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Background — Effective Disaster Response
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Background — Techniques for ECC Enabling EDR

o Current: System On Wheels (SOW) o Next Generation: Edge Bubble (EB)

The Next Generation
First Responder
l

BAE SYSTEMS

RECS. -~ _ ctac

C®ALFIRE
AWS Public Safety & Disaster Response

ARDENTMC

First responders work as a team

« Advantages of EB

« Limitations of SOW

> Need long time to arrive

> Shorter time to arrive

Can reach harshest area

Y

» Cannot go harshest area

> Cheaper to equip with

> Expensive to equip with

Closer to data source

Mobile Communication Vehicle

Y

The Next Generation First Responder

Picture source: https://www.fema.gov, Federal Emergency Management Agency Pictures source:h : w.f .com/dhs-wearables-first-r nder: d
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Motivation — Multitask Video Processing at EB

e Scenario: First responders need automatically record multiple information about survivors

=

(2| [2] (Teoeten [ (2eemer ),
: ge
Multiple similar ? %

m=))> Male or female? ) CNN-based vision 5\

analysis pipelines ==
3 \ Looks OK or not? ’

e Challenges e Idea: Combine multiple pipelines into a single one
. Limited computing resources on mobile devices and adaptively share and offload CNN layers

’ Old or young?

Frame
Capture

[

| _Pipeline2 |
{} i‘j, (GenderNet

o) (& " FaceNet

Frame
apture

» Computation intensive video stream analysis

Dynamic computing resources and networks

Y

Diverse user performance requirements

Y

Picture source: h
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Related Work — CNN-based Mobile Vision Processing

o CNN Offloading
» Cloud: DDNN@ICDCS’17, Neurosurgeon@SIGARCH’17, JALAD@ICPADS’18, pulLayer@EuroSys’19

> Cloudlet: MODI@HotEdge’18, IONN@SoCC’18, DADS@Infocom’19, Couper@SEC’'19
> loT/Mobile: Modnn@DATE’17, Mednn@ICCAD’17, MusicalChair@arXiv'18, DeepThings@TCAD’18

o« CNN Compression
> One-fit-all: XNOR-Net@ECCV’16, Thinet@ICCV’17, Factorized CNN@ICCV’17, ShuffleNet@CVPR’18

> Adaptive: DeepX@IPSN’16, AdaptDNN@LCTES’18, OnDemandDNN@MobiSys’18, ContextDNN@ICDCS 20
> Feature: DeepFCPX@ICIP’18, ContextFCPX@CVPR’18, LosslessFCPX@MMSP’18, LossyFCPX@ICM’19

o CNN Sharing
> Inside a Model: NestDNN@ MobiCom’18, FoggyCache@MobiCom’18, DeepCache@ MobiCom’18

» Among Models: MCDNN@ MobiSys’16, Mainstream@ATC’18

We study adaptive CNN-based multitask video processing on mobile
devices with dynamic computing resources, network, and user goals.
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System Overview — Software Architecture

e AMVP: Adaptive CNN-based Multitask Video Processing Framework

]
pre-trained models: Model Training Model Splitting Model Profiling
e.g., mobileNetV2

Pre-trained models \

' ‘ 0 | Complete .h5 models \ [ Latency profiler (L) ]
[ Classifier replacing | _ _ atx _
" .h5 models odel splitting Alite models emory profilier
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b | Re_tramelvd = | splitted .tilite models | | Traffic profiler (T) |
i model profile
offline lodel profi
0 nl Ine S&A Madel Selection & Task Assignment
[ Runtime resource | . App topology & user ‘
App topology & & network monitor | preference Manager

user prfEfEI'I ce

ﬁ . Optimization _[1_ Assignment H
! Function i Schemes

h

| Optimal ( Optimal ‘
model selection task assignment

Software Architecture of AMVP
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Adaptive Multitask Video Processing Framework
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e Model Training via Transfer learning

image ' mage  image  Image » Strategy 1: retrains all weights, requires a large dataset and a lot

