
CloudSLAM : Edge Offloading of
stateful vehicular applications

K Wright, Ashiwan Sivakumar,Peter Steenkiste,Bo Yu,Fan Bai
CMU, AT&T Research, General Motors

Background

● Vehicular applications are becoming increasingly complex and resource
hungry (e.g. autonomous driving)

● Running these applications entirely on vehicles is not feasible with increasing
compute requirements of these applications.

● Complete offloading is also not feasible for all applications: Stringent latency
requirements.

● This paper deals with one such application : SLAM (Simultaneous localisation
and mapping).

What is SLAM?

● Simultaneous Localization and Mapping
(SLAM)

● Generates 3D map of the environment

● Estimates the pose (location and
orientation) of a vehicle

● Based on sensors such as stereo video or
LIDAR

Challenges with SLAM on edge

● High performance compute on vehicle can be costly

● Storage does not scale well with SLAM. (Every 1 mile of travel generates
approx 200 MB of map data)

● Simplifying SLAM implementation reduces accuracy.

CloudSLAM Goals

● Develop an offloading architecture for stateful, latency-sensitive applications.

● Utilize edge cloud resources to reduce CPU and memory load.

● Maintain accuracy similar to ORB-SLAM

● Minimize network usage

ORB-Slam

● State of the art SLAM technique.
● 3 modules
● Previous trip data critical to

achieving high accuracy

Possible approaches

● Offloading completely
○ Simple but not very practical
○ Requires too much bandwidth
○ Highly susceptible to n/w delay

● Partitioning
○ Low latency tasks may be executed on vehicle
○ Slow but infrequent tasks may be executed on edge cloud
○ Use bandwidth more effectively
○ Tolerant of n/w delay

CloudSLAM - Design
● Loop Closing functionality moved

into new Remote Mapping Module
running in edge cloud

○ Reduces computation on vehicle
while maintaining previous trip
data to improve accuracy

● Map state is replicated: global map
stored in cloud, local map stored
on vehicle

● Challenges
○ Map state management
○ Limiting bandwidth usage
○ Maintaining accuracy

Map state management

● ORB-SLAM’s modules all read and write to the same complex data structures Traditional
consistency models not suitable because of bandwidth usage and/or delays.

● Consistency requirements for local and global map are loose
○ ORB-SLAM execution is not repeatable two executions of the same video input will

generate different results
○ Construction of map is based on sensor data, which itself is noisy

● Output-driven Consistency designed to focus on our actual needs
○ What we really care about is consistency of the pose output
○ Send keyframes from vehicle to edge as necessary
○ Feedback applied to manage tradeoff between high accuracy & low bandwidth

Limiting Bandwidth usage

● Selectively sending keyframes reduces
bandwidth consumption

○ Redundant information in consecutive images

● How to select which keyframes to send?
○ Periodic Strategy - send keyframes at a

fixed time interval

○ Distance Strategy - send keyframes at a
fixed distance interval • For example, send
keyframe once every 10 meters

Maintaining accuracy

● Adaptive Strategy uses magnitude of pose
correctness as an indicator of error in the
pose o/p

● If pose corrections are large, more
keyframes are sent to improve consistency

● Implemented as an extension of Distance
Strategy

○ Dynamically tunes distance threshold
based on pose correction magnitude

○ Multiplicative-increase,multiplicative
decrease

Evaluation - Update freq vs rmse

Evaluation - Contd.

Impact of link latency
● CloudSLAM accuracy degrades as link latency becomes dominant portion of

response time
● Need for low latency edge computing as opposed cloud computing

Discussion

● Sudden change in environment, can cause significant drift.
● Mechanism for identifying key frames is naive.
● Does not consider state management across edge cloud for long distance

trips

