
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Transactuations: Where Transactions
Meet the Physical World

Aritra Sengupta, Tanakorn Leesatapornwongsa, and Masoud Saeida Ardekani,
Samsung Research; Cesar A. Stuardo, University of Chicago

https://www.usenix.org/conference/atc19/presentation/sengupta

Transactuations: Where Transactions Meet the Physical World

Aritra Sengupta
Samsung Research

Tanakorn Leesatapornwongsa ∗

Samsung Research
Masoud Saeida Ardekani †

Samsung Research

Cesar A. Stuardo ‡

University of Chicago

Abstract
A large class of IoT applications read sensors, execute appli-
cation logic, and actuate actuators. However, the lack of high-
level programming abstractions compromises correctness es-
pecially in presence of failures and unwanted interleaving
between applications. A key problem arises when operations
on IoT devices or the application itself fails, which leads to
inconsistencies between the physical state and application
state, breaking application semantics and causing undesired
consequences. Transactions are a well-established abstraction
for correctness, but assume properties that are absent in an
IoT context. In this paper, we study one such environment,
smart home, and establish inconsistencies manifesting out
of failures. We propose an abstraction called transactuation
that empowers developers to build reliable applications. Our
runtime, Relacs, implements the abstraction atop a real smart-
home platform. We evaluate programmability, performance,
and effectiveness of transactuations to demonstrate its poten-
tial as a powerful abstraction and execution model.

1 Introduction

Building reliable IoT applications that interact with the phys-
ical world on top of existing solutions is difficult. Current
IoT solutions (e.g., Smartthings [14] and OpenHAB[12]) pro-
vide simple abstractions that allow developers to easily read
sensors and actuate actuators. However, they lack high-level
abstractions for writing reliable and fault-tolerant applications
that can tolerate different types of failures that might happen.
Therefore, application programmers need to implement te-
dious and error-prone code for not only handling all kinds of
failures happening in the physical world, but also to guarantee
consistency between operations on application states (called
soft states hereafter) and states of IoT devices (called hard
states). For instance, an actuation to turn on an alarm might

∗Work done at Samsung Research America. Now at Microsoft Research.
†Work done at Samsung Research America. Now at Uber Technologies.
‡Work done at Samsung Research America.

fail while the alarm state in an application might have been
set to true.

The use of serverless functions as a de facto platform for
running IoT applications has exacerbated the reliability issues
of these applications even further. This is because serverless
computing infrastructure can terminate running applications
at any point [2]. This again leaves incomplete operations on
some hard states (e.g., lock all doors) inconsistent with an
operation on soft state inside the application (e.g., set the
home state to safe after all doors are locked).

Transactions seem like the right mechanism for addressing
the above issues. Interestingly though, a transactional abstrac-
tion cannot fix these issues because of intrinsic properties of
IoT devices (and their associated hard states). A transactional
abstraction is ideal for ensuring isolation and all-or-nothing
guarantees among soft states. Moreover, a transactional sys-
tem can easily rollback soft states without other transactions
or users noticing effects of a rolled back transaction. However,
rolling back a hard state has consequences. The state might
have already been observed by a user and rolling it back may
be undesirable. Or even worse, some states cannot be rolled
back (e.g., undoing actuation of a water dispenser).

This paper proposes an abstraction called transactuation.
Transactuations hide the complexity of handling various fail-
ures and allow developers to easily maintain soft states to
be consistent with respect to reads and writes to hard states
– states of sensors and actuators. Objectively, transactuations
allow a developer to specify dependencies among operations
on soft and hard states along with a sensing/actuating policy
which specifies the conditions under which soft states can
commit despite failures.

We provide a runtime system called Relacs that imple-
ments the abstraction for the smart home environment. Relacs
transforms an application into a serverless function, and re-
liably executes the application in the cloud while enforcing
transactuation specific semantics. We note that while the fo-
cus of this paper is on smart homes, the transactuation ab-
straction is not particularly specific to smart homes, and can
be applied to other IoT environments as well.

USENIX Association 2019 USENIX Annual Technical Conference 91

Concretely, this paper has the following contributions:
1. Study of smart-home applications. Using static analysis,

we conduct a comprehensive study of smart-home applica-
tions written for two popular platforms [12, 14] and identify
drawbacks of existing platforms in writing reliable and fault-
tolerant applications (Section 3).

2. Transactuations. We present our abstraction that al-
lows developers to simply write reliable IoT applications.
Transactuations preserve the dependencies between opera-
tions on hard states and soft states, which when broken, break
application semantics (Section 4).

3. Relacs. Our runtime, Relacs, enforces a serializable exe-
cution of transactuations without rolling back hard states (i.e.,
states of actuators) while enforcing the specified sensing and
actuating policies (Section 4 and Section 5).

4. Evaluation. We evaluate representative smart-home ap-
plications to reveal the correctness issues due to lack of appro-
priate abstractions. Our evaluation further demonstrates that
(a) Transactuations are an effective high-level abstraction for
building reliable IoT applications and reduce lines of code sig-
nificantly compared to manually handling failures. (b) Relacs
guarantees reliable execution of transactuations while impos-
ing reasonable overheads over a baseline that does not provide
consistency between operations on hard states and soft states
(Section 6).

2 Background & Model

In this section, we first review existing smart-home platforms
and their programming models. We focus on smart homes
as a case study of class of IoT environments that deal with
real world state since many smart home applications and
platforms are publicly available. We then discuss different
types of failures that occur in IoT environments.

2.1 Smart-home Platforms
To setup a smart home, a user installs centralized gateways,
called smart-home hubs or simply hubs, to connect in-home
devices (e.g., light bulbs, outlet strip, and motion sensor) that
typically communicate through low-energy wireless proto-
cols (e.g., Zigbee [17], ZWave [16], and Bluetooth Low En-
ergy [4]). The user then installs smart-home applications to
create her desired home automation. For instance, to turn on
a balcony light when motion is detected outside.

Currently, cloud-centric smart-home solutions (e.g., Smart-
things [14]) are the most widely used architecture [28]. In this
model, a hub is only responsible for collecting device events,
and forwarding them to the cloud, where applications run.
The applications running in the cloud then process events and
send actuation commands back to the hub, which forwards
the commands to corresponding devices. An alternative ar-
chitecture is to run applications inside hubs. OpenHAB [12]
follows this hub-centric approach.

1 preferences {
2 input(sensor , "capa.co2", req:true)
3 input(switches , "capa.switch", multi:true)
4 input(level , "number", req:true)
5 }
6 def initialize() {
7 state.active = false;
8 subscribe(sensor , "co2", handleLevel)
9 }

10 def handleLevel(evt) {
11 def co2 = sensor.currentValue("co2");
12 if(co2 >= level && !state.active) {
13 switches.each { it.on(); }
14 state.active = true;
15 } else if(co2 < level && state.active) {
16 switches.each { it.off(); }
17 state.active = false;
18 }
19 }

Listing 1: CO2 vent application that turns exhaust fans on
when CO2 level is high and turns off otherwise.