Y Y i v of computation
Convolutional base E
(feature extraction)

Legend: » Strategy 2: freezes whole convolutional base, only trains classifier;
e J— i i [ ] retrained suitable for training tasks similar to original task
(image classification) | frozen
R ' ' ' » Strategy 3: freezes some layers in base, trains the rest; a small
Inference . Inference Inference Inference
result i result result result

. dataset, freezes more; a large dataset, retrains more
CNN-based model Strategy 1 Strategy 2 Strategy 3

e Transfer learning results
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NS S SRR wp 31 L e accurate than mobileNetV2-based
ssg 808 ;/‘ *- o gg 0| | et ] aé 80 4' ——o o l
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L L/ . e
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(a) GenderNet ~ Strategy 2 (b) EmotionNet (c) AgeNet # frozen Iayers than compllcated tasks
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Adaptive Multitask Video Processing Framework

e Model Profiling
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(a) Latency (b) Memory size (c) Feature size

mobileNetV2
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» Observation 1: latency of P1 increases with block number
» Observation 2: memory is concentrated in the last few layers

» Observation 3: feature size gradually gets reduced along with inference process

lenss.cse.tamu.edu
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Adaptive Multitask Video Processing Framework
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e Model Splitting

e Later layers are higher level

Split at earlier layer Split at latter layer « Split along frozen layers
» Higher inference accuracy . > Share more among CNNs | - (102) _
» Better computation balance VS » Better memory balance * Unlike cloud offloading (e.g.
> Share less among CNNs . > Smaller feature traffic size EdgeML), also need to
. » Worse memory balance » Lower inference accuracy consider “computation
§> Larger feature traffic size : §> Worse computation balance balance” (Chao et al., 2020,
100)
¢ Quantization-based Feature Compression
1 = - L 1
de@iz % 0.8} A 10.95
GenderNet-FE 5 GenderNet Fi Oé ) \ .
Y a N = ale \ 1 >
£ Boi o [t i (T 0B o (e, 3 O oR—— | %% 3
. Feature Maps Y &) Feature Maps J g 04+ Flde“ty I'\.. 1 0.85 E
' Q \
/32 b|t3 ==> N bﬁ\ g 0.2} 2 1 0.8
&}
— F — min (F) _ — i T e N N
F = - = (2" — = Inax (F) — min (F) 5 : Base n=16 n=8 n=4 n=2 :
| ax (F) — min (F) ( )1 k= on 1 F + min (F) Quantization Precision
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Adaptive Multitask Video Processing Framework

e Model

Splitting

Split at earlier layer

» Higher inference accuracy
» Better computation balance
» Share less among CNNs

. » Worse memory balance

§> Larger feature traffic size

VS.

Split at latter layer
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» Share more among CNNs
» Better memory balance
» Smaller feature traffic size
» Lower inference accuracy

N
. o 1 . og cp
Fidelity = 1 5N ;:1 Hamming(O;?,0;") 4

i)

where O;” denotes the original onehot classification result of
image sample ¢ and O;” denotes the onchot output inferred
from the dequantized features. Hamming(-) is the hamming
distance function and N denotes the total number of samples.

§> Worse computation balance

e Quantization-based Feature Compression (They compress to 8 bits without significant fidelity loss)
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Adaptive Multitask Video Processing Framework

accuracy goal
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» Problem formulation

minimize C
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Model Selection and Task Assignment (MSTA)
» Cost function for each task
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s: task
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(frozen layers and model
type for task s)
(ml,m?2): splitting my in
two parts
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Adaptive Multitask Video Processing Framework

» Greedy algorithm for MSTA  (MinMaxCost: Minimizes max task’s cost)

EmotionMet

C1: Get data from video

+ | Which pre-trained CNN to choose ?

