
EdgeML: An AutoML

Framework for Real-Time

Deep Learning on the Edge
ZHIHE SHAO, KAI WANG, NEIWEN LING AND GOULIAN XING

About the Authors

 Zhihe Zhao

 B.S in Computer Science from University of Liverpool

 Ph.D Candidate at Duke University in Electrical Engineering

 Kai Wang

 Ph.D Candidate at the Chinese University of Hong Kong

 Neiwen Ling

 Ph.D Candidate at the Chinese University of Hong Kong

 Guoliang Xing

 Professor in the Department of Information Engineering at the
Chinese University of Hong Kong

 Received his doctorate in 2006 from Washington University of St.
Louis

Zhihe Zhao Neiwen Ling

Guolian Xing Kai Wang

What is Machine Learning

What is a Neural Network (high level)

 Data is input into the network and a prediction is the output

 Goal is to find weight parameters (W) that fit a training set that consist of

inputs and their corresponding labels

 Intermediate activations are created in the different layers which lead to a

prediction

 Predictions are not always correct, so errors are backpropagated into the

model via weight gradients

 Many passes through input data set necessary for training

 DNN => Neural net with many hidden layers implemented

TRY ME

https://www.cs.ryerson.ca/~aharley/vis/conv/

Quick Definitions

 Reinforcement Learning:

 Systems take action in order to maximize the notion of a cumulative reward

 Good action is rewarded, bad action is not

 Offline Learning vs. Online Learning:

 Online learning is training as the data comes in while offline is working off of an
existing data set

 AutoML:

 “an emerging paradigm that aims to automate the pipeline of DNN design”

 More generally I think of it is as the automatic application of machine learning
onto other machine learning

What is Q-Learning?

 A reinforcement learning technique used for learning the optimal policy in
a Markov Decision Process

 Markov Decision Process:

 Provides a mathematical framework for modeling decision making in situations
where outcomes are partly random and partly under the control of a decision
make

 Model-Free Learning

 Meaning it can derive an optimal policy directly from its interactions with the
environment

 Can utilize the Monte Carlo technique:

 Repeated random sampling to obtain numerical results

What is the topic

 There are an increasing number of data-

intensive & time critical IoT environments

 DNN needed to be deployed at the edge:

 Reduce latency to prediction

 Handle individualized data from their
deployment

 Some example applications include:

 Autonomous driving, embedded computer

vision and VR

What is the problem?

 DNN deployed at the edge must deal with two big problems:

1. Limited computational power (these are not large servers)

2. Dynamically changing environments make “one-size fits all” solutions

impractical

 What if we could use machine learning itself to assist in the machine

learning?

 The concept of a DNN that adapts to a dynamic runtime environment to

optimize itself for certain situations

Other Solutions

 There have been many studies and AutoML solutions proposed in which

the parameters of a DNN or another ML method can be tuned using

machine learning (ex)

 Model compression parameters

 Number of layers for a network

 Learning Rate

 Etc.

 What if instead of using AutoML to tune parameters, we instead use

AutoML to update the execution strategy of the DNN in real time?

EdgeML

An AutoML Framework
which provides flexible &

fine-grained DNN execution
control utilizing:

• Workload offloading
mechanisms

• Progressive Neural
Architecture

Goal:

• Achieve desirable
latency-accuracy-energy
system performance of
edge platforms

What is Workload Offloading

 Could break up the inputs

across the same DNN split

among many machines

 i.e. Many inputs, many

machine solution

 Could introduce pipelining

into the DNN where the

backpropogation for one

pass could be computed at

the sime time as the forward

propagation of the next pass

Credit: Generalized Pipeline DNN – Databricks

https://www.youtube.com/watch?v=ILBPCi6Il1U

What is Workload Offloading?

 This is NOT what is done in EdgeML

 EdgeML says that there is one edge device and

there is one cloud

 The cloud can compute much faster BUT it is at the

whim of communication bandwidth limitations

 EdgeML’s solution to workload offloading attempts

to find the right balance of local computation on

the edge and cloud offloading by dynamically

varying the partition point in the DNN to adapt to

the env

What is Progressive Neural Architecture

(PNA)

 Represents the ability to inject branches

into a neural network where early exit or

prediction is possible without having to go

through all layers

 Exploits the fact that different data has

different difficulty in characterization…

Not all data needs to go through all layers

of the NN

 (ex) Pixels in the middle right are strongly

indicative of a “3” or a “5” from previous

example

What can EdgeML Try and Vary?