2.2 Programming Model
In most smart-home platforms, an application is written in a
trigger-action programming model [45] where an application
comprises event handlers. Handlers can subscribe to changes
in sensor/actuator states, updates to shared states, or timer-
based events. Handlers can issue the following operations:
• Hard read: reading sensor/actuator values.
• Hard write: sending actuation commands to actuators.
• Soft read: reading application states from shared storage.
• Soft write: writing application states to shared storage.
In the remainder of this section, and for simplicity, we

solely detail SmartThings [14] programming model. Yet, we
note that other platforms have very similar constructs.

SmartThings uses capabilities, attributes, and commands
to manage devices. Each device has one or more capabili-
ties, and each capability has one or more associated attributes
and commands. For example, a smart light bulb has two ca-
pabilities, switch and color. The switch capability allows an
application to control the bulb status via on/off commands.
The color capability has three attributes, color, hue and sat-
uration that can be controlled via setColor, setHue, and
setSaturation commands.

Listing 1 shows a SmartThings application, named CO2
vent, written in the Groovy language [5]. It reads CO2 level
from sensors, and turns on an exhaust fan if the level is high.
Similarly, it turns off an exhaust fan if the level is low. A devel-
oper first declares mapping of variable names to capabilities
in the preference section (lines 1-5). Consequently, a variable
is mapped to an array of devices with the same capability. For
example, variable switches (line 3) gets mapped to an array
of exhaust fans having the switch capability.

A developer then subscribes event handlers to value
changes of some capabilities or timer schedules. In line 8,
she subscribes an event handler called handleLevel to co2
capability. Observe that inside the handler, she can perform

92 2019 USENIX Annual Technical Conference USENIX Association

hard read on sensor data (sensor.currentValue() in line
11) and soft read on shared states (reading state.active in
line 12 and 15). Also, the developer can issue hard writes to
list of actuators (line 13 and 16). She can also perform soft
writes to application states (assignments to state.active in
line 14 and 17).

2.3 Failures in IoT Environments
Previous work [20, 33] have shown a variety of failures in IoT
environments. For instance, hubs can fail due to plug discon-
nection, hardware failure, and driver crash. IoT devices can
fail due to battery drainage, plug disconnection, and failure
in a sensor subsystem. Additionally, network loss occurs due
to RF interference, concrete slab flooring and copper siding.
These failures lead to permanent or intermittent unavailability
of devices in an IoT environment.

Although, these failures are common, existing platforms do
not provide a simple way to detect and handle them. A failed
hard read can produce a null or stale value that a developer
needs to handle or explicitly validate its timestamp (fresh-
ness). Detecting a failed hard write is even more difficult due
to the asynchronous nature of IoT programming model. For
instance, a developer needs to subscribe to an event triggered
by a hard write, and periodically check if the event is fired.
As shown in other systems [30, 35, 37], inserting failure de-
tection and handling code for asynchronous environments is
challenging and error prone. Moreover, due to inherent event-
driven concurrency in applications, it is notoriously difficult
to prevent interleaving and concurrency-related bugs in IoT
platforms [40].

3 Problem Study

Existing smart-home solutions do not guarantee any consis-
tency between soft reads/writes (i.e., reads/writes from/to
shared storage) and reads/writes to hard states (i.e., sensor
reads and actuation commands sent to actuators) in case of
failures. Application developers need to carry the burden and
ensure the correctness of an application when a failure occurs.

In this section, we present a systematic study of open source
smart-home applications, using static analysis, in order to
unearth various inconsistencies, that surface under failure,
between operations on soft and hard states.

3.1 Inconsistency
Listing 2 shows a simplified code excerpt from a smart secu-
rity application. This application associates a soft state named
alarmActive with the status of an alarm. If the application
detects an intruder when the alarm is not active, it activates
the alarm and sets alarmActive to true. However, an in-
consistency arises if the alarm is not activated properly. For
example, RF interference may cause an actuation command

1 def intruderMotion(evt) {
2 ...
3 if (isIntruder(evt) && !state.

alarmActive) {
4 alarm.strobe();
5 state.alarmActive = true;
6 }
7 ...
8 }

Listing 2: A simplified code excerpt from Smart Security
application that detects an intruder using sensors, and
activates an alarm if it has not been activated previously.

to be lost. This problem is so common that some brands (e.g.,
Fortrezz [15]) give warnings regarding RF interference, and
explicitly ask consumers to not use the alarm in life support-
ing situations. Observe that even though alarmActive is set,
the states of the physical world and application have diverged.
Further, if the sensors detect the intruder again, the applica-
tion will not retry to activate the alarm because as per the
application’s state the alarm is ringing. Clearly, the devel-
oper does not anticipate such a failure, and this divergence is
irreversible without manual intervention. Such inconsisten-
cies cause changes in application semantics and compromise
correctness, and may severely affect smart-home users.

Moreover, stale hard reads may also break correctness of
an application. For example, recent CO2 level events might
never get delivered to the CO2 vent application in Listing 1.
By reading a stale CO2 level, the application may incorrectly
turn off the exhaust fans.

Besides device failures, similar issues arise if an application
crashes. For instance, an inconsistency arises if the smart
security application fails between sending a command to set
the alarm (line 4) and setting the active state to true (line 5).

Finally, applications may modify shared soft and hard states
concurrently [40] which can cause canonical interleaving
based inconsistencies [39].

As an example, the following quote from a disgruntled
SmartThings customer [9] who got robbed during his vaca-
tion shows the impact of the inconsistency problem: “More
importantly, we were robbed when we were out on vacation. ...
The logs show the motion of the robbers, but it never sounded
the alarm ... I no longer trust it to do what it is supposed to
do when it is supposed to do.”

3.2 Dependency
In the previous section, we showed connections between hard
states and soft states that are potential sources of inconsisten-
cies due to hard read/write failure. We call these connections
between two operations on hard states or two operations be-
tween soft and hard states that are semantically associated, a
dependency. By identifying dependencies in an application,
we can study the effects of failures on its correctness.

In order to systematically analyze smart-home applications,
and understand how failures can affect them, we categorize

USENIX Association 2019 USENIX Annual Technical Conference 93

dependencies into four classes, using the following notations:
we represent a hard read to device D as HRD, and denote a
hard write to device D with value V as HWD(V). A soft read
from application state X is denoted as SRX , and a soft write
to state X with value V is represented as SWX(V).

1. HRD → HWD′(V): a dependency in this category cap-
tures the effect of a failure in a HRD. The read might fail to
return any value if device D is unavailable, or it might return
a stale value. In either case, it implies that the application
may exercise the dependency incorrectly, thus breaking its
semantic. Such a dependency in an application can be because
of a control dependence [27] or a data dependence.

If the dependency is a control-dependence [27], the value
of HRD controls the execution of HWD′(V). For example, in
Listing 1, the dependency between lines 12 and 13, and also
between lines 15 and 16 are control dependences. The hard
read in line 11 flows into the control statements in lines 12
and 15. Therefore, a stale read at line 12 might incorrectly
switch off the exhaust fans, and update the soft state even
though the CO2 levels are unsafe. A read value can also flow
into a hard write via data dependencies. For example:
a = HRD1; c = foo(a, b); HWD2(c).

