
Feather : Hierarchical Querying for
the edge

Seyed Hossein, Mohammad Salehe

Moshe Gabel, Eyal de Lara

University Of Toronto

Data on the Edge

• Data is generated over a wide geographic
area
• Is stored near the edges
• Pushed periodically upstream to a hierarchy of

data centres

• Network properties:
• Limited bandwidth
• High latency
• Failures

• Observation: Queries in general are less latency
sensitive as you move away from the edge

Feather - Overview

• Allows users to intelligently control the
trade-off between data freshness and
query answer latency.

• Users can specify precise freshness
constraint for each individual query, or
alternatively a deadline for the answer.

• Applications : Urban sensing, Smart grid,
Industrial automation etc.

Terminology

• Local v/s Global Queries :
• Local queries are fast reads and writes executed directly on the high-performance local

data store
• Global queries are on-demand read queries that provide user-specified freshness

guarantees

• User provides minimum freshness requirement - Laxity
• System guarantees answer is at least as fresh – Staleness = Ta – Tf
• Latency = Ta - Tq

Example – Trade-off b/w Laxity and Latency

Answering Global Queries

Providing Latency guarantees

• Latency guarantee is achieved by treating nodes that did not respond
in time as failed links.

• Modification to the Algorithm :
• When a node receives query with a deadline, it decreases the deadline and

sends this to the child to make some headroom for processing delays etc.

• Additionally it queries the child data present on local store. This result is used
when the child does not return result within the deadline.

DEADLINE = 150

Result Set Coverage
• Feather provides analytical information on

• how many nodes participated in the querying process,

• how many data rows were included in the query

• an estimate of the number of updated data rows that were not included in
the query due to freshness constraints or link errors.

Handling Failures

• If a link to a child that must be queried has failed or a sub-query
timed-out, then we cannot provide the freshness guarantee for that
particular query.

• Feather provides either:
• A complete but less fresh answer that includes old results for the missing

child. (Tf < Tq – L)

• Or a partial but up-to-date answer. (Tf > Tq – L)

Architecture

Writes & Replication

• User applications write data directly to the Feather local store at the
node they are running at.

• To support replication and querying, the following columns are added
to the client applications’ schema, and added to user writes by a
client side driver:
• a timestamp column;

• a Boolean dirty

• a prev_loc that determines from which node the row was received from.

• Push daemon reads dirty rows and pushes up the hierarchy.

Global Queries

• Uses Cassandra for persistent local storage.

• Supports almost all features provided by CQL, specifically all
aggregate functions (*, MAX, MIN, AVG, COUNT, SUM) and most
clauses (WHERE, GROUP BY, ORDER, LIMIT, DISTINCT)

• IN Clause – Materialised view.

• Can query on data from specific children.

Evaluation

• Metrics:
• Latency : Ta−Tq.

• Staleness : Ta − Tf .

• Bandwidth: total number of rows sent over all links in the edge network.

• Work at edges: average number of rows retrieved from edge nodes

• Coverage estimation accuracy: estimate how many data rows were needed to
answer the query

Experimental Setup

• New York Taxi Dataset - 7 million rides. Contains geo-distributed labelled data (pick-up and drop-off
zones), as well as information such as fare amount etc.

• When inserting data rows, row’s drop-off zone is used to determine which edge node to add it to. The
dataset contains 265 such geographical zones.

• Issue 3 queries(SELECT, MIN, GROUPBY) on the data, all filtered to a window of the last 90 seconds of
real time. (45 min real time)

Results

• Feather is run for 18000 seconds approx. 1
week real time.

• Fig 1 shows the number of rows covered by the
90 second window in each such query

• Every second, one query is issued with laxity set
between 0 and (D − 1) · f where D is the depth
of the topology and f is the period of the push
demon.

Results

Trade-off b/w latency and staleness depends on query laxity, network topology, period of the push demon
and data update distribution among the edges.

Results

Deep Medium Wide Deep Medium Wide

Real world Experiment
• geo-tagged public tweets is

used as dataset
• Run over 33000 queries at a

rate of 1 query per second,
and set the push daemon
period to f = 30 seconds.

Discussion

• Are Adhoc queries more frequent than repetitive queries?

• Is disjoint data assumption valid?

• How to handle deletions?

• Downstream data?

