- Reasons about atomicity and isolation

- Home Automation System that can
- Support long running routines
- Properly isolate concurrent routines (providing serial equivalence)
- Ensure routine execution atomicity

- Key challenge: Actions are visible to users

- Methodology:
- Four Visibility Models (Spectrum for user choices)
- Lock-based mechanism with leasing design

2

Motivation (why it’s important?)

- Diversity & scale of smart devices
- Need for safe and smart home management systems
- Concurrency causes incongruent end-state in real world

Diversity & scale of smart devices

“Humans need to control their

lives, not control devices.”

-- Davidoff et al, UbiComp’06

Smart Device:
1) connected to other devices via wireless protocols
2) controlled by home automation systems

Need for safe management systems
How people control smart home?
- by Command

e.g. {Make an espresso}
- by Routine: a sequence of commands

e.g. Prep. Breakfast = {Make an espresso; make a pancake}

Routine in Google Home Routine in Kasa (TP-Link)

Concurrency causes incongruent end-state

- Execute everything in a routine – Atomicity
- All commands in the routine need to finish successfully, or none do

- When conflicts happen, people hope routines to execute one after another
– Isolation / Serial Equivalence

*Routines are common to be long running, e.g. trash-out routine.

6

Poorly supported in
current systems!

R1:
Trash-out

R2:
Close

Gar. Door

SafeHome

- Home Automation System that can
- Support long running routines
- Properly isolate concurrent routines (providing serial equivalence)
- Ensure routine execution atomicity

- Key challenge:
- Actions are visible to users
- Need to optimize for user-facing metrics
- Device crashes/restarts and long-running routines are common

- Methodology:
- Four Visibility Models (Spectrum for user choices)
- Lock-based mechanism with leasing design

7

How it builds upon previous works?

- Visibility models are counterpart to weak consistency models explored
previously

- Some works use priority-based techniques to address concurrency
- Transactuations and APEX papers discuss atomicity and isolation for

routine dependencies
- Many parallels b/w SafeHome and ACID properties but:

- Optimize latency vs. throughput
- Device failures (data is replicated but devices are not)
- Long-running routines (starvation)

Visibility Models

Four Visibility Models:
- Weak, Eventual, Partitioned Strict, Global Strict

Example Scenarios: 5 routines are initiated simultaneously on 4 devices

9

R1:

R2:

R3:

3 Routines Initiated by User: 2 Routines triggered by other sensors:

R4:

R5:

(espresso)

(americano)

(vanilla)

(strawberry)

(plain)

(living room) (living room)

(kitchen)

Coffee
Maker

Pancake
Maker

Vacuum Mopper

coffee maker

pancake maker

vacuum

mopper

Weak Visibility (WV) Model -- Status Quo

Strategy:
- Execute routine immediately when triggered

10

R1 R1

R2 R2

R3

R4 R4

R5

Insertion
time

time

Parallel Execution

Two commands send
simultaneously to one
device may cause errors.

Finish in 2 time units

coffee maker

pancake maker

vacuum

mopper

Global Strict Visibility (GSV) Model

Strategy:
- Execute at most one routine at a time

- Strongest Visibility Model
- Example Usage: resource constrained environment:

- e.g. 1000-watt max supply < coffee maker 600W + pancake maker: 600W

11

R1 R1 R2 R2 R3 R4 R4 R5

Insertion
time

time

Finish in time units8

coffee maker

pancake maker

vacuum

mopper

Partitioned Strict Visibility (PSV) Model

Strategy:
- Routines touching disjoint devices do not block each other

- Useful when routines need to execute without interference through
duration.

- Might still takes long with long running routines.

12

R1 R1 R2 R2 R3

R4 R4 R5

Insertion
time

time

Parallel Execution

Finish in 5 time units

Eventual Visibility (EV) Model

Strategy:
- Routines can concurrently execute without violating some serial order.

