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Input-Adaptive On-Device Deep Learning
for Efficient Mobile Vision
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On Device Video Analytics
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The Tradeoff
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You Can’t Always Get What You
Want




The Challenge

Fact 1: Edge devices have limited
compute resources and battery capacity. 4

Fact 2: DNNs are computation-expensive
with high energy consumption.



An Observation o)

Some video
frames are easier
to recognize than

others.
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- Multiple Independent
Chameleon (2018) Model Variants

- Large Memory Footprint
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- Cloud Assisted
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- Model Compression

- Catalog of Models



Related Work ?

- Single Model with Early
EXxits

- Execute on the device

BranchyNet (2016)
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Key Contribution

FlexDNN finds an optimized answer to the
questions:

« How much compute should | spend checking

early exits?

« When and where in the neural network should |
check?
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Easier Harder Harder Easier

Optimal Model is Optimal Model is Optimal Model is Optimal Model is
Smaller Larger Larger Smaller



The Inefficiency
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3. FlexDNN Design



Architecture
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Architecture
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A Dilemma

How big should the Early Exit Neural Network be?

Too small and we cannot
catch as many relatively
easy images

Too BIG and we add
significant overhead for
relatively hard images.




An Answer
How big should the Early Exit Neural Network be?

Answer: Use an Architecture Search Schema and find out

FlexDNN prunes an over-parameterized network until the optimal
network architecture is found




A Dilemma

When and where should the Early Exits Be?

Too few and you miss
opportunities for
performance improvement.

Too Many and you incur
large overheads without
significant benefit.




An Answer

When and where should the Early Exits Be?

Answer: They should not be inserted when the overhead is greater
than the benefit.
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3. FlexDNN Design



4. Evaluation
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Model Evaluation

High Early Exit Rate without
Accuracy Loss

Compact Memory Footprint

Computation-Efficient Early
EXits

High Computational
Consumption Reduction



Model Evaluation
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Model Evaluation

Bag-of-models

Compact Memory Footprint
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Model Evaluation

Computation-Efficient Early
EXits

Computational Cost
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Model Evaluation

High Computational
Consumption Reduction

Computational Cost
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Runtime Evaluation

Accuracy and Compute

Frame Drop Rate



Runtime Evaluation

Accuracy and Compute
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Runtime Evaluation
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4. Evaluation



The Tradeoff
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Key Contribution

FlexDNN finds an optimized answer to the
questions:

« How much compute should | spend checking

early exits?

« When and where in the neural network should |
check?




Discussion




* Quantified the Problem. Gathered  Narrowly Applicable. Not

data to show the inefficiencies. iInherently bad, just less interesting.
 Broadly Tested. Multiple models  Created own small datasets. Less
and datasets. trustworthy than larger datasets.

 User Friendly. You don’t need to
be a DNN wizard to use this.
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Any Questions?




What other domains could benefit from this
technique? They focused exclusively on

video processing...




How long do we think this technique will

remain relevant?




