

About the Authors

• Junjue Wang (Received PhD from Carnegie Mellon University)
junjuew@cs.cmu.edu, https://junjuew.github.io/

• Ziqiang Feng (PhD candidate, Carnegie Mellon University)
zf@cs.cmu.edu, https://fzqneo.github.io/

• Shilpa George (PhD candidate, Carnegie Mellon University)
shilpag@cs.cmu.edu, https://a4anna.github.io/

• Roger Iyengar (PhD candidate, Carnegie Mellon University)
raiyenga@cs.cmu.edu, https://rogeriyengar.com/

• Padmanabhan Pillai (Senior Research Engineer, Intel Labs)
padmanabhan.s.pillai@intel.com,
https://www.andrew.cmu.edu/user/pspillai/

• Mahadev Satyanarayanan (Carnegie Group Professor of Computer
Science, Carnegie Mellon University)
satya@cs.cmu.edu, https://www.cs.cmu.edu/~satya/

mailto:junjuew@cs.cmu.edu
mailto:zf@cs.cmu.edu
mailto:shilpag@cs.cmu.edu
mailto:raiyenga@cs.cmu.edu
mailto:padmanabhan.s.pillai@intel.com
mailto:satya@cs.cmu.edu

Overview

• Background
• Edge Native
• Scalable Gabriel

• Optimizations
• Workload Reduction

• Adaptive Sampling
• IMU (Inertial measurement unit)-based Passive Phase Suppression

• Resource Allocation

• Evaluation
• Workload Reduction
• Resource Allocation
• Latency with both optimizations

Edge Native

• Unlike cloud (“Tier 1”), compute resources limited at the edge (“Tier
2”)
• Only 2 options:
1. Reduce the amount of work given to edge servers
2. Improve scheduling

• Edge Native: application needs to support option 1

• Work reduction is application specific

• Focus on Wearable Cognitive Assistance:
1. Large amount of data
2. Latency requirement
3. High compute requirement

Edge Native

• Unlike cloud (“Tier 1”), compute resources limited at the edge (“Tier
2”)
• Only 2 options to scale:
1. Workload reduction: clients reduce the amount of data sent to edge servers
2. Resource allocation: edge server favors important jobs

• Edge Native: application needs to support option 1

• Work reduction is application specific

• Focus on Wearable Cognitive Assistance:
1. Large amount of data
2. Latency requirement
3. High compute requirement

• Use GPUs on edge server for DNNs

• Care about keeping latency (consistently) low

Scalable Gabriel

• Platform for Wearable Cognitive Assistance

• Gabriel: Single user
• Client sends data to edge server

• Edge server sends instructions to client

• Scalable Gabriel: Multi user
• Resource monitors at client and server

• Edge server Policy Maker module
• Decides resource allocation

• Client Planner module
• Applies workload reduction

Gabriel Applications

Applications have different properties
and requirements

Applications provide Policy Maker
description of some of its
properties/requirements for
resource allocation

Overview

• Background
• Edge Native
• Scalable Gabriel

• Optimizations
• Workload Reduction

• Adaptive Sampling
• IMU (Inertial measurement unit)-based Passive Phase Suppression

• Resource Allocation

• Evaluation
• Workload Reduction
• Resource Allocation
• Latency with both optimizations

Adaptive Sampling

• Idea: Decrease sampling rate when user is acting on instruction

• Time to finish after instruction: Gaussian distribution from maximum
likelihood estimation
• Need data to find this

• At time t after sending an instruction, sampling rate (sr) is:

• max_sr: constant
• min_sr: minimum sampling rate that meets latency requirements

• Depends on k frames in each sample (constant set empirically)

• α: constant, determines how fast we return to active rate
• cdf_Gaussian: probability user has finished by t

Adaptive Sampling

• Idea: Decrease sampling rate when user is acting on instruction

• Time to finish after instruction: Gaussian distribution from maximum
likelihood estimation
• Need data to find this

