Towards Scalable Edge-Native Applications

Junjue Wang Carnegie Mellon University junjuew@cs.cmu.edu

Roger Iyengar Carnegie Mellon University raiyenga@cs.cmu.edu Ziqiang Feng Carnegie Mellon University zf@cs.cmu.edu

Padmanabhan Pillai

Intel Labs

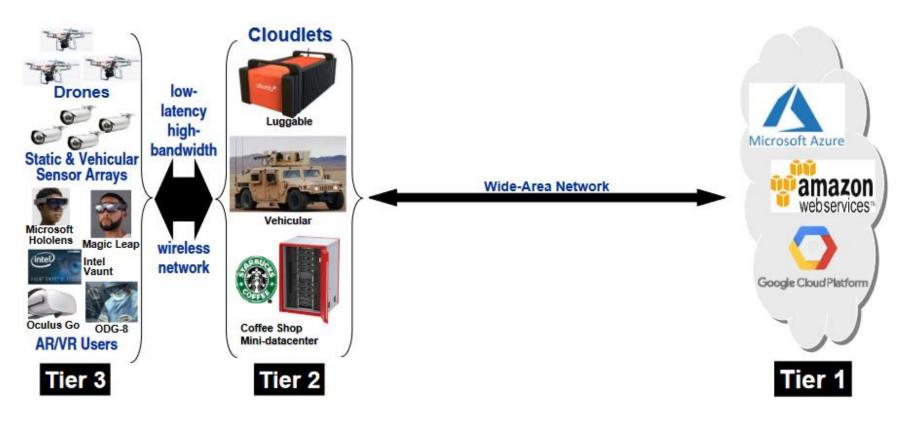
padmanabhan.s.pillai@intel.com

Shilpa George Carnegie Mellon University shilpag@cs.cmu.edu

Mahadev Satyanarayanan Carnegie Mellon University satya@cs.cmu.edu

About the Authors

- Junjue Wang (Received PhD from Carnegie Mellon University) junjuew@cs.cmu.edu, https://junjuew.github.io/
- Ziqiang Feng (PhD candidate, Carnegie Mellon University) <u>zf@cs.cmu.edu</u>, https://fzqneo.github.io/
- Shilpa George (PhD candidate, Carnegie Mellon University) shilpag@cs.cmu.edu, https://a4anna.github.io/
- Roger Iyengar (PhD candidate, Carnegie Mellon University) <u>raiyenga@cs.cmu.edu</u>, https://rogeriyengar.com/
- Padmanabhan Pillai (Senior Research Engineer, Intel Labs) padmanabhan.s.pillai@intel.com, https://www.andrew.cmu.edu/user/pspillai/
- Mahadev Satyanarayanan (Carnegie Group Professor of Computer Science, Carnegie Mellon University) <u>satya@cs.cmu.edu</u>, https://www.cs.cmu.edu/~satya/