2. HRD → SWX(V): this dependency affects the execution
of a soft write. Analogous to HRD → HWD′(V), this results
in a missing soft write or an incorrect soft write, because of
control and data dependences. In turn, the incorrect soft write
leads to unexpected program behavior when the state is read
elsewhere. In our running example, this dependency exists
between lines 12 and 14, and also lines 15 and 17.

3. HWD(V)→ SWX(V ′): a hard write to soft write depen-
dency is more subtle since SWX(V ′) is not a control or a data
dependence on a HWD(V). Nevertheless, we observe that se-
mantically tying a soft state with a hard state — meaning the
soft state is an indicator of the hard state — is a common prac-
tice in many smart-home applications. Developers use this
technique mainly to save battery: by associating a soft state
with an actuation, developers can use the soft state elsewhere
in the code instead of reading hard states.

For example, in the CO2 Vent application, the developer
implicitly creates a HWswitches(ON)→ SWactive(true) depen-
dency between lines 13 and 14, and also between lines 16 and
17. Thus, a failure in turning on switches, even if temporary,
leaves a permanent inconsistency. Any subsequent change in
the CO2 level, even above the level, precludes turning on
the exhaust fans.

To find a HW → SW dependency in the code, we compute
the postdominance relation [23]: a code point b postdominates
a code point a, if b is executed on every path from a to the end
of the analyzed entity, which in our case, is an event handler.
After computing postdominance instances, we manually look
at all instances to confirm if the pair is semantically tied.
Accordingly, we infer a case for semantic error if the soft
state is read elsewhere in the application.

4. SWX(V) → HWD(V ′): this dependency has the same

semantic effect as HWD(V)→ SWX(V ′).
Note that all dependencies with soft reads (i.e., SRX→∗),

are not directly related to device failures. However, we still
statically compute all such control and data dependences as
an incorrect soft read can produce unintended behavior. Con-
cretely, a soft read can be on a state determined by an incor-
rect, inconsistent, or missing soft write originating from the
dependencies described above.

3.3 Analysis and Findings

We statically analyzed 147 SmartThings applications [19]
and 35 OpenHAB applications chosen from IoTBench [10]
by adding phases to the Groovy compiler. The AST visitors,
GroovyClassVisitor [8], allow us to build a call graph per
entry point and an intermediate representation (IR) amenable
to data and control-flow analysis.

We analyzed the applications using inter-procedural data
and control-flow analysis to understand the dependencies
and their implications. Our analysis yields two key benefits:
(i) understand the implications and the extent of failures on
a large set of smart-home applications, and (ii) mitigate or
eliminate the problems with our programming abstraction,
called transactuation.

On average, the studied applications have three triggers,
and manage a diverse set of devices (4–5 capabilities). In
order to get a holistic view of the home state, on average,
the applications perform three hard reads. They also perform
between seven to nine hard writes on average. This shows that
many of these applications try to provide automation among
a set of devices (e.g., turning on restroom light, preparing
coffee, and playing music, when a user wakes up), instead of
managing a single device. Additionally, our analysis revealed
that developers regularly use soft states to share states not
only among handlers, but also among different applications.
These results indicate that smart-home applications are fairly
complex, and their behavior could be complicated through
the use of handlers triggered by events that read/write both
hard and soft states.

More specifically, we observed that, on average, applica-
tions have 3–10 instances of HR→HW, 1–2 instances of
HR→SW and 1–2 instances of HW→SW dependencies. We
inspected these dependencies to find their potential implica-
tions on systems lacking appropriate abstractions to capture
failures. We categorized the implications as follows: (i) miss-
ing actuation, (ii) wrong actuation, (iii) inconsistent soft state,
(iv) missing notification, and (v) wrong notification . These
implications can lead to unwanted outcomes, some of which
have serious consequences such as security threats, health
hazards, and missing critical alerts, e.g., a fire alarm not rung.
They may also cause inconveniences, e.g., erroneous automa-
tion, incorrect notifications, sirens not turned off. Out of all
182 applications, our analysis unearthed 67 SmartThings and
32 OpenHAB applications, that have unintended effects. Due

94 2019 USENIX Annual Technical Conference USENIX Association

Application Type Consequence Dependency Correction/Mitigation
Smart Humidifer (ST) Automation Wrong status flag causes humidifier HW→ SW Correct status flag to retry

to never be turned on/off. SR→ * turning humidifier on/off later.
Incorrect notification. Notify glitch to user.

Thermostat Auto Off (ST) Energy Wrong status flag causes thermostat HW→ SW Correct status flag to retry
to never be turned on/off. turning thermostat on/off later.

CO2 Vent (ST) Safety Wrong status flag causes exhaust HW→ SW Correct status flag to retry
fans to never be turned on/off. SR→ * turning exhaust fans on/off later.

Elder Care (ST) Safety Missing elder inactivity notification HR→ HW Notify glitch to user.
Smart Care (ST) Safety Alarm not armed. Bad interleaving Notify glitch to user.

Missing notification. HW→ SW
Alarm (OH) Security Wrong status flag causes sirens to HR→ SW Correct status flag to retry

never be turned off. SR→ HW turning sirens off.
Fire Detection (OH) Security Wrong status flag causes fire alarm HW→ SW Correct status flag to retry

to never ring SR→ * ringing alarm later.
Forgiving Security (ST) Security Alarm does not ring. HW→ SW Notify glitch to user.

Incorrect notification. SR→ *
Lock It When I Leave (ST) Security Door not locked but home vacant. HR→ HW Notify user to lock manually.

Table 1: Critical undesirable consequences in smart-home applications if failures are not handled and how developers can correct
or mitigate the problems. ST and OH are abbreviations for SmartThings and OpenHAB, respectively.

to space constraint, we only show a subset of them with unin-
tended semantics and potential fixes in Table 1.

To address these implications, a developer needs to pre-
serve the semantic invariants of the dependencies to avoid
discrepancy between the physical and application realms. One
key trait of these applications is that their semantics tolerate
different numbers of failed hard reads and writes. For exam-
ple, for HR→HW in the application that computes average
humidity level and reacts accordingly, even if some hard reads
are stale based on their timestamp (i.e., some humidity sen-
sors fail), the application can proceed with correct semantics
as long as some sensors function properly. On the other hand,
for HW→SW in the application that locks all doors and set
the home state to safe, the developer needs to ensure that the
home state is not set, even if only one door fails to be locked.
To summarize, the following two key aspects are missing in
existing IoT abstractions: 1. identifying the inherent con-
nection between application semantics and number of failed
operations, and 2. recomputing application states to preserve
invariants under failed hard reads/writes.

4 Transactuations

To address the issues discussed in the previous section, we
introduce a new abstraction called transactuation that al-
lows a developer to build a reliable smart-home application.
Transactuations provide the following two guarantees: (1)
preserve dependencies between reads/writes to hard states
and soft writes (i.e., HR→SW and HW→SW) even in cases
of hardware and communication failures. (2) ensure isolation
among transactuations that execute concurrently.

