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SafeHome

- A first step towards Smart Home OS
- Reasons about atomicity and isolation

- Home Automation System that can
- Support long running routines
- Properly isolate concurrent routines (providing serial equivalence)
- Ensure routine execution atomicity

- Key challenge: Actions are visible to users

- Methodology:
- Four Visibility Models (Spectrum for user choices)
- Lock-based mechanism with leasing design
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Motivation (why it’s important?)

- Diversity & scale of smart devices
- Need for safe and smart home management systems
- Concurrency causes incongruent end-state in real world



Diversity & scale of smart devices

“Humans need to control their 

lives, not control devices.”

-- Davidoff et al, UbiComp’06

Smart Device:
1) connected to other devices via wireless protocols
2) controlled by home automation systems



Need for safe management systems
How people control smart home?
- by Command

e.g.  {Make an espresso}
- by Routine: a sequence of commands

e.g. Prep. Breakfast = {Make an espresso; make a pancake}

Routine in Google Home Routine in Kasa (TP-Link)



Concurrency causes incongruent end-state

- Execute everything in a routine – Atomicity
- All commands in the routine need to finish successfully, or none do

- When conflicts happen, people hope routines to execute one after another
– Isolation / Serial Equivalence

*Routines are common to be long running, e.g. trash-out routine.
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Poorly supported in 
current systems!

R1:
Trash-out

R2:
Close

Gar. Door



SafeHome

- Home Automation System that can
- Support long running routines
- Properly isolate concurrent routines (providing serial equivalence)
- Ensure routine execution atomicity

- Key challenge: 
- Actions are visible to users
- Need to optimize for user-facing metrics
- Device crashes/restarts and long-running routines are common

- Methodology:
- Four Visibility Models (Spectrum for user choices)
- Lock-based mechanism with leasing design
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How it builds upon previous works?

- Visibility models are counterpart to weak consistency models explored 
previously

- Some works use priority-based techniques to address concurrency
- Transactuations and APEX papers discuss atomicity and isolation for 

routine dependencies
- Many parallels b/w SafeHome and ACID properties but:

- Optimize latency vs. throughput
- Device failures (data is replicated but devices are not)
- Long-running routines (starvation)



Visibility Models

Four Visibility Models: 
- Weak, Eventual, Partitioned Strict, Global Strict

Example Scenarios: 5 routines are initiated simultaneously on 4 devices
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R1:

R2:

R3:

3 Routines Initiated by User: 2 Routines triggered by other sensors:

R4:

R5:

(espresso)

(americano)

(vanilla)

(strawberry)

(plain)

(living room) (living room)

(kitchen)

Coffee 
Maker

Pancake 
Maker

Vacuum Mopper

coffee maker

pancake maker

vacuum

mopper



Weak Visibility (WV) Model -- Status Quo

Strategy:
- Execute routine immediately when triggered
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R1 R1

R2 R2

R3

R4 R4

R5

Insertion 
time

time

Parallel Execution

Two commands send 
simultaneously to one 
device may cause errors.

Finish in 2 time units

coffee maker

pancake maker

vacuum

mopper



Global Strict Visibility (GSV) Model

Strategy:
- Execute at most one routine at a time

- Strongest Visibility Model
- Example Usage: resource constrained environment: 

- e.g. 1000-watt max supply <  coffee maker 600W + pancake maker: 600W
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R1 R1 R2 R2 R3 R4 R4 R5

Insertion 
time

time

Finish in    time units8

coffee maker

pancake maker

vacuum

mopper



Partitioned Strict Visibility (PSV) Model

Strategy:
- Routines touching disjoint devices do not block each other

- Useful when routines need to execute without interference through 
duration.

