
EdgeCompression: An 

Integrated Framework for 

Compressive Image 

Processing on CAVs
Sidi Lu, Xin Yuan, Weisong Shi



About the Authors

 Sidi Lu

 Ph.D. Candidate Wayne State University 

 Xin Yuan

 Video analysis and coding lead researcher in Bell Labs

 Received Ph.D. from Hong Kong Polytechnic University

 Weisong Shi

 Professor of Computer Science from Wayne State University

 Distinguished Faculty Fellow, IEEE Fellow, ACM 

Distinguished Scientist 



What is a CAV?

 Connected Autonomous Vehicle

 Key Word: Connected

 Major assumption that all vehicles can 
maintain some form of connectivity 
through 4G/5G or other IP related 
connections

 NOTE: In this paper they focus on 
the detection of other cars and NOT 
any other object or thing



Major Problem

 Autonomous Vehicles rely strongly on 

“machine vision” to determine information 

about the environment around it

 The state of the art in image recognition is 

relies on Deep Neural Networks

 DNN require powerful compute to predict 

accurately and quickly

 The “edge” or vehicles are not equipped with 

the compute as necessary



Previous Solutions

• CON: Could miss certain environmental triggers 
with a reduced frame rate

Reduced Frame Rate

• CON: Lower quality images could result in 
missed objects or environmental triggers

Reduced Frame Size



What can we do?

 What if we could reduce the 

image size without sacrificing 

important details? 

 Faster prediction time

 Similar if not equal prediction 

accuracy

 Introducing: Compressive Imaging 

(CI) Cameras



Compressive 

Imaging

 The advent of the digital camera has made 

computer vision possible

 Traditional computer vision follows an “image 

first, process later” technique

 Compressive Imaging proposes “What if we can 

do some of that processing initially”



Compressive Imaging

 Applying Fourier transform to the 

image allows for the ability to drop 

95% of unnecessary pixels

 Applying the inverse Fourier transform 

allows the image to be recovered

Video Credits: Steve Brunton (UW)

https://www.youtube.com/watch?v=SbU1pahbbkc


Compressive Imaging 

 What if we could instead sample the 

original image and apply some form of 

an assumption about the pixels around 

it?

 If we could accurately solve for this 

“assumption” in the form of a sparse 

coefficient matrix, we can recover the 

original image

Video Credits: Steve Brunton (UW)

https://www.youtube.com/watch?v=SbU1pahbbkc


But what about for 

video?

 Instead of down sampling a single image, down 
sampling many frames at once and compress into a 
single measurement

 How?

 Apply a form of modulation to each frame (in 
the form of abit mask)

 Modulation allows for some 
randomization between each frame to 
capture all information

 Allow the CI Camera to sum each of the frames 
by integrating the ligh in the image system

 DNN’s have proved valuable in learning the “sparse 
coefficient matrix” for decoding the compressed 
images





Their Solution => EdgeCompression

 A Vehicle-EdgeServer-Cloud Closed-Loop framework with the goal of:

1. Accelerate video analysis

2. Decrease Energy consumption

 Address the three core challenges:

1. High speed cameras produce tons of data, require high bandwidth 

2. DNN’s are traditionally slow to predict, but accurate

3. Edge devices are resource constrained



Closed Loop System – 10,000 ft view

Compressive Image Data Generated on Car

1. On-Device low power DNN predicts quickly 
with CI Data for real time DNN Prediction

2. On-Edge after certain triggers, CI data sent 
to edge, edge uses reconstruction DNN to 
reconstruct image, high power DNN predicts 
and re-informs device of accuracy

3. On-Cloud aggregation of raw data and 
prediction results to:

1. Improve future compressed DNN’s

2. Provide less time sensitive predictions 
like traffic control or path prediction





Data Sets Used for 

Experimentation

 AAU Rain Snow Dataset

 22 x 5-minute videos of traffic 
intersections

 BDD100K Dataset

 Berkeley DeepDrive has 1,100 
hours od driving experience

 PDTV Dataset

 Public dataset of traffic videos

 DynTex Dataset:

 Collection of dynamic texture 
videos 



Hardware 

Setup

 Intel FRD (Fog 

Reference Design)

 Deployed on vehicles

 NIVIDIA GPU 

Workstation

 Deployed as edge 

server



Experiment

The ground truth video feed from each data set to simulate 
the output of a CI Camera

•Note: They compress the images to grayscale prior to CI Simulation 
compression

They fed the compressed image to the YOLOv3-Tiny 
running on the Intel machines for quick predictions

They decompressed the image on the Edge-Server GPU 
cluster using E2E-CNN decompression Architecture

They fed the decompressed image through the YOLOv3 
running on the Edge-Server for higher accuracy predictions



Data Variation

Paper does a good job of experimenting on a well varied data set

1. Data Set Variation 

1. They use 4 different state of the art data sets for training and testing

2. Compression Ration (CR) Variation

1. They vary the number of frames compressed into one frame

3. Training Variation

1. They train the YOLOv3-Tiny Algorithm (on CAV) three different ways

1. Gray-Scale → Base images just w/ a gray scale

2. Measurement → Compressed images as output of CI Camera

3. Reconstructed → Reconstructed images from E2E-CNN reconstruction DNN



Intuition: Higher CR means longer reconstruction

Intuition: Tiny does better trained on what it is prediction & YOLO > YOLO tiny



Intuition: 

- Lower CR, better prediction

- Model does better when predicting on what it was trained on

- Highest average accuracy is tiny model trained on original data predicting original data… whoops!



Author Observations

1. YOLO should be trained on what it will be predicting

1. E.g. Train on compressed images if detecting on them

2. TinyM-M predicted just as well as TinyM-R, thus there is NOT a need to decompress 

the image before prediction

3. There exists a real tradeoff between CR and accuracy

4. PDTV predicts the worst because lowest quality cameras and cars are far away

5. AAU data set predicted well, they claim this means that they can predict in 

inclement weather

6. The BBDK100 data set suffered accuracy because it is harder to predict cars from 

the perspective of a car vs. static traffic camera

1. Buttttt their whole project was for this to be deployed on a car… 



Where is the energy data?

 They had two goals… reduce the time to prediction and decrease 
energy consumption

 This image shows that the prediction time is faster for the light 
weight YOLOG tiny, but it also shows that TinyG is the same as TinyM
basically

 Meaning if they just deployed the YOLOGv3-Tiny on the edge 
trained by the gray scale images they would have achieved 
better accuracy and the same prediction time

 So maybe their argument is for energy savings?

 Need figures for this energy saving!!!!

 There could be an argument for the bandwidth reduction for 
compressed sending to the edge, but they showed that 
YOLOv3-TINY predicted on the CAV as well as YOLOv3 on the 
edge



Questions

What was the real purpose of sending prediction results from edge-server 
back to the CAV when the cloud was updating the YOLOv3 algorithm?

Why did they not test this on a real CI Camera? Is the technology not 
widely available?

By not simulating driving conditions with network connectivity related 
issues are they missing a key research question on all of this?

Where is the energy data?!?!?!?!?!??!