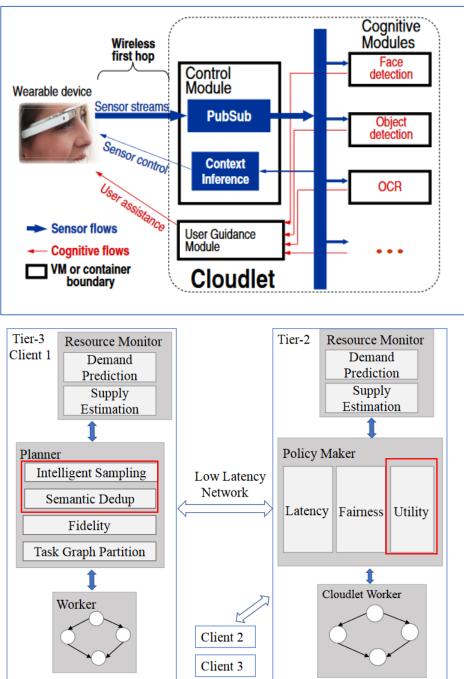

Overview

Background

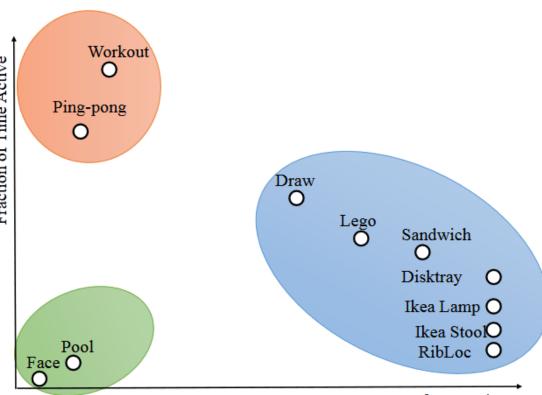
- Edge Native
- Scalable Gabriel
- Optimizations
 - Workload Reduction
 - Adaptive Sampling
 - IMU (Inertial measurement unit)-based Passive Phase Suppression
 - Resource Allocation
- Evaluation
 - Workload Reduction
 - Resource Allocation
 - Latency with both optimizations

Edge Native

Unlike cloud ("Tier 1"), compute resources limited at the edge ("Tier 2")



Edge Native


- Unlike cloud ("Tier 1"), compute resources limited at the edge ("Tier 2")
 - Only 2 options to scale:
 - 1. Workload reduction: clients reduce the amount of data sent to edge servers
 - 2. Resource allocation: edge server favors important jobs
- Edge Native: application needs to support option 1
- Work reduction is application specific
- Focus on Wearable Cognitive Assistance:
 - 1. Large amount of data
 - 2. Latency requirement
 - 3. High compute requirement
 - Use GPUs on edge server for DNNs
 - Care about keeping latency (consistently) low

Scalable Gabriel

- Platform for Wearable Cognitive Assistance
- Gabriel: Single user
 - Client sends data to edge server
 - Edge server sends instructions to client
- Scalable Gabriel: Multi user
 - Resource monitors at client and server
 - Edge server Policy Maker module
 - Decides resource allocation
 - Client Planner module
 - Applies workload reduction

Gabriel Applications

Importance of Instructions

Applications have different properties and requirements

	Question	Example	Load-reduction Technique
1	How often are instructions given, com-	Instructions for each step in IKEA lamp assembly	Enable adaptive sampling based on
	pared to task duration?	are rare compared to the total task time, e.g., 6	active and passive phases.
		instructions over a 10 minute task.	
2	Is intermittent processing of input	Recognizing a face in any one frame is sufficient	Select and process key frames.
	frames sufficient for giving instructions?	for whispering the person's name.	
3	Will a user wait for system responses	A first-time user of a medical device will pause	Select and process key frames.
	before proceeding?	until an instruction is received.	
4	Does the user have a pre-defined	Lego pieces are assembled on the lego board. In-	Focus processing attention on the re-
	workspace in the scene?	formation outside the board can be safely ignored.	gion of interest.
5	Does the vision processing involve iden-	Identifying a toy lettuce for a toy sandwich.	Use tracking as cheap approximation
	tifying and locating objects?		for detection.
6	Are the vision processing algorithms in-	Many image classification DNNs limit resolu-	Downscale sampled frames on de-
	sensitive to image resolution?	tions to the size of their input layers.	vice before transmission.
7	Can the vision processing algorithm	In image classification, MobileNet is computa-	Change computation fidelity based
	trade off accuracy and computation?	tionally cheaper than ResNet, but less accurate.	on resource utilization.
8	Can IMUs be used to identify the start	User's head movements are of significantly higher	Enable IMU-based frame suppres-
	and end of user activities?	magnitude when searching for a Lego block.	sion.
9	Is the Tier-3 device powerful enough to	A Jetson TX2 can run MobileNet-based image	Partition the vision pipeline between
	run parts of the processing pipeline?	recognition in real-time.	Tier-3 and Tier-2.