The concept of transactuations is very similar to database
transactions. Yet, due to the intrinsic nature of physical world,

it is impossible to ensure similar transactional guarantees.
We note that transactuations are not meant to replace trans-
actions completely. Instead, they are designed to address a
similar problem in a cyber-physical environment which inher-
ently prevents us from making strong assumptions. Precisely,
transactuations and transactions differ as follows:

1. Atomic durability: atomic durability [36] guarantees
that either all updates inside a transaction eventually become
durable, or none of them becomes durable. Since IoT de-
vices can neither be locked nor rolled back (e.g., in case of
some failures), transactuation cannot guarantee atomic dura-
bility of hard writes. More specifically, unlike a transaction, a
transactuation only guarantees atomic durability of soft writes
but not hard writes inside it. Thus, if a hard write fails, a
transactuation still commits by forcing its soft states to be
consistent with its hard states, as per developer specified poli-
cies (see Section 4.1).

2. Isolation & Atomic visibility: strong isolation models
(e.g., serializability or snapshot isolation) requires a trans-
action to read a consistent snapshot of a system (e.g., the
last committed state) and precludes a use of partially com-
mitted states. A transactuation executes on the latest known
consistent snapshot of the physical world, in isolation from
other concurrent transactuations. However, two concurrent
transactuations can execute on different snapshots of the phys-
ical world in absence of any committing transactuation. Addi-
tionally, (internal) atomic visibility ensures that effects of all
updates in a transaction become visible to another transaction
atomically [36]. Transactuations are also capable of guaran-
teeing internal atomic visibility: effects of a transactuation
become atomically visible to other transactuation. However,
in a smart home domain, consumers will unavoidably ob-
serve the effect of a hard write operation the moment it gets

USENIX Association 2019 USENIX Annual Technical Conference 95

executed in an actuator. Thus, it is impossible to provide ex-
ternal atomic visibility. For instance, one cannot expect that
a smart-home user to observe all door locks become locked
instantaneously.
Transactuations, further add to the definition of consistency
based on consistency between hard reads/writes and soft
writes. Transactuations preserve two invariants as follows:
(D1) A transactuation guarantees that if it executes, the stal-
eness of its hard reads is bounded, as per the developer speci-
fied tolerance. A developer leverages this invariant to ensure
inconsistencies arising out of breaking HR→ * dependencies
are detected, and appropriate actions are taken.
(D2) If writes to soft states are committed, it implies that
sufficient number of hard writes as per developer specifica-
tion have successfully executed. A developer leverages this
invariant to enforce consistency of HW→ SW dependencies.

4.1 Abstraction & API
Transactuations contain three pieces of logic which a devel-
oper writes as lambda expressions. A lambda expression is a
function that can be passed as an argument to another func-
tion [1, 7, 11]. In the rest of this paper, we refer to these
lambda expressions as lambdas. A transactuation can have the
following three lambdas: perform lambda, onSuccess lambda,
and onFailure lambda.

perform lambda. A perform lambda contains the core
logic of a transactuation. Inside a perform lambda, a devel-
oper can perform hard writes (actuate(Device, Value)),
soft reads (read(State)), and soft writes (write(State,
Value)) as shown in Listing 3.

To assign a perform lambda to a certain transactuation, a de-
veloper calls the perform() method and passes the lambda as
an argument as shown in lines 5–15 of Listing 3. The method
signature is perform(performLambda, [sensorList,
timeWindow, sensingPolicy], [actuatingPolicy]).

A developer cannot explicitly issue a hard read inside a
perform lambda. Instead, she has to specify a list of required
hard states as an argument (i.e., sensorList) to perform()
method. The required hard states are read before perform
lambda is executed, and a list of available hard states are ac-
cessible as key-value pairs to perform lambda, using sensors
parameter of a perform lambda (line 5). Disallowing explicit
hard reads inside a transactuation prevents reading stale or
null sensor values, which can break application semantics.

To preserve consistency between hard reads and soft writes
in case of a sensor unavailability, a developer can use a time
window along with a sensing policy. The time window speci-
fies that the sensor list must be validated such that, after vali-
dation, the list of available sensors includes those that have
received events close in time. Specifically, a time window
defines the duration when the transactuation triggering event
and read hard states remain valid. For instance, a window of

1 function handler(evt) {
2 let tx = Transactuation(evt);
3 // executes if all CO2 sensors received
4 // events in past 5s w.r.t. triggering event
5 tx.perform(func(sensors){
6 let co2 = sensors[’co2’];
7 let active = read(’active’);
8 if (co2 >= threshold && !active) {
9 //if all fans can be on, set active to true

10 actuateAll(’fans’, ’on’);
11 write(’active’, true);
12 } else if (co2 < threshold && active) {
13 ...
14 }
15 }, [’co2’], 5, ’all’, ’all’);
16 // executes if both policies are met
17 tx.onSuccess(func(evt) {
18 let txs = Transactuation(evt);
19 txs.perform({
20 actuate(’msg’, ’CO2 is high’);
21 }, ’none’, ’none’);
22 txs.execute();
23 });
24 // executes if either one policy is not met
25 tx.onFailure(func(evt) {
26 let txf = Transactuation(evt);
27 ...
28 });
29 tx.execute(); }

Listing 3: CO2 Vent written with transactuation. The
code presented here is in synchronous style but our
implementation uses asynchronous Node JS.

10 seconds has the following intent: a hard state passes valida-
tion if its most recent event and the transactuation triggering
event are not more than 10 seconds apart.

A sensing policy is an acceptable level of hard-read failures
that a transactuation can tolerate. It specifies that under what
condition a perform lambda can be executed over a returned
list of window-validated sensors. The perform lambda in turn
may or may not execute depending on the sensing policy.
Transactuations support three sensing policies:
• All: ensures that the perform lambda executes only if

all hard states in the sensor list pass validation. Consider an
application that reads presence sensors of every user and turns
on cameras if no one is present. For privacy, all sensors need
to pass validation. If even one presence sensor fails, it should
not risk turning on the cameras since it violates privacy.
• Any: guarantees the execution of the perform lambda

as long as at least one hard state in the sensor list passes
validation. For example, an application that computes average
humidity level from multiple sensors to control fans, executes
accordingly with correct semantics, even if some sensors fail,
but not all.
• None: states that the perform lambda executes over the

returned validated list of hard states regardless of how many
hard states are unavailable.

Observe that a time window along with a sensing policy
helps preserve HR→* dependency as per the developer’s in-
tention to preserve invariant (D1). To preserve invariant (D2),

96 2019 USENIX Annual Technical Conference USENIX Association

a developer needs to specify an actuating policy. The actuat-
ing policy is an acceptable level of hard-write failures that is
tolerable. To meet an actuating policy in case of a failure, soft
writes inside a transactuation roll back to their initial values,
and onFailure lambda executes. Similar to a sensing policy,
an actuating policy supports the following semantics:
• All: states that modifications to soft states commit if all

hard writes successfully finish. An example of this policy is
an application that locks all doors and sets home state to safe.
If even one door fails, the home state should not be set.
• Any: guarantees that soft state modifications inside a

lambda commits if at least one hard write succeeds. For ex-
ample, an application that actuates all sirens and sets the flag
ringing. Even if only one siren rings, the flag should be set.
• None: states that soft writes commit despite of failures.

onSuccess lambda. An onSuccess lambda executes if the
perform lambda of a transactuation succeeds (i.e., sensing
and actuating policies are met). A developer can assign an
onSuccess lambda to a transactuation via onSuccess() as
shown in line 17 of Listing 3.

onFailure lambda. An onFailure lambda executes if a
transactuation cannot meet its sensing or actuating policies. It
is assigned to a transactuation via onFailure() as depicted
in line 25 of Listing 3.