 Where the DNN is partitioned for cloud offloading

 Where branches are inserted for PNA

 And the threshold values of these branches (i.e. what confidence is needed for

an early exit)

 Problem? Search Space can get very large (infinite) very quickly

 i.e. The VGG16 DNN used has:

 17 possible partition points

 3 possible branch points (for PNA)

 PNA branch thresholds continuously distributed between 0-1

Solution to

infinite

Search

Space?

 EdgeML applies a reinforcement learning algorithm (RL

Optimizer) to tune the execution policy based on the

past performance of the previous strategy or strategies

 Goal of the RL Optimizer is to MAXIMIZE accuracy while

limiting latency and energy usage

 Bias towards accuracy w/ an emphasis on meeting the

upper-bound requirements on latency and energy

Offline Stage

 The DNN is first transformed

into a Progressive Neural

Architecture by inserting

some base branches

 Possible model partitions are

manually selected from the

programmer

 Trained locally on some base

data dependent on its

deployment

Online Stage

 DNN Model executes based

on some initial parameters

 Performance data passed

back from system

 Data utilized by RL Optimizer

to derive a new Action or

Execution Policy

 Execution Policy re-applied to

system and REPEAT

Execution

Policy

Partition Location for Edge Offloading

Branch Placement for PNA

Policy Execution Time set

• Because any policy is at the whim of changing
communication bandwidth and input data, a
reasonable time must be achieved before we
re-visit changing the execution policy

• In their experiment it was a constant value
based on the necessary latency to compute
one epoch of image classification

Performance

Markers

 Performance of an execution policy is

passed back to the RL Optimizer to decide

the next execution policy

 Performance markers include:

 Latency

 Energy Consumption

 Bandwidth

 Accuracy

RL Optimizer (high level)

Goal

Goal of the RL Optimizer is to
decend the State Space
provided using the Action States

•Making decisions about how to define
the action state based on performance
of previous Execution Policies

State

State Space:

•Defined by the latency, energy
consumption and data transmission rate

Action

Action Space

•Defined by the Threshold values of all
branches

•Model partition point

•Action interval (time before re-
evaluating model)

*Tk is the number of tasks executed during

the state interval Ik*

How RL Optimizer Reacts

Scalability to New Devices

 Every new Edge Device does not need to
start from scratch with the RL-Optimizer
training

 Could do a direct transfer of an RL Optimizer
BUT:

 Slow as it is a large transfer size

 Bad idea as a new edge device will
have new challenges

 Instead, we can transfer the Markov
Decision Process and allow it to train itself

 i.e. Send our performance experience,
and the decisions we made at that time

Experiment

 Edge Device:

 NIVIDIA Jetson TX2 and NIVIDIA Jetson Nano

 Cloud Infra:

 Cluster of NIVIDIA GeForce GTX1070 and Intel I7
processor

 Developed EdgeML on top of tensor flow utilizing a 3-
layer model of two representative built in DNN models:

 VGG16

 ResNet50

 Used Wondershaper to simulate changing bandwidth

 Used variable images for classification as a means of
dynamically changing input

Results /

Performance

 Model Performance Applicability:

 How well does the model adapt to different DNN

 Bandwidth Applicability:

 How well does the model adapt to changing bandwidth

 Input variation Impact:

 How does the model handle changing inputs

Comparisons

 EdgeML

 Base Version

 EdgeML-T1

 Threshold values of all branches rounded down to match that of first branch

 EdgeML-TL

 Threshold values of all branches rounded up to match that of last branch

 Neurosurgeon

 Off the shelf DNN offloading mechanism

 MOEA

 A genetic algorithm to replace the RL Optimizer

Edge ML has better latency, but MOEA dominates in energy consumption

EdgeML fluctuates less to changing environments and can more quickly adapt

Overall Performance

 8x improvement in meeting user satisfaction

 i.e. meeting energy and latency requirements

 Sacrifices less than 0.2% accuracy

 The overhead of RL Optimizer only adds 2% computation which is easily

surmounted by the faster prediction times

Question

 Their fluctuations in the environment were fairly drastic, would it have been

more realistic to handle a slow change in environment?

 Like a slow losing of light or bandwidth slowly decreasing as more students enter

a classroom on the wifi

 What do you all think about the applicability of the EdgeML model on

general scenarios?

 Do you think this is a drag and drop solution to DNN or is this more tailored

towards the problems that the designed?