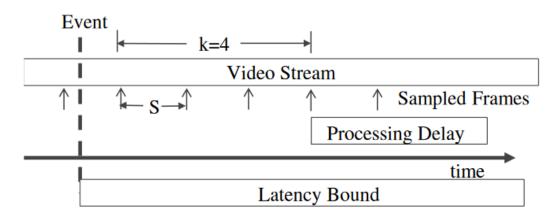
Applications provide Policy Maker description of some of its properties/requirements for resource allocation

Overview

- Background
 - Edge Native
 - Scalable Gabriel

Optimizations

- Workload Reduction
 - Adaptive Sampling
 - IMU (Inertial measurement unit)-based Passive Phase Suppression
- Resource Allocation
- Evaluation
 - Workload Reduction
 - Resource Allocation
 - Latency with both optimizations

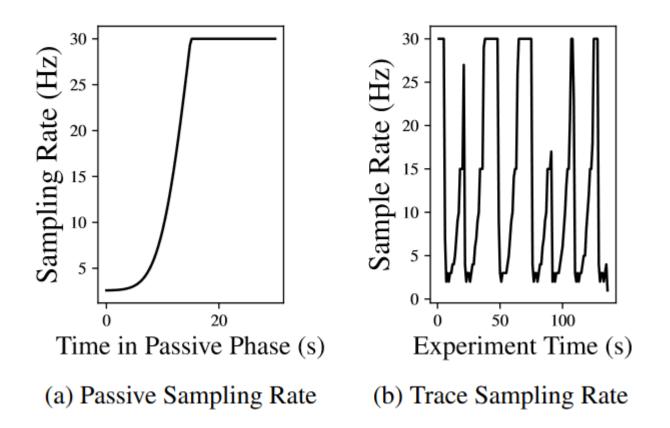

Adaptive Sampling

- Idea: Decrease sampling rate when user is acting on instruction
- Time to finish after instruction: Gaussian distribution from maximum likelihood estimation
 - Need data to find this
- At time t after sending an instruction, sampling rate (sr) is:

 $sr = min_sr + \alpha * (max_sr - min_sr) * cdf_Gaussian(t)$

- max_sr: constant
- min_sr: minimum sampling rate that meets latency requirements
 - Depends on k frames in each sample (constant set empirically)
- α : constant, determines how fast we return to active rate
- cdf_Gaussian: probability user has finished by t

Adaptive Sampling



• At time t after sending an instruction, sampling rate (sr) is:

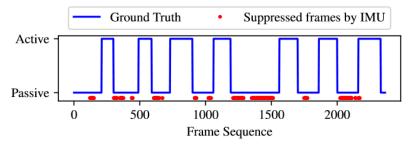
 $sr = min_sr + \alpha * (max_sr - min_sr) * cdf_Gaussian(t)$

- max_sr: constant
- min_sr: minimum sampling rate that meets latency requirements
 - Depends on k frames in each sample (constant set empirically)
- α : constant, determines how fast we return to active rate
- cdf_Gaussian: probability user has finished by t

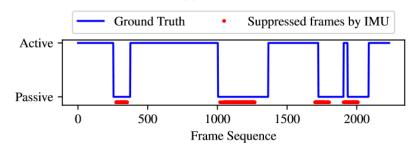
Adaptive Sampling

Adaptive sampling increases the sampling rate to the maximum during a passive phase

Trace	Sample	Adaptive
mace	Half Freq	Sampling
1	50%	25%
2	50%	28%
3	50%	30%
4	50%	30%
5	50%	43%


(a) Percentage of Frames Sampled

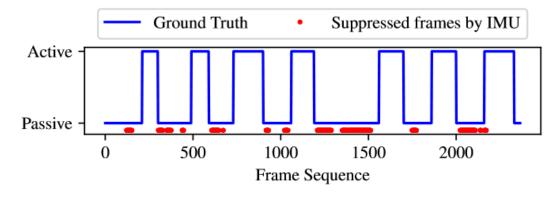
	Guidance Delay
	(frames±stddev)
Sample Half Freq	7.6 ± 6.9
Adaptive Sampling	5.9 ± 8.2


Adaptive sampling reduces latency and percentage of frames sampled on a trace of the LEGO application

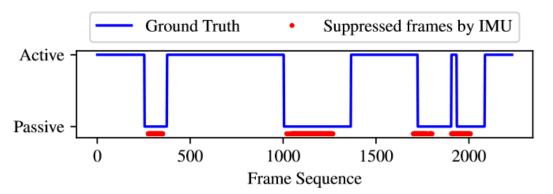
IMU-based Passive Phase Suppression

- Idea: Don't need to send frames to edge server when user is inactive
 - PING PONG: user not in a rally
 - LEGO: user looking for a piece
- 6 dimensions: 3 axes of rotation and 3 axes of acceleration
- SVM predicts active/passive state