When a developer has set up all the lambdas for a transactu-
ation, she executes the transactuation by invoking execute()
(line 29), which is an asynchronous call that executes the
perform lambda in the background.

Listing 3 illustrates the CO2 Vent rewritten with the
transactuation abstraction. The perform lambda is parame-
terized with 5s time window. The transactuation only reads
one hard state, co2. The lambda executes if the latest sensor
update from co2, and the triggering event, which is also co2
fall in the 5 second time interval. switches, which binds
to an array of fans, requires the “all” policy if we want the
soft writes to be consistent with the actuations. The soft state
active will be set to true only if all fans can be turned on,
otherwise, active remains unchanged.

4.2 Chaining transactuations
A transactuation can be chained to other transactuations by
invoking it in their onSuccess and onFailure lambdas. As we
shall see in the next section, the runtime guarantees to execute
chained transactuations sequentially: if a transactuation τ j
is invoked in onSuccess lambda of τi, τ j is guaranteed to
see the updates τi makes. We call this ordered execution of
transactuations as T-Chain. This is particularly relevant in
an asynchronous runtime where high latency operations can
finish in arbitrary order, executing outside the critical path
such as in worker threads [25, 44]. Thus, if τ j wants to use a
soft state written by τi, τ j needs to be invoked in onSuccess

lambda of τi. In addition, if τ j requires actuations of τi to
complete before it, these two transactuations must form a
T-Chain.

5 Relacs

In this section, we detail the design of our runtime, called
Relacs, that execute smart-home applications, along with a
supporting key-value store called Relacs Store.

5.1 Relacs Store
All soft and hard states inside a transactuation are stored in a
key-value store called Relacs Store. It hides all complexities
of working with sensors and actuators by allowing developers
to not only perform read/write operations on soft states inside
a transactuation, but also to issue hard reads/writes.

Conceptually, every state inside the Relacs Store maintains
two values, speculative and final. A speculative value means
that the state has been updated logically in the Relacs Store,
but is not confirmed to be final (i.e., issued to an IoT device).
For example, a transactuation that wants to unlock a door will
have the speculative value of the door set to unlocked, before
the actuation command succeeds. When Relacs receives an
ack event confirming the success of an actuation command,
it updates the final value and discards the speculative value.
Along with setting the final value, the Relacs Store also logs
the timestamp of the ack event for validating a time window
of a transactuation reading that hard state. In Section 5.2, we
explain how speculative states help Relacs to speculatively
execute transactuations.

Since multiple hard writes on the same state can execute
before the system receives an ack from the corresponding de-
vice, Relacs Store needs to record all versions of speculative
values that have not been finalized yet. When reading a state,
Relacs Store returns the latest speculative value, or the final
value if no speculative value exists. For instance, consider
the following transactuations: a transactuation τi sets a lamp
color to red. While the lamp is changing its color, τ j changes
the lamp color to green. In this example, Relacs Store logs
both speculative values. Thus, if τk tries to read the state of
the lamp, Relacs Store returns green, even if the lamp has not
completed executing the first actuation command to change
its color to red.

5.2 Execution Model
A transactuation execution model comprises of the following
three phases:

1. Hard read phase: to start executing a transactuation, the
system first needs to determine if it can read the required hard
states in the sensor list which satisfy the specified window
and the sensing policy. If so, the system proceeds to the next
phase. For a poll-based sensor, if Relacs fails to validate the

USENIX Association 2019 USENIX Annual Technical Conference 97

window, it polls the sensor to check if it can get a fresh value.
For a push-based sensor, Relacs simply waits, as long as the
window is valid, to receive an event from the sensor. Observe
that the window is valid as long as the specified time window
has not passed since the transactuation triggering event. If the
window becomes invalid, and the list of received events fails
staleness validation, it cannot execute the perform lambda,
and proceeds to execute the onFailure lambda.

2. Speculative Commit Phase: since IoT devices cannot
roll back, Relacs needs to make sure that a transactuation will
definitely commit before performing real actuations. There-
fore, it employs a speculative execution model where a per-
form lambda first executes speculatively, without perform-
ing any real actuation. Once the perform lambda finishes, it
tries to speculatively commit like a normal transaction inside
Relacs Store. Therefore, new speculative values are commit-
ted for modified soft and hard states. Additionally, committing
new speculative values may trigger other handler functions
subscribed to these states. Finally, Relacs starts executing
the onSuccess lambda of the transactuation when it commits.
Note that these lambdas triggered by speculative commit exe-
cute their transactuations speculatively.

3. Final Commit Phase: in the last phase, Relacs sends
actuation commands that correspond to hard writes. A
transactuation τi can start its final phase, when the following
three conditions hold: first, all transactuations that precede
τi in the T-Chain finally commit. Second, all transactuations
updating states that τi read, finally commit. Third, no other
finally committing τ j conflicts with τi. More specifically, the
readset of τi does not have any intersection with the writeset
of some finally committing transactuation, and the writeset
of τi does not intersect with both readset and writeset of some
finally committing transactuation.

Relacs finally commits the transactuation when sufficient
acks are received from actuators to satisfy its actuating pol-
icy. If the transactuation times out without satisfying its ac-
tuating policy, all soft writes inside the transactuation roll
back to their initial state, and the transactuation finally com-
mits. Next, onFailure lambda executes if it has been de-
fined. Moreover, all speculative transactuations invoked by
the failed transactuation abort (e.g., chained transactuations),
and transactuations that bear data dependencies with the
failed transactuation need to re-execute.

5.3 Relacs Runtime
Relacs is built atop serverless computing [32, 42]. The run-
time comprises two classes of functions namely application
functions and system functions. We explain these functions
in detail here.

Application Functions. An application can comprise sev-
eral handlers which are triggered when particular states in
the Relacs Store change (publish-subscribe model), and each

handler can comprise several transactuations. An application
submitted to run by Relacs system is transformed into a set of
application functions to run on serverless instances as follows:

1. For each handler, Relacs transforms the logic of an em-
bedded transactuation (i.e., perform lambda) into a transaction
that can execute transactionally inside the Relacs Store.

2. The logic inside onSuccess lambda and onFailure
lambda are transformed into stand-alone serverless functions
called success and failure functions, respectively, hereafter. If
onSuccess lambda or onFailure lambda is comprised of trans-
actuations with their own onSuccess lambda and onFailure
lambda (T-Chain), the transformations are applied recursively.

