
CLIO: Enabling automatic compilation of deep learning
pipelines across IoT and Cloud

Authors: 
Jin Huang, Colin Samplawski, Deepak Ganesan, Benjamin Marlin

 Heesung Kwon



Context

● There have been significant advances in low-power neural 
accelerators(specialised processors) that aim to bring deep learning to IoT 
devices.

● However, state of the art deep learning models are often too large for 
low-power accelerators.

● This paper aims to solve the problem of running large deep learning models 
on highly resource constrained devices by partitioning the model and 
offloading computation to cloud.



Prevalent approaches

● Model compression - does not work for such devices (Requires 5x to 20x 
compression)

● Compressed data transmission to cloud - Use low power radio signals and 
are therefore sensitive to dynamics in env.

● Partition the model : Static partitioning does not account for dynamics in 
environment.



Clio’s approach

● Dynamic partitioning of model based on bandwidth available.

● Allows partial compilation of models on resource constrained devices

● Progressive transmission : Allows only some portion of the intermediate 
data output at a layer to be sent to the next layer

● .Essentially a compilation framework for deep learning models deployed on 
highly resource constrained devices.



Device constraints

● Radio channels are set up as and when needed (to save power). So 
bandwidth is unknown when it wakes up and different wake periods can have 
different bandwidths.

● Computationally constrained : 1 GFlops, 64KB L1 cache, 512 KB L2 cache, 
freq of 175 MHz

● Devices considered in the paper : GAP8, STM32F7



CLIO Design - Progressive Slicing



Adaptive partitioning

● Best operating point given a 
bandwidth can be identified by
<partition, slice>



Partitioning + Progressive slicing



Reducing training time

● Training across all possible slices of the intermediate layer (for progressive 
transmission) and across all possible layers as potential partition points can 
be extremely time consuming.

● Training time may be expressed as:
𝐶(M) = 𝐶(L1:k) + #slices×𝐶(Lk+1:K)

● Clio provides methods to help reduce number of partitions and number of 
possible slices.



Reducing training time (Contd.)

● For progressive slicing :
○ Only have consider number of channels that are multiples of some number
○ Also we observe that for every slice only the next layer needs to be different, layers afterward 

can use the same model.

● Reducing potential partition points: 
○ Given a target latency, and a layer k.
○ We know c(k) = C(L 1:k) + C_cloud(L:k+1,end)
○ Then transmission time allowed : target - c(k)
○ From this we can determine range of bandwidth at this layer that can meet the conditions. 



Implementation



Evaluation

● Dataset : CIFAR-10 and modified Imagenet

● Comparisons:
○ Progressive Slicing : Compared against Prog. JPEG
○ Model compression : Compared against Auto ML, Meta etc
○ Comparing Local, Remote and Clio



Progression Slicing and Model compression



Results (contd)



Discussion

● Compilation of networks where blocks of layers may have logical significance 
is not handled.

● Greedy method to select partitioning layers should not just depend on 
bandwidth.

● At low latency requirements, model compression seems to work better.