(a) LEGO


	Suppressed	Max Delay of
	Passive Frames (%)	State Change Detection
Trace 1	17.9%	0
Trace 2	49.9%	0
Trace 3	27.1%	0
Trace 4	37.0%	0
Trace 5	34.1%	0

(a) LEGO


	Suppressed	Loss of
	Passive Frames (%)	Active Frames (%)
Trace 1	21.5%	0.8%
Trace 2	30.0%	1.5%
Trace 3	26.2%	1.9%
Trace 4	29.8%	1.0%
Trace 5	38.4%	0.2%

(b) PING PONG

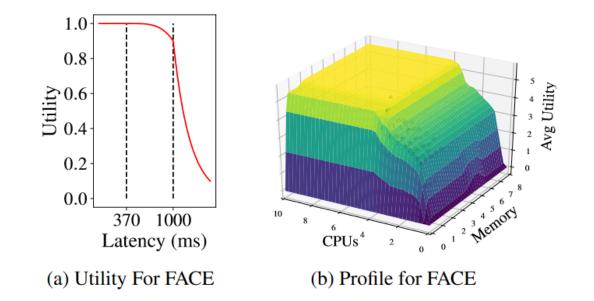
IMU-based Passive Phase Suppression

(a)	LEGO
(~)	

(b) PING PONG
Most of the suppressed frames are passive
frames

	Suppressed	Max Delay of
	Passive Frames (%)	State Change Detection
Trace 1	17.9%	0
Trace 2	49.9%	0
Trace 3	27.1%	0
Trace 4	37.0%	0
Trace 5	34.1%	0

(a) LEGO


	Suppressed	Loss of
	Passive Frames (%)	Active Frames (%)
Trace 1	21.5%	0.8%
Trace 2	30.0%	1.5%
Trace 3	26.2%	1.9%
Trace 4	29.8%	1.0%
Trace 5	38.4%	0.2%

(b) PING PONG

LEGO is unaffected and PING PONG loses 0-2% of active frames

Resource allocation

- Idea: Maximize total utility (sum of utility for each application)
- Each application defines utility function in terms of system metrics (latency)
- Each frame has a utility in [0, 1]
- Profile application with different CPU and memory allocation
 - I think "Avg Utility" in Profiles has units utility per second

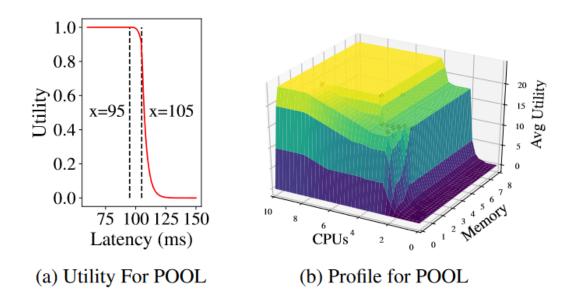
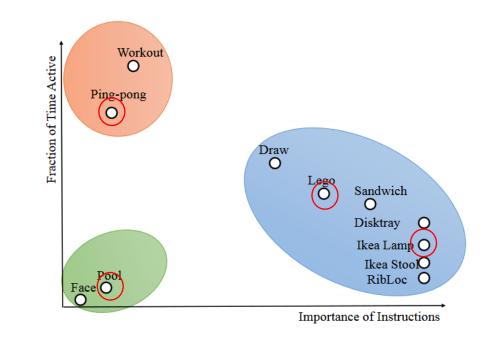


Figure 11: POOL Application Utility and Profile


Resource allocation

- a: an application in {FACE, LEGO, PING PONG, POOL, . . . },
- ua: utility of an application (from profile)
- ra: vector of resources for application
- r hat: vector of total resources
- ca: number of clients for application a
- ka: number of instances of application a
- γ: maximum utility per application, trades off fairness and total utility