3. Finally, every handler is transformed into a runnable
stand-alone serverless function, called handler function.

System Functions. Relacs comprises a serverless function
called updater function that is invoked whenever the state of
a sensor or an actuator changes. Upon receiving a notifica-
tion, the updater updates the hard state corresponding to the
event in Relacs Store, and launches an instance of subscribed
handler function(s).

Final-committer is a designated function to perform the
final commits. It selects speculative transactuations that can
finally commit without breaking the final commit rules, issues
all of their actuation commands, and marks the actuations as
issued. When a successful actuation receives a notification
(ack) from an IoT device, the updater function updates its
corresponding state in Relacs Store, and marks the actuation
command as done transactionally.

In order to detect an actuation failure, Relacs has a failure-
detector function that runs periodically, and checks whether
an ack is received for an actuation command. If after certain
threshold no ack is received, the failure detector marks the
actuation as failed. If actuating policy is not met, the enclosing
transactuation commits with rollback of soft writes, which
triggers a re-executor function to re-execute transactuations
that have data dependencies with the failed transactuation.

5.4 Fault Tolerance
A function in serverless computing is not guaranteed to com-
plete, and can terminate at any arbitrary point of execution.
Yet, Relacs guarantees applications to execute reliably despite
failures as follows.

Relacs ensures that all transactuations are executed exactly-
once even if an application function (handler, success, or fail-
ure) fails during its execution. To this end, Relacs maintains
two logs: function log and transactuation log. Function log
is a write-ahead log for application functions. The function
name along with ID of the triggering event is recorded in the
function log before the function executes. Transactuation log
atomically records a transactuation name and the event ID
during the speculative commit of a transactuation along with
updates to soft/hard states.

98 2019 USENIX Annual Technical Conference USENIX Association

A system function called serverless checker runs periodi-
cally, and inspects the function log to execute functions which
have failed. In either case, the serverless checker invokes the
failed functions again. This might lead to duplicated execu-
tions of transactuations that have executed. To prevent this,
Relacs checks if a particular transactuation is in the transactu-
ation log, and skips its execution if present. 1

Currently, the updater failure is treated as an equivalent of
sensor or actuator failure and it is handled by transactuation
semantics. To address final committer failure, Relacs runs
the final committer periodically to complete pending final
commits by actuating unissued actuations. To preclude con-
tention between the periodic and the regular final committer
that can run concurrently, Relacs uses leases and ETAGS à la
Tuba [21] in the final committer to ensure correctness.

5.5 Implementation

We implemented Relacs runtime and Relacs Store on top of
Microsoft Azure. We used Azure Function (serverless com-
puting) to implement the runtime, and used Azure Cosmos
DB to build Relacs Store. All serverless functions were im-
plemented with Azure Function. Application functions are
triggered by HTTP calls and system functions are triggered
on Cosmos DB updates or periodic timers. The parts of the
protocol that need to update Relacs Store transactionally (in-
cluding perform lambda) are transformed into Cosmos DB
stored procedures [3].

Currently, Relacs has only been integrated with Samsung
SmartThings. SmartThings allows a developer to build a web
service that connects with devices in a home [18]. We built
a gateway that forwards actuation commands from Relacs to
actuators and also polls sensor data.

5.6 Discussion

As described, Relacs validates sensor failures through event
timestamps and actuator failures through timeouts. For sen-
sor validation, as explained, if validation fails and a device
is pollable, Relacs polls the device within the window con-
straints. If a device is push-based but pollable, Relacs polls
the device and if the validation fails again, it waits for its push-
interval within the time window. However, if the device is
purely push-based, Relacs cannot differentiate between inac-
tivity and failure. We inspected 188 SmartThings-compatible
devices and found that 113 of them are pollable. Likewise, ac-
tuation failures are detected with timeouts, first on initial ack
from smart-home connector, followed by notification on final
actuator state change. Again, if the ack message is lost, Relacs
can incorrectly rollback soft states. However, transactuations

1Note that any failure during the speculative commit results in a reg-
ular transactional abort and transactuation log is not updated. Hence the
transactuation is retried when the function reexecutes.

can still help developers to prioritize home safety over con-
venience such as always setting a soft state to a conservative
value; e.g., in Smart Security (Listing 2) to ensure that the
alarm eventually rings.

6 Evaluation

In this section, we report our evaluation results on pro-
grammability, effectiveness of transactuations in enforcing
correctness, and the overhead incurred by Relacs to provide
transactuation semantics.

We selected 10 SmartThings applications from the appli-
cations that we statically analyzed. These applications are
publicly available on SmartThings repository [19]. The ap-
plications cover the four most common categories—Security
(Sc), Safety (Sf), Convenience (Cn), and Energy Efficiency
(Ee). Instead of using the original version that runs on Smart-
Things cloud, we implemented the following three versions of
the applications, that run on Azure Functions, using Javascript
Node JS [44]. This allows us to compare an application with
transactuations against an application without transactuations
in an apple-to-apple fashion.
• BE: we wrote a best-effort version (BE) of the appli-

cations without the transactuation abstraction. The BE ver-
sion follows the default semantics that ignores device failure,
exactly-once execution, and isolation.
• BE+Con: since the BE version ignores potential failures

in devices or applications, we implemented a best-effort with
consistency (BE+Con) version of an application which adds
code that keeps device states consistent with application states.
More specifically, BE+Con introduces both sensor window
validation and soft state rollback code. However, it ignores
the isolation guarantee that transactuations provide.
• TN: we also implemented these applications with the

transactuation abstraction (TN). 5 applications out of the eval-
uated 10 applications used T-Chain to establish order among
hard and soft states.

Experimental setup. We set up SmartThings compatible
devices and measured the round trip latency of four devices in
a typical smart home: a door lock, a bulb, a power strip, and a
smart power plug. The door lock has a significant latency of
nearly 3.6s on average and maximum of nearly 9.8s, over 100
trials. The other devices incur an average latency of nearly
0.7s with the maximum at nearly 3.7s. Since we had a limited
set of devices, we parallelized our experiments by simulating
the devices using latency data on a Raspberry Pi Model 3 [13].
It comes with a 1.2 GHz 32-bit quadcore ARM Cortex-A53
processor and 1 GB RAM. In addition, the simulator also
allowed us to easily inject failures for our experiments.