How many CNN layers to freeze ? source
............................ TT— C2: Eilter out frames without
Which layers are shareable among CNNs? @ faces
4 C3: Collect results
Which position to split each CNN ?
CNN computing delay Feature data size , :
Device resources || Network bandwidth | ---- /’?@

l How to assign each CNN to devices ? Legend:

3 3 :I MobileNetV2 : ResNet50V2

[ Throughput ] [ Latency ] D l:] D Classifiers

~7| Frozen layers

(a) Basic workflow of MSTA (b) An example of MSTA
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WIFi/LTE manpack

Helmet camera
|

Experiment Setup

"\ Carry-on mobile devices

e Starting from mobileNetV2 and resNet50V?2 R L
* Tasks: Gender, Emotion, Age
* For each task, train group of CNNs with different starting point and frozen layers
* For each CNN, split at different points

* Profile on Android phone

* Run on Helmet camera (Yi R), four Android phones (Essential) and a
wireless manpack

* Vary values of a, B, ¥, (prioritizing accuracy, latency, throughput) for
AVMP

 Compare to other strategies:
e Pure Sharing Strategy (PSS): shared layers, single device
* Pure Offloading Strategy (POS): no shared layers, multiple devices
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Experimental Results

e Adapt to different accuracy requirements e Adapt to different latency requirements
100 ' Gender mmmmm 2500 Gender mmmm 180 I Gender s 2R00 ' Gender
Emotion Emotion Emotion
Age HEEEN 2000 t Age = agl Age .
—~ 95 i — ?
x %) S
o Eis500 >
s 90 ) § 90
= $1000 3
g 5 < g5
& 500 |
80 80 90 0 80 30 80 1500ms _ 200ms 0 1500ms _ 200ms
Accuracy Req. (%) Accuracy Req. (%) Latency Req. (ms) Latency Req. (ms)

AMVP makes tradeoff between accuracy, latency, and throughput based on user preference at runtime

lenss.cse.tamu.edu
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Experimental Results

e Adapt to different computing resources e Adapt to different network conditions

100 T T T . . : 2500 . T T T . ! i , y ;
Gender Gender 2600 Gender é Gender
Emotion Emotion Emotion Emotion
95| Age 2000+ Age 2000 Age i Age
e m ) 0
= E4500 E4500 -
& 90 Z’ 3 2 4
3 £1000 $1000 S
Q LU 0] 9
< g5} - £ o5l
500} 500 | =
80 0 0 0

) ps,ooa Dsg P
’7700&,)3’77

Workload Condition

Os. 6’771, DOS\ 6’771, OO-S'\

Network Bandwidth (Mbps)

% Dos wm,

Workload Condition Network Bandwudth (Mbps)

-no: Only AMVP running on device

* 8% shorter latency than PSS

e around 6% shorter latency than POS

-wl: Other resource-intensive processes running on device
* 61% shorter latency than PSS and POS

* 10% higher throughput than PSS and POS

-1: bandwidth is 1Mbps
e Better latency for Emotion and Age
-50: bandwidth is 50Mbps

lenss.cse.tamu.edu
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Conclusion and Future Work

e Conclusion: We propose AMVP, an Adaptive Multitask Video Processing Framework which
supports dynamic CNN layer sharing among multiple CNN-based vision analysis tasks and
adaptive CNN layer offloading from one mobile device to other devices at an Edge Bubble.

e Future Work

» Apply accuracy metrics as in Chameleon [Sigcom’18], which includes precision, recall and F1 score.
» Generalize AMVP to deploy on a heterogeneous stream processing platform including edge server
» Support simultaneous processing of multiple videos

» Support other Al applications such as voice recognition, speech recognition, NLP, etc.

lenss.cse.tamu.edu



Positive and Negative Points

* Positive:
* Implemented and tested AMVP
e Context and limitations of AVMP
 Comparison against other strategies

* Negative:

* No evaluation of energy consumption
* Sending features might be more costly than running on one device



Questions

 Can the profiling step scale for many devices/models?

* Is this model generally applicable to many situations?
* Limited set of models and devices
* No connection to the cloud