 $\max_{\{k_a, \mathbf{r}_a\}} \sum_{a} k_a \cdot u_a(\mathbf{r}_a)$ s.t. $\sum_{a} k_a \cdot \mathbf{r}_a \preccurlyeq \hat{\mathbf{r}}$ $0 \preccurlyeq \mathbf{r}_a \quad \forall a$ $k_a \cdot u_a(\mathbf{r}_a) \le \gamma \cdot c_a \quad \forall a$ $k_a \in \mathbb{Z}$

Evaluation

- 5 applications
 - FACE, PING PONG, LEGO, POOL, and IKEA
- Workload Reduction
 - 4 Nexus 6 mobile phone clients
 - PING PONG, LEGO, POOL
 - 2, 4, 6, and 8 cores on edge server
- Resource Allocation
 - 8 physical cores, 16GB memory for cloudlet resources
 - 15 to 40 clients
- Latency
 - 20 (4 clients per app), 30 (6 clients per app), and 40 (8 clients per app) clients
 - Pre-recorded video traces with random starting points

Evaluation: Workload Reduction

- Scalable Gabriel: Workload Reduction only
- Original Gabriel: Baseline
- Same number of active frames
- Original Gabriel receives more unnecessary passive frames

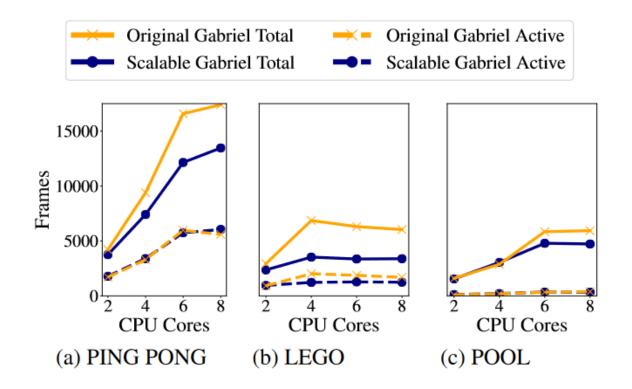
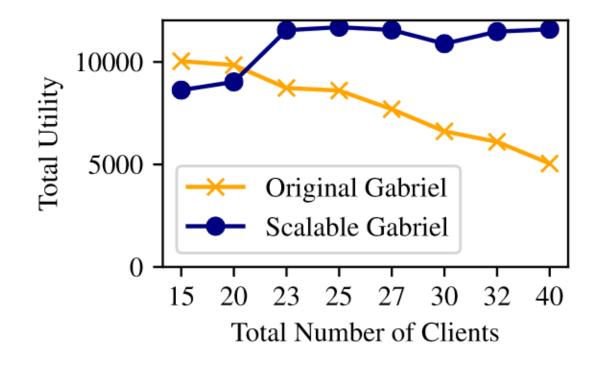
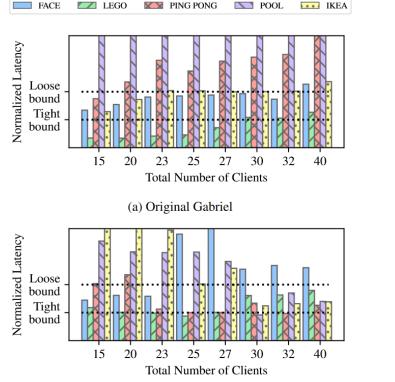
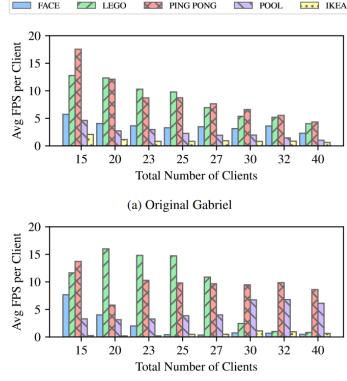



Figure 12: Effects of Workload Reduction


Evaluation: Resource Allocation

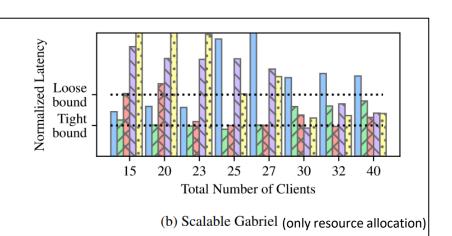
- Scalable Gabriel: Resource allocation only
- Original Gabriel: Baseline
- Utility of Scalable Gabriel not affected by increasing number of clients
 - Not clear why utility it starts off lower
- Original Gabriel drops to 40% of starting utility