USENIX Association 2019 USENIX Annual Technical Conference 99

Application #HR #HW Transactuation Policy LOC
BE BE+Con TN

Rise And Shine (Cn1) 1 (*) 1 2 (none, none) 72 195 68
Whole House Fan (Cn2) 1 (*), 3 2 (*) 1 (none, none) 29 176 26
Thermostat Auto Off (Cn3) 1 (*) 2 1 (all, none), 1 (all, all), 1 (none, all) 70 198 68
Auto Humidity Vent (Ee1) 1 (*), 1 3(*), 1 1 (any, none), 1 (none, any), 49 170 100

1 (none, none), 1 (all, any)
Lights Off With No Motion (Ee2) 1 (*), 1 1 (*) 2 (all, all) 56 161 67
Cameras On When Away (Sc1) 2 (*) 2 (*) 1 (all, none), 1 (any, none) 31 149 88
Nobody Home (Sc2) 1 (*) 1 1 (all, none), 1 (any, none), 1 (none, none) 65 175 62
Smart Security (Sc3) 2 (*) 2 (*) 1 (all, all) 144 323 144
CO2 Vent (Sf1) 1 2 (*) 1 (all, all) 29 152 26
Lock It When I Leave (Sf2) 3 (*) 2 (*), 2 2 (none, none), 1 (all, none) 51 180 54

Table 2: Properties of each benchmark application including the number of hard reads and hard writes (* denotes an operation
to an array of devices with a single command, for example, 2 (*) means 2 operations, each accessing a device group); the
fault-tolerance policies for the TN configuration in a format of (sensing, actuating) (Col 4); and programability shown by LOC
comparison among transactuation (TN), best effort (BE), and best effort with consistency (BE+Con) (Col 5).

6.1 Programmability
In order to evaluate the programmability and convenience of
using transactuation in contrast to manually writing failure
handling code, we compare lines of code (LOC) of applica-
tions, using CLOC [6].

Table 2 shows the programmability evaluation (LOC) along
with the number of hard reads and writes, and transactuation
policies we employ for each application. Observe that TN and
BE versions are comparable in LOC despite no guarantees
in the BE version, except in Ee1 where we introduce new
soft states and four transactuations, each part of T-Chains, in
order to ensure consistency. BE+Con version requires sub-
stantial code to explicitly handle failures. As mentioned ear-
lier, BE+Con version validates sensor freshness similar to
transactuation and may roll back soft states after determining
the outcome of actuations for hard write to soft write depen-
dencies. Finally, although transactuations require more code
in order to create T-Chains, it automatically handles failure,
and simplifies writing reliable applications considerably.

6.2 Correctness
Table 3 shows the applications that we evaluated with their
inherent undesirable behaviors on transient or longer dura-
tion failures. The second column shows the undesirable be-
haviors, and the third column shows the outcome of using
transactuations. The last column explains the mechanism
transactuations use to resolve or mitigate the issue. We con-
sidered different types of failures that transactuations can ad-
dress (i.e., unavailable sensors and failed actuations), and in-
jected these failures by dropping event or actuation messages.
Transactuation addresses these issues with three techniques.
First, sensor staleness validation prevents the execution of per-
form lambda and executes onFailure lambda that can notify

a user. Second, actuation losses are detected automatically
and associated soft writes are rolled back to ensure consis-
tency. Third, when one actuation depends on another, we used
an intermediate soft state to chain two transactuations each
having actuations. For example, in Sc3 (Smart Security) ap-
plication, inconsistency between the alarm actuation and the
soft write is resolved using roll back to eliminate the issue.
However, some applications need to use multiple chained
transactuations to correctly address actuation dependencies.

6.3 Overhead

To evaluate the overhead of transactuations, we measured
execution time of the applications as follows. We started
timing when an application began executing, and stopped
when every soft write committed and all actuations completed.
Our performance results are summarized in Figure 1. Each
value is the mean of 30 runs, with 95% confidence intervals.

Failure-free. We first compare the execution times of TN
and BE versions without any injected failures. The overhead
of transactuations is attributed to (1) safeguarding against
inconsistencies due to inherently concurrent execution, (2)
providing fault tolerance, and (3) enforcing actuation orders of
T-Chains. We note that the final committer function imposes
significant overhead on Relacs since it is invoked2 automati-
cally by CosmosDB updates. For instance, we observed that
its start may be delayed between zero to five seconds. The
periodic final committer which we set to run every second
helps to mitigate this overhead.

Figure 1a shows that, on average (geomean), the TN version
incurs 1.5 times slowdown compared to BE. Observe that the

2Other functions except the re-executor are invoked by HTTP calls.

100 2019 USENIX Annual Technical Conference USENIX Association

App Undesirable consequence Transactuation effect Mechanism used
Cn1 Mode not set permanently Soft state rollback
Cn2 Incorrect behavior Issue detected and user notified Sensor staleness validation

Fans not ON irreversibly Soft state rollback
Cn3 Thermostat not OFF Soft state rollback

Incorrect mode Soft state rollback
Ee1 Incorrect energy and operation time reported Soft state rollback and chaining

Incorrect behavior Issue detected and user notified Sensor staleness validation
Ee2 Incorrectly turning lights ON/OFF Issue detected and user notified Sensor staleness validation
Sc1 Incorrect behavior Issue detected and user notified Sensor staleness validation

Actuation failure Chaining
Sc2 Incorrect mode set Issue detected and user notified Sensor staleness validation

Home mode change w/o notification soft state rollback
Sc3 Intruder motion not detected Issue detected and user notified Sensor staleness validation

Alarm not active irreversibly soft state rollback
Sf1 Incorrect behavior Issue detected and user notified Sensor staleness validation

Exhauts not ON irreversibly soft state rollback
Sf2 Door unlocked but home vacant Issue detected and user notified Sensor staleness validation

Door locked at arrival Chaining

Table 3: Applications with undesirable consequences on induced failures. Column 3 shows failure avoidance or mitigation when
written with transactuations. Column 4 shows the internal mechanism used by the transactuations. A checkmark implies that
transactuation automatically resolves the issue.

speculative commit duration (TN.SC) is significantly smaller
than the final commit duration (TN.FC). Figure 1a also breaks
down the final commit time into actuation time (TN.FC.ACT)
and the final-committer triggering overhead (TN.FC.TRIG).
As mentioned earlier, the triggering overhead is significantly
large, especially, in the case of a long T-Chain like Ee1 (4
transactuations).

With failure. In this scenario, we conducted two experi-
ments. In each experiment, we used a dummy application
that issued a dummy actuation, and updated a dummy soft
state. In the first experiment, the dummy actuation turned on
a smart switch (low-latency actuation). In the second one, it
actuated a door lock (high-latency actuation). We introduced
an artificial data dependency (RAW) by forcing all benchmark
applications to read the dummy soft state before executing
their core logic. Lastly, we injected a failure to the dummy ac-
tuation to trigger failure detection and handling in the dummy
application and re-execution of the benchmark applications
to repair the broken data dependency. Because devices have
different actuation latencies, the timeout thresholds to declare
failed actuations are specific to each device. More specifically,
we used the maximum observed latency for each device (i.e.,
4s for the smart switch and 10s for the door lock).

Figure 1b compares the execution time of the failure-free
case against the two failure experiments. The additional over-
head we observe here is the failure detection overhead which
includes the timeout (TN.FD.TO) and the overhead of trigger-
ing the re-executor function (TN.FD.TRIG). Similar to the
final committer, the re-executor is invoked automatically by
Cosmos DB when actuations are marked as failed, thus it

incurs similar overhead. Observe that the failure experiments
have two stacked bars of speculative commits. The second
bar shows the re-execution of transactuations with broken
dependencies.

As expected, introducing a failure results in longer exe-
cution times for the applications. This slowdown is caused
by the timeout threshold plus the re-executor triggering over-
head (~2s). Moreover, the difference between the middle and
right bars for each application is the difference in timeout
thresholds for low and high latency actuations (~6s).

