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Context

e There have been significant advances in low-power neural
accelerators(specialised processors) that aim to bring deep learning to loT
devices.

e However, state of the art deep learning models are often too large for
low-power accelerators.

e This paper aims to solve the problem of running large deep learning models
on highly resource constrained devices by partitioning the model and
offloading computation to cloud.



Prevalent approaches

e Model compression - does not work for such devices (Requires 5x to 20x
compression)

e Compressed data transmission to cloud - Use low power radio signals and
are therefore sensitive to dynamics in env.

e Partition the model : Static partitioning does not account for dynamics in
environment.



Clio’s approach
e Dynamic partitioning of model based on bandwidth available.
e Allows partial compilation of models on resource constrained devices

e Progressive transmission : Allows only some portion of the intermediate
data output at a layer to be sent to the next layer

e .Essentially a compilation framework for deep learning models deployed on
highly resource constrained devices.



Device constraints

e Radio channels are set up as and when needed (to save power). So
bandwidth is unknown when it wakes up and different wake periods can have

different bandwidths.

e Computationally constrained : 1 GFlops, 64KB L1 cache, 512 KB L2 cache,
freq of 175 MHz

e Devices considered in the paper : GAP8, STM32F7



CLIO Design - Progressive Slicing
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Adaptive partitioning

e Best operating point given a
bandwidth can be identified by
<partition, slice>
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Partitioning + Progressive slicing
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Reducing training time

e Training across all possible slices of the intermediate layer (for progressive
transmission) and across all possible layers as potential partition points can
be extremely time consuming.

e Training time may be expressed as:
C(M) = C(L1:k) + #slicesxC(Lk+1:K)

e Clio provides methods to help reduce number of partitions and number of
possible slices.



Reducing training time (Contd.)

e For progressive slicing :
o  Only have consider number of channels that are multiples of some number
o Also we observe that for every slice only the next layer needs to be different, layers afterward
can use the same model.

e Reducing potential partition points:
o Given a target latency, and a layer k.
o  We know c(k) = C(L 1:k) + C_cloud(L:k+1,end)
o Then transmission time allowed : target - c(k)
o From this we can determine range of bandwidth at this layer that can meet the conditions.



Implementation

———————— —

Ot
o« <
o -
<

Pre-Defihed Model
System Metrics:
Latency,

Energy,
Throughput...

Compression

Select Partition
Points

e - -

Progressive
Slicing

Construct
Envelope

Deploy on
loT

Iy
I
I
I
()
I
I
)
1

Bandwidth Increase

Progressive
IPEG

P3

P2

3]

Jul

Compressed
Local Model

Runtime

Adaptation

T e e - - ———



Evaluation
e Dataset : CIFAR-10 and modified Imagenet

e (Comparisons:
o Progressive Slicing : Compared against Prog. JPEG
o Model compression : Compared against Auto ML, Meta etc
o Comparing Local, Remote and Clio



Progression Slicing and Model compression
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Figure 6: Prog. Slicing vs Prog. JPEG for CIFAR-10 and
ImageNet-20 datasets. Latency corresponds to GAP8 and
BLE radio (numbers in §4.2). Prog. Slicing has significantly
better performance than Prog. JPEG for both CIFAR10 and
ImageNet-20 datasets.
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Figure 7: Clio vs Model Compression. Latency corresponds
to GAP8 and BLE radio @ 250kbps. On CIFAR10, only width
multipliers are effective and Clio is better than this method.
On ImageNet-20, Clio is better than AutoML, meta-pruning
and width multipliers except at low latencies where there is
insufficient time for communication.



Results (contd)
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Figure 9: We use synthetic traces and gradually increase vari-
ance in bandwidth to show robustness of different meth-
ods. Clio with adaptive partitioning is most robust to band-

width variations and degrades more gracefully than Base-
line JPEG.
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Discussion

e Compilation of networks where blocks of layers may have logical significance
is not handled.

e Greedy method to select partitioning layers should not just depend on
bandwidth.

e At low latency requirements, model compression seems to work better.