13

R1 R1

Insertion
time

time

R2 R2

R3

R4 R4

R5

Parallel Execution

Equivalent end state to:
R3 –> R1 –> R2 –> R5 –> R4

Finish in time units3

Eventual Visibility (EV) Model

Strategy:
- Routines can concurrently execute without violating some serial order.
- Each routine holds the locks for devices it touches (but can lease the lock).

14

central device
(e.g. hub)

Pre-lease

Post-lease

Eventual Visibility (EV) - Post-Lease

Post-lease:
- If a routine is done with a device D, it can post-lease D’s lock to another

routine.

15

Serial order:
lessor –> lessee
(R1 –> R2)

R1 R1

Insertion
time

time

R2 R2

R1 will be done
with coffee maker

post-
lease

Eventual Visibility (EV) - Pre-Lease

Pre-lease:
- If a routine has acquired the lock but not accessed a device D, it can pre-

lease D’s lock to another routine.

16

R1 R1

Insertion
time

time

R2 R2

R3

R1 will start to
access pancake
maker

pre-
lease

Serial order:
lessee –> lessor
(R3 –> R1)

Eventual Visibility (EV)

EV finishes routine
- with short wait and provides serial equivalence
- with higher temporary incongruence: intermediate state is not serially equivalent

17

R1 R1

Insertion
time

time

R2 R2

R3

pancake and coffee maker
can not be both ON under
any serial order

Finish in 3 time units

Eventual Visibility (EV) - Lineage Table

Lineage Table: SafeHome's plan of which routine will access which device.

18

R1[A] R2[S]

R3[A] R1[L] R2[S]

R4[A]

R5[R] R4[A]

[A]: Get lock Access
[S]: Routine Scheduled
[L]: Lock Leased out
[R]: Lock Released

Scheduling plan placement:

- Placed when routine is triggered
- Use backtracking for valid

placement
- Explore two other policies (FCFS,

JiT)

Failure Serialization and Rollback

Device might fail:
- Rollback? Try to serialize the failure/restart event!
- If the failed device is not touched by the routine:

- Arbitrary Serial Equivalence order

- If device fails/restarts after the last touch:
- Routine –> Fail/Restart Serial Equivalence order

- If device fails/restarts before the first touch:
- Fail/Restart –> Routine Serial Equivalence order

- If device fails/restarts during the touch:
- Rollback routine

19

R1 R1

Start
Execution

timeand/or and/orand/orand/or

R1 –> Failure –> RestartFailure –> Restart –> R1

SafeHome Implementation

Implementation
- ~2k line of Java code
- Support long running routine expression (JSON)
- Popular Smart Device integration (TP-link, Wemo)

Experiment Setup
- Deployment & Simulation
- Real-world Benchmark

- Derived from IoTBench Test Suite
- Morning, Party, Factory Scenario

- Workload-Driven
- Average of 500k runs

20

Real-World Benchmark

21

EV is serially equiva-

lent, but WV not

EV is almost as fast as

status quo (WV)

EV has temporary

incongruence

comparable to WV

Temporary Incongruence: the ratio of time when intermediate state is not serially equivalent.
Final Incongruence: the ratio of runs that end up in an incongruent state.

Workload Evaluation -- Pre/Post-Lease

22

High Latency, Zero Temporary Incongruence

Low Latency, High Temporary Incongruence

Pre/Post leases reduce the E2E latency (user-facing metrics) with the cost of

Temporary Incongruence

Takeaways

- Safehome is a first step to provide reliability from routine level exection

- SafeHome provides four Visibility Models (WV, EV, PSV, and GSV)

- Eventual Visibility (EV) model provides the best of both worlds, with:
- Good user-facing responsiveness (0 - 23.1%)
- Strongest end state congruence equivalent guarantee (as GSV)

- Lock-leasing improves latency by 1.5X - 4X

2323

Trade-off b/w incongruence vs. latency while
guaranteeing serial-equivalence

Discussion & Questions

● Think of a simpler scheme than early lock acquisition and lease?
● What happens when SafeHome fails?
● Paper discuss fail-stop failures

○ Can we reason about byzantine failures? Why or why not?

● The paper discussed reliability but what about availability?
○ Wait for next paper → Rivulet

