Home, SafeHome: Smart Home Reliability
with Visibility and Atomicity

Shegufta B. Ahsan, Rui Yang, Shadi A. Noghabi, and Indranil Gupta

Department of Computer Science, University of lllinois at Urbana-Champaign
Microsoft Research

* slides taken from authors and modified



SafeHome

A first step towards Smart Home OS
Reasons about atomicity and isolation



Motivation (why it’s important?)

Diversity & scale of smart devices
Need for safe and smart home management systems
Concurrency causes incongruent end-state in real world



Diversity & scale of smart devices

Smart Device:

ireless protocols
systems

~

lives, not control devices.”

- Davidoff et al, UbiComp’06




Need for safe management systems

How people control smart home?

- by Command
e.g. {Make an espresso}

- by Routine: a sequence of commands
e.g. Prep. Breakfast = {Make an espresso; make a pancake}

. < Scene
& Routines

Scene Name
Prep. Breakfast

-@ v Scene Behavior
i 2 actions Y
7V N
Coffee Mkr Turn on - / )  CoffeeMkr @
Toaster Turnon v ,; @
|& | Toaster
| & | ON

Routine in Google Home Routine in Kasa (TP-Link)



Concurrency CauSes incongruent end-state

Execute everything in a routine — Atomicity
All commands in the routine need to finish successfully, or none do

When conflicts happen, people hope routines to execute one after another
— Isolation / Serial Equivalence

RL e=5% m % - \
Trash-out = 'O

Poorly supported in

R2: current systems!
Close | | \_ .

Gar. Door

*Routines are common to be long running, e.qg. trash-out routine.



SafeHome

Home Automation System that can
Support long running routines
Properly isolate concurrent routines (providing serial equivalence)
Ensure routine execution atomicity

Key challenge:
Actions are visible to users
Need to optimize for user-facing metrics
Device crashes/restarts and long-running routines are common

Methodology:

Four Visibility Models (Spectrum for user choices)
Lock-based mechanism with /easing design



How it builds upon previous works?

Visibility models are counterpart to weak consistency models explored
previously

Some works use priority-based techniques to address concurrency
Transactuations and APEX papers discuss atomicity and isolation for
routine dependencies

Many parallels b/w SafeHome and ACID properties but:
Optimize latency vs. throughput

Device failures (data is replicated but devices are not)
Long-running routines (starvation)



Visibility Models
Four Visibility Models:

Weak, Eventual, Partitioned Strict, Global Strict

Example Scenarios: 5 routines are initiated simultaneously on 4 devices

3 Routines Initiated by User: 2 Routines triggered by other sensors:
Coffee Pancake

Maker Maker

RI: | L2 | & & Ra: | |k s

Vacuum Mopper

(espresso) (vanilla) (living room) (living room)

Py
~
pod

coffee maker

R2 | L2 | & RS: | s

(americano)  (strawberry) (kitcl;en)

pancake maker

ol (€

vacuum
o

R3: @ G{,A mopper

(plain)




Weak Visibility (WV) Model -- Status Quo

Strategy: o | |
Execute routine immediately when triggered A WIS DS
Insertion .
time . Lme.,
‘[R1 [R1i—
2 & h - ~
llR2 R@ Two commands send
| -2 simultaneously to one
| R3 = . device may cause errors.
! @ > Parallel Execution
| \ J
i R4 /2'(_9 R4&{}‘; é coffee maker
. — — @ pancake maker
! R!é vacuum

RS&{

CX Géx mopper

3
N\

10



Global Strict Visibility (GSV) Model

Strategy:

Execute at most one routine at a time [F'”’Sh S Wit infis 1

Inserti?n time
time 1

im é R@ RZé R@ R@ _/z!@ 11?4&3(f R5€g€n’
|
Strongest Visibility Model

Example Usage: resource constrained environment:
e.g. 1000-watt max supply < coffee maker 600W + pancake maker: 600W

é coffee maker

@ pancake maker

[ gﬁ vacuum

({ga mopper




Partitioned Strict Visibility (PSV) Model

Strategy:

[ Finish in 5 time units }

Routines touching disjoint devices do not block each other

Insertion

time

time ‘o

& &

R2

<& &

R3 i
&

R4

<

e

.

J

Parallel Execution

Useful when routines need to execute without interference through

duration.

Might still takes long with long running routines.

12



Eventual Visibility (EV) Model

Strategy:
Routines can concurrently execute without violating some serial order.

Inserti?n

time

time

R1 Wt

& &

R2

ﬁ‘%

e

Sl

>

[ Finish in 3time units }

Parallel Execution

Equivalent end state to:
R3—>R1->R2—>R5—>R4




Eventual Visibility (EV) Model

Strategy:
Routines can concurrently execute without violating some serial order.

Each routine holds the|/ocks|for devices it touches (but canjlease the lock].