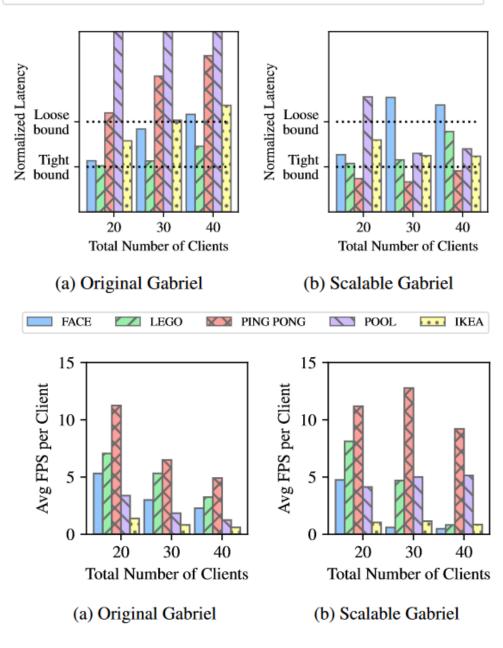


Evaluation: Resource Allocation

- Scalable Gabriel: Resource allocation only
- Original Gabriel: Baseline
- 90th percentile latency lower overall for Scalable Gabriel
- Scalable Gabriel able to prioritize high FPS for PING PONG and POOL with increasing number of clients

(b) Scalable Gabriel

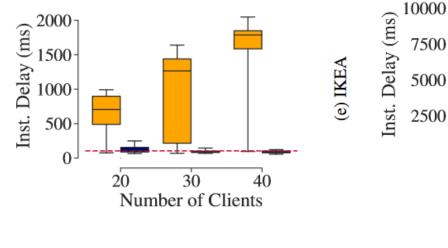


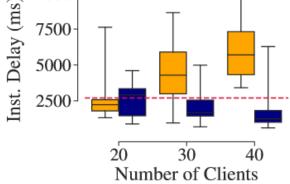

(b) Scalable Gabriel

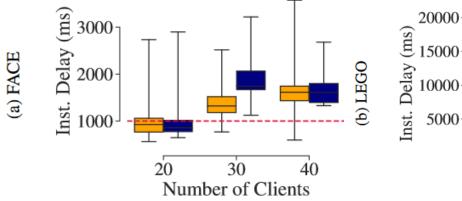
| FACE 🔽 LEGO 🔽 PING PONG 💽 POOL 🛄 IKEA

Evaluation: Latency

- Scalable Gabriel: Both Workload Reduction and Resource Allocation
- Original Gabriel: Baseline
- Using both workload and resource allocation better than just resource allocation (PING PONG 40 latency)

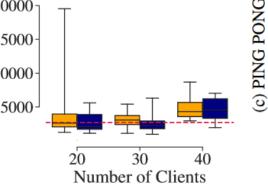


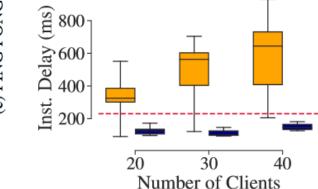



Evaluation: Latency

- Scalable Gabriel: Both Workload Reduction and Resource Allocation
- Original Gabriel: Baseline
- Generally lower latency for more latency sensitive applications

Latency Bound





Original Gabriel

Scalable Gabriel

(d) POOL

Positive/Negative Points

Positive

- Evaluated against baseline Gabriel using recorded video traces
- Strategy can be changed (can use different metric instead of total utility for resource allocation, fairness parameter gamma in utility)

Negative

- Relies on applications to provide a reasonable metric (ex. utility function)
- Not much evaluation of whether the loss of active frames in PING PONG affects results

Discussion

- Is there a simple way to relax the benevolent and cooperative assumption?
- How can we modify the system to prioritize more important applications?
- Information (e.g. the profile) needs to be sent to the cloudlet before running the application. Is this realistic?