- Might still takes long with long running routines.
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R1 R1 R2 R2 R3

R4 R4 R5

Insertion 
time

time

Parallel Execution

Finish in 5 time units



Eventual Visibility (EV) Model

Strategy:
- Routines can concurrently execute without violating some serial order.
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R1 R1

Insertion 
time

time

R2 R2

R3

R4 R4

R5

Parallel Execution

Equivalent end state to: 
R3 –> R1 –> R2 –> R5 –> R4

Finish in time units3



Eventual Visibility (EV) Model

Strategy:
- Routines can concurrently execute without violating some serial order.
- Each routine holds the locks for devices it touches (but can lease the lock).
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central device
(e.g. hub)

Pre-lease

Post-lease



Eventual Visibility (EV) - Post-Lease

Post-lease:
- If a routine is done with a device D, it can post-lease D’s lock to another 

routine.
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Serial order:
lessor –> lessee
(  R1 –> R2  )

R1 R1

Insertion 
time

time

R2 R2

R1 will be done 
with coffee maker

post-
lease



Eventual Visibility (EV) - Pre-Lease

Pre-lease:
- If a routine has acquired the lock but not accessed a device D, it can pre-

lease D’s lock to another routine.
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R1 R1

Insertion 
time

time

R2 R2

R3

R1 will start to
access pancake 
maker

pre-
lease

Serial order:
lessee –> lessor
(  R3 –> R1  )



Eventual Visibility (EV)

EV finishes routine 
- with short wait and provides serial equivalence
- with higher temporary incongruence: intermediate state is not serially equivalent 
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R1 R1

Insertion 
time

time

R2 R2

R3

pancake and coffee maker 
can not be both ON under 
any serial order

Finish in 3 time units



Eventual Visibility (EV) - Lineage Table

Lineage Table: SafeHome's plan of which routine will access which device.
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R1[A] R2[S]

R3[A] R1[L] R2[S]

R4[A]

R5[R] R4[A]

[A]: Get lock Access
[S]: Routine Scheduled
[L]: Lock Leased out
[R]: Lock Released

Scheduling plan placement:

- Placed when routine is triggered
- Use backtracking for valid

placement
- Explore two other policies (FCFS, 

JiT)



Failure Serialization and Rollback

Device might fail:
- Rollback? Try to serialize the failure/restart event!
- If the failed device is not touched by the routine:

- Arbitrary Serial Equivalence order

- If device fails/restarts after the last touch: 
- Routine –> Fail/Restart Serial Equivalence order

- If device fails/restarts before the first touch: 
- Fail/Restart –> Routine Serial Equivalence order

- If device fails/restarts during the touch:
- Rollback routine
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R1 R1

Start
Execution

timeand/or and/orand/orand/or

R1 –> Failure –> RestartFailure –> Restart –> R1



SafeHome Implementation

Implementation 
- ~2k line of Java code
- Support long running routine expression (JSON)
- Popular Smart Device integration (TP-link, Wemo)

Experiment Setup
- Deployment & Simulation
- Real-world Benchmark 

- Derived from IoTBench Test Suite
- Morning, Party, Factory Scenario

- Workload-Driven
- Average of 500k runs
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Real-World Benchmark
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EV is serially equiva-

lent, but WV not

EV is almost as fast as

status quo (WV)

EV has temporary 

incongruence 

comparable to WV

Temporary Incongruence: the ratio of time when intermediate state is not serially equivalent. 
Final Incongruence: the ratio of runs that end up in an incongruent state.



Workload Evaluation -- Pre/Post-Lease
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High Latency, Zero Temporary Incongruence

Low Latency, High Temporary Incongruence

Pre/Post leases reduce the E2E latency (user-facing metrics) with the cost of 

Temporary Incongruence



Takeaways

- Safehome is a first step to provide reliability from routine level exection

- SafeHome provides four Visibility Models (WV, EV, PSV, and GSV)

- Eventual Visibility (EV) model provides the best of both worlds, with: 
- Good user-facing responsiveness (0 - 23.1%) 
- Strongest end state congruence equivalent guarantee (as GSV)

- Lock-leasing improves latency by 1.5X - 4X
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Trade-off b/w incongruence vs. latency while 
guaranteeing serial-equivalence



Discussion & Questions

● Think of a simpler scheme than early lock acquisition and lease?
● What happens when SafeHome fails?
● Paper discuss fail-stop failures

○ Can we reason about byzantine failures? Why or why not?

● The paper discussed reliability but what about availability?
○ Wait for next paper → Rivulet