• At time t after sending an instruction, sampling rate (sr) is:

• max_sr: constant
• min_sr: minimum sampling rate that meets latency requirements

• Depends on k frames in each sample (constant set empirically)

• α: constant, determines how fast we return to active rate
• cdf_Gaussian: probability user has finished by t

Adaptive Sampling

Adaptive sampling increases the sampling rate to
the maximum during a passive phase

Adaptive sampling reduces latency
and percentage of frames sampled
on a trace of the LEGO application

IMU-based Passive Phase Suppression

• Idea: Don’t need to send frames to edge server when user is inactive
• PING PONG: user not in a rally
• LEGO: user looking for a piece

• 6 dimensions: 3 axes of rotation and 3 axes of acceleration

• SVM predicts active/passive state

IMU-based Passive Phase Suppression

Most of the suppressed frames are passive
frames

LEGO is unaffected and PING PONG loses
0-2% of active frames

Resource allocation

• Idea: Maximize total utility (sum
of utility for each application)

• Each application defines utility
function in terms of system
metrics (latency)

• Each frame has a utility in [0, 1]

• Profile application with different
CPU and memory allocation
• I think “Avg Utility” in Profiles has

units utility per second

Resource allocation

• a: an application in {FACE,
LEGO, PING PONG, POOL, . . . },

• ua: utility of an application (from
profile)

• ra: vector of resources for
application

• r hat: vector of total resources
• ca: number of clients for

application a
• ka: number of instances of

application a
• γ: maximum utility per application,

trades off fairness and total utility

Evaluation

• 5 applications
• FACE, PING PONG, LEGO, POOL, and IKEA

• Workload Reduction
• 4 Nexus 6 mobile phone clients
• PING PONG, LEGO, POOL
• 2, 4, 6, and 8 cores on edge server

• Resource Allocation
• 8 physical cores, 16GB memory for cloudlet resources
• 15 to 40 clients

• Latency
• 20 (4 clients per app), 30 (6 clients per app), and 40 (8 clients per app) clients
• Pre-recorded video traces with random starting points

Evaluation: Workload Reduction

• Scalable Gabriel: Workload
Reduction only

• Original Gabriel: Baseline

• Same number of active frames

• Original Gabriel receives more
unnecessary passive frames

Evaluation: Resource Allocation

• Scalable Gabriel: Resource
allocation only

• Original Gabriel: Baseline

• Utility of Scalable Gabriel not
affected by increasing number of
clients
• Not clear why utility it starts off

lower

• Original Gabriel drops to 40% of
starting utility

Evaluation: Resource Allocation

• Scalable Gabriel: Resource
allocation only

• Original Gabriel: Baseline
• 90th percentile latency

lower overall for Scalable
Gabriel

• Scalable Gabriel able to
prioritize high FPS for PING
PONG and POOL with
increasing number of clients

Evaluation: Latency

• Scalable Gabriel: Both Workload
Reduction and Resource Allocation

• Original Gabriel: Baseline

• Using both workload and resource
allocation better than just resource
allocation (PING PONG 40 latency)

(only resource allocation)

Evaluation: Latency

• Scalable Gabriel: Both Workload
Reduction and Resource Allocation

• Original Gabriel: Baseline

• Generally lower latency for more
latency sensitive applications

Positive/Negative Points

Positive

• Evaluated against baseline
Gabriel using recorded video
traces

• Strategy can be changed (can
use different metric instead of
total utility for resource
allocation, fairness parameter
gamma in utility)

Negative

• Relies on applications to provide
a reasonable metric (ex. utility
function)

• Not much evaluation of whether
the loss of active frames in PING
PONG affects results

Discussion

• Is there a simple way to relax the benevolent and cooperative
assumption?

• How can we modify the system to prioritize more important
applications?

• Information (e.g. the profile) needs to be sent to the cloudlet before
running the application. Is this realistic?

