CLIO: Enabling automatic compilation of deep learning
pipelines across loT and Cloud

Authors:
Jin Huang, Colin Samplawski, Deepak Ganesan, Benjamin Marlin
Heesung Kwon

Context

e There have been significant advances in low-power neural
accelerators(specialised processors) that aim to bring deep learning to loT
devices.

e However, state of the art deep learning models are often too large for
low-power accelerators.

e This paper aims to solve the problem of running large deep learning models
on highly resource constrained devices by partitioning the model and
offloading computation to cloud.

Prevalent approaches

e Model compression - does not work for such devices (Requires 5x to 20x
compression)

e Compressed data transmission to cloud - Use low power radio signals and
are therefore sensitive to dynamics in env.

e Partition the model : Static partitioning does not account for dynamics in
environment.

Clio’s approach
e Dynamic partitioning of model based on bandwidth available.
e Allows partial compilation of models on resource constrained devices

e Progressive transmission : Allows only some portion of the intermediate
data output at a layer to be sent to the next layer

e .Essentially a compilation framework for deep learning models deployed on
highly resource constrained devices.

Device constraints

e Radio channels are set up as and when needed (to save power). So
bandwidth is unknown when it wakes up and different wake periods can have

different bandwidths.

e Computationally constrained : 1 GFlops, 64KB L1 cache, 512 KB L2 cache,
freq of 175 MHz

e Devices considered in the paper : GAP8, STM32F7

CLIO Design - Progressive Slicing

Input: x,,,n=1..N

Mayers] From input x to model partition:

\%wlﬁ'[03 = fg(xn) O = fo(x)

Progressive Slicing:
Ok.l:i - SIice(i, Ok)

' Progressive

' Slicing
. Slice3 | Use slice as input:
| 041 = slice(03,1) 0,1, = slice(03,2) 0313 = slice(03,3) y =¢(0;.2)
Layer 4 ’ Layer 4 ’ ‘ Layer 4 ‘ Objective Function:
(Slice1) (Slice2) _ (Slice3) N
R — ! R - =
layer5 | | Layer5 | \ﬂfi | Z/(D;6, ¢,) g{(y.,g*(slice(i. f,(x,))))
-0 S

V1= 9¢,(0311) ¥ = g4,(031:2) V3 = 9¢:(031:3)

Adaptive partitioning

e Best operating point given a
bandwidth can be identified by
<partition, slice>

>

>
@)
o
=
@)
()

< — Layer 8

- Layer 5

- Layer 3

>

Bandwidth

Partitioning + Progressive slicing

Iniut lni)ut

. Layer 1 \ Layer 1
T T ——
Layer2 | - layer2 |
: ; ! ,
Layer 3 | Layer 3 |
jrm o T—_— -» ' e "|"'\. ol Progressive
. Intermediate Results from i "‘ Slicing
Layer 3 Transmitted to
Cloud for processing. short-term

ikl 2 iy g wireless variations

Reducing training time

e Training across all possible slices of the intermediate layer (for progressive
transmission) and across all possible layers as potential partition points can
be extremely time consuming.

e Training time may be expressed as:
C(M) = C(L1:k) + #slicesxC(Lk+1:K)

e Clio provides methods to help reduce number of partitions and number of
possible slices.

Reducing training time (Contd.)

e For progressive slicing :
o Only have consider number of channels that are multiples of some number
o Also we observe that for every slice only the next layer needs to be different, layers afterward
can use the same model.

e Reducing potential partition points:
o Given a target latency, and a layer k.
o We know c(k) = C(L 1:k) + C_cloud(L:k+1,end)
o Then transmission time allowed : target - c(k)
o From this we can determine range of bandwidth at this layer that can meet the conditions.

Implementation

———————— —

Ot
o« <
o -
<

Pre-Defihed Model
System Metrics:
Latency,

Energy,
Throughput...

Compression

Select Partition
Points

e - -

Progressive
Slicing

Construct
Envelope

Deploy on
loT

Iy
I
I
I
()
I
I
)
1

Bandwidth Increase

Progressive
IPEG

P3

P2

3]

Jul

Compressed
Local Model

Runtime

Adaptation

T e e - - ———

Evaluation
e Dataset : CIFAR-10 and modified Imagenet

e (Comparisons:
o Progressive Slicing : Compared against Prog. JPEG
o Model compression : Compared against Auto ML, Meta etc
o Comparing Local, Remote and Clio

Progression Slicing and Model compression

0.9
0.90
z z
8 g
£08 2085
v v
< <
B CliolFix-Part.) B Clio(Fix-Part)
07 * ProgJPEG 0.80 ® Prog. JPEG
20 40 60 200 300 400 500 60
Latency / ms Latency / ms
(a) CIFAR-10 (b) ImageNet-20

Figure 6: Prog. Slicing vs Prog. JPEG for CIFAR-10 and
ImageNet-20 datasets. Latency corresponds to GAP8 and
BLE radio (numbers in §4.2). Prog. Slicing has significantly
better performance than Prog. JPEG for both CIFAR10 and
ImageNet-20 datasets.

e

s
2

091

Accuracy
Accuracy
e
&
n

0.88
B AutedL
B Clio ® CliofFix-Part.)
& Multiplier 0.80 * Meta t
085 A Multiglier
0 20 40 200 400 600
Latency / ms Latency / ms
(a) CIFAR-10 (b) ImageNet-20

Figure 7: Clio vs Model Compression. Latency corresponds
to GAP8 and BLE radio @ 250kbps. On CIFAR10, only width
multipliers are effective and Clio is better than this method.
On ImageNet-20, Clio is better than AutoML, meta-pruning
and width multipliers except at low latencies where there is
insufficient time for communication.

Results (contd)

0.15
& Clio(Adaptive)
£ Clio(Fix-Part.)
g gaseli.lllf’ i!:EEG l
2 0.10 e
&
=
3
S 00s| - | ‘ »
0.00 —*J—-]
0.1 0.2

0.3 04
Variance

Figure 9: We use synthetic traces and gradually increase vari-
ance in bandwidth to show robustness of different meth-
ods. Clio with adaptive partitioning is most robust to band-

width variations and degrades more gracefully than Base-
line JPEG.

AAccuracy

-0.10

0101 <

0.0

|= Clio(Adaptive)
{= Clio{Fix-Part.)
= Baseline JPEG
|= Prog. JPEG

2000 -1000 0
ABandwidth

(a) Effect of estimation error

1000

2000

:

Bandwidth
H

“| Partition 1 :Partition -

. Partition 1 :Partition 2:

Paneg
Pont Shift
20ms Appled

Time Series

= Clin(Fix-Part) = Clio{Adaptive)

(b) Time Series

Discussion

e Compilation of networks where blocks of layers may have logical significance
is not handled.

e Greedy method to select partitioning layers should not just depend on
bandwidth.

e At low latency requirements, model compression seems to work better.