\k Post-I
ost-lease
\

@ — N Pre-lease
central device S@

(e.g. hub)

14



Eventual Visibility (EV) - Post-Lease

Post-lease:
If a routine is done with a device D, it can post-lease D’s lock to another
routine.
Inserti?n | time
time e
r Qr@l o
1= = 1R2 rz*' o Serial order:
. I '
post- L:* |22 | &2 lessor —> lessee
lease p1 will be done (R1 —> R2)

| with coffee maker
|
|



Eventual Visibility (EV) - Pre-Lease

Pre-lease:
If a routine has acquired the lock but not accessed a device D, it can pre-
lease D’s lock to another routine.

Inserti?n | time
time . RI L VR1E— |
| , @ |
| e = al order:
| R2 0 R2E= Serial order:
pre- | & lessee —> lessor
: | | e
lease | 3=~ || (R3 —> R1)
I .
P8 &2 |,

I
- R1 will start to

access pancake
| maker



Eventual Visibility (EV)

EV finishes routine

with short wait and provides serial equivalence

[ Finish in 3 time units }

with higher temporary incongruence: intermediate state is not serially equivalent

Inserti?n

time

time

R1 Wt

< M

R2 zﬂ'z

R2 s
&2

R3 I
&

pancake and coffee maker
can not be both ON under
any serial order



Eventual Visibility (EV) - Lineage Table

Lineage Table: SafeHome's plan of which routine will access which device.

e

R1[A] - R2[S]
& - R3[Al - R1[L] - R2[S]
e — RA[A]
RS[R] - R4[A]

A]: Get lock Access
S]: Routine Scheduled

L]: Lock Leased out
R]: Lock Released

Scheduling plan placement:

- Placed when routine is triggered

- Use backtracking for valid
placement

- Explore two other policies (FCFS,
JiT)



Failure Serialization and Rollback

Device might fail:
Rollback? Try to serialize the failure/restart event!

If the failed device is not touched by the routine:
Arbitrary Serial Equivalence order Start

If device fails/restarts after the last touch: Exec“t'cl’"

Routine —> Fail/Restart Serial Equivalence order R1 m

< S

If device fails/restarts before the first touch:
Fail/Restart —> Routine Serial Equivalence order

If device fails/restarts during the touch:
Rollback routine

Failure —> Restart —> R1



SafeHome Implementation

Implementation

- ~2kline of Java code
Support long running routine expression (JSON)

Popular Smart Device integration (TP-link, Wemo)

Experiment Setup
Deployment & Simulation

Real-world Benchmark
Derived from /oTBench Test Suite

Morning, Party, Factory Scenario

Workload-Driven
Average of 500k runs

20



Real-World Benchmark

- O GSV #-PSV -A-EV -+ WV O GSV #-PSV -A-EV -+ WV
2 ' GSV CIEV EIWV
E 205 o 04
2 > No Incongruence
B 0.0 0.4 5 0.3| for GSV,EV
10° 4 7' 98 &p 75 100 - = .
- 4 A 2 8'002 1 NS
1.0 EV has temporary |&= £ | B N\ \:
E 805 EV is almost as fast as incongruence S:0:1 N\ R"
= o ,
0.0 ,
0.(} status quo (WV) ! comparable to WV ) worning party factory
1.0 ;s hug————————— = - N
B = 0s ' EV is serially equiva-
@\ Y. _s”
__PP ===¥"] 0= ia lent, but WV not
10° 10" 10° 108 0 25 50 75 100 N J

End to End Latency (seconds) Temporary Incongruence (%)

Temporary Incongruence: the ratio of time when intermediate state is not serially equivalent.
Final Incongruence: the ratio of runs that end up in an incongruent state.

21



Workload Evaluation -- Pre/Post-Lease

High Latency, Zero Temporary Incongruence

Low Latency, High Temporary Incongruence

e N p= = = = = =
S0 50 4,C=2 mp=2, C=2 60 p=4, C=2
30.8 > S
= eb 4()
2 0.6 é z
S04l . £
=02 | I : /
%

m0.0 _ gmﬂl N _ Nm INH]]I[I = 0 ‘ \ I@m

Both-off Post-off Pre-off Both-on oIt Post-off Pre-off Both-on

Pre/Post leases reduce the E2E latency (user-facing metrics) with the cost of
Temporary Incongruence

22



Takeaways

Safehome is a first step to provide reliability from routine level exection
SafeHome provides four Visibility Models (WV, EV, PSV, and GSV)

Eventual Visibility (EV) model provides the best of both worlds, with:
Good user-facing responsiveness (0 - 23.1%)
Strongest end state congruence equivalent guarantee (as GSV)

Lock-leasing improves latency by 1.5X - 4X

Trade-off b/w incongruence vs. latency while
guaranteeing serial-equivalence




Discussion & Questions

e Think of a simpler scheme than early lock acquisition and lease?
e What happens when SafeHome fails?
e Paper discuss fail-stop failures

o  Can we reason about byzantine failures? Why or why not?

e The paper discussed reliability but what about availability?
o  Wait for next paper = Rivulet