7 Related Work

Checking Correctness. Soteria [22] employs model check-
ing to identify contradicting interactions between IoT appli-
cations. For example, water leak detection turns off a water
valve while smoke detection attempts to turn on a fire sprin-
kler. Prior work like DeLorean [24] models absolute and
relative time to find timing bugs in event driven programs,
e.g., door open at unsafe times. In contrast, our work tackles a
different problem, the lack of reliability and isolation, using a
dynamic technique. IoT analyses also use dynamic taint anal-
yses like techniques to detect source of security breaches [46]
and dynamic program slicing to explain behaviors [40]. We
use static dependence analysis to report potential problems.

Programming abstractions. Using speculative execution
for improving latency and performance is a common tech-
nique in many transactional and replicated systems. These
can be classified into two categories: systems [34, 41, 47]

USENIX Association 2019 USENIX Annual Technical Conference 101

Cn1 Cn2 Cn3 Ee1 Ee2 Sc1 Sc2 Sc3 Sf1 Sf2 gm

Applications

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(s
)

BE
TN.SC
TN.FC
TN.FC.ACT
TN.FC.TRIG

(a) Execution times for BE and TN versions in failure-free
case. We break down the execution time of TN into speculative
commit (TN.SC) and final commit (TN.FC). TN.FC is shown
as actuation time (TN.FC.ACT) and as overhead to trigger the
final-committer function (TN.FC.TRIG).

Cn1 Cn2 Cn3 Ee1 Ee2 Sc1 Sc2 Sc3 Sf1 Sf2 gm

Applications

0

5

10

15

20

25

30
TN.SC
TN.FC
TN.FD
TN.FD.TO
TN.FD.TRIG

(b) Execution time comparison for failure-free and failure cases. For each
application, we show 3 bars, failure-free case (the left bar), low-latency
actuation failure case (the middle bar), and high-latency actuation failure
case (the right bar). For the failure cases, the breakdown includes fail-
ure detection time (TN.FD) which is subdivided into timeout detection
(TN.FD.TO) and re-execution triggering overhead (TN.FD.TRIG).

Figure 1: The execution time of 10 applications chosen from SmartThings repository and their geomean (gm) for BE and TN
versions of applications in failure-free and failure scenarios.

that hide the effects of speculation from applications, and
work [29, 31, 43] that expose speculation results to applica-
tions. While certain applications in the latter case can benefit
by reading speculative values, they need to handle possible
side effects of acting on misspeculated values. With Relacs, ef-
fects of speculatively committed transactuations are exposed
to other transactuations. Yet, no transactuation can finally
commit, and actuate devices until all transactuations that it
speculatively read from finally commit.

Planet [43] provides a mechanism to speculate on partial
state of a transaction in distributed environments. The ab-
straction allows a developer to continue based on a predictive
outcome, and later receive a confirmation or an apology. In
contrast, we target a different environment and problem, and
provide a simplified way to address device failure handling.

Execution semantics and conflict detection. IOTA [40]
defines a calculus for programs in IoT domain. They also
define an execution semantics to eliminate races on actions
against the same physical event. Similar races can be resolved
in our system by reordering transactuations according to pro-
grammer annotations similar to Zave et al. [48]. IOTA also
shows offline analyses to detect device conflicts. Conflict de-
tection in a home can include static model checking [38] or
dynamic analyses [48] to detect feature interactions [38] and
accesses to the same device [26]. They detect commands due
to single event or concurrent independent events to the same
device, e.g., simultaneous turning on and off on a device. The
execution semantics of our system provides isolation naturally

and can easily be enhanced to report device interactions by
intersecting read-write sets of transactuations dynamically.

8 Conclusion

In this paper, we identified a fundamental problem that arises
due to failures in IoT systems that interact with the physical
world. We analyzed smart-home applications, and showed
how application semantics is broken due to different failures
that occur in an IoT environment. We introduced an abstrac-
tion, called transactuation, that allows a developer to build re-
liable IoT applications. Our runtime, called Relacs, enforces
the semantic guarantees of transactuations. Our evaluation
demonstrated programmability, performance, and effective-
ness of the transactuation abstraction on top of our runtime.

9 Acknowledgment

We would like to thank our shepherd, Gernot Heiser and
anonymous reviewers for their insightful and valuable feed-
back. We would also like to thank Nitin Agrawal, Arani Bhat-
tacharya, Juan Colmenares, Iqbal Mohomed, Marc Shapiro,
Pierre Sutra, Ahmad Bisher Tarakji, and Ashish Vulimiri for
their suggestions and helpful discussions.

102 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Arrow functions. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/
Functions/Arrow_functions.

[2] AWS Lambda Retry Behavior. https:
//docs.aws.amazon.com/lambda/latest/dg/
retries-on-errors.html.

[3] Azure Cosmos DB server-side programming:
Stored procedures, database triggers, and UDFs.
https://docs.microsoft.com/en-us/azure/
cosmos-db/programming.

[4] Bluetooth Low Energy. https://www.bluetooth.
com.

[5] CO2 Vent. https://github.com/
SmartThingsCommunity/SmartThingsPublic/
tree/master/smartapps/dianoga/co2-vent.src.

[6] Count Lines of Code. http://cloc.sourceforge.
net.

[7] Expressions. https://docs.python.org/2/
reference/expressions.html.

[8] Groovy ast interface. http://docs.groovy-
lang.org/docs/groovy-2.4.0/html/api/org/
codehaus/groovy/ast/package-summary.html.

[9] Inconsistent Behavior. https://community.
smartthings.com/t/inconsistent-behavior/
35284.

[10] IoTBench-test-suite. https://github.com/IoTBench/IoTBench-
test-suite/tree/master/openHAB.

[11] Lambda Expressions. https://docs.
oracle.com/javase/tutorial/java/javaOO/
lambdaexpressions.html.

[12] OpenHAB: Empowering the Smart Home. https://
www.openhab.org.

[13] Raspberry Pi 3 Model B. https://www.raspberrypi.
org/products/raspberry-pi-3-model-b/.

[14] SmartThings. http://www.smartthings.com/.

[15] SSA1 / SSA2 Instruction Manual. https:
//support.smartthings.com/hc/en-us/article_
attachments/200715310/ssa_manual_14may2011_
-_new_address0.pdf.

[16] Z-Wave Alliance. http://www.z-wavealliance.
org.

[17] ZigBee Alliance. http://www.zigbee.org/.

[18] Web Services SmartThings. https://docs.
smartthings.com/en/latest/smartapp-web-
services-developers-guide/index.html, 2018.

[19] SmartThings Smart Apps. https://github.com/
SmartThingsCommunity/SmartThingsPublic/
tree/master/smartapps, 2019.

[20] Masoud Saeida Ardekani, Rayman Preet Singh, Nitin
Agrawal, Douglas B. Terry, and Riza O. Suminto.
Rivulet: A Fault-tolerant Platform for Smart-home Ap-
plications. In Proceedings of the 18th Doctoral Sympo-
sium of the 18th International Middleware Conference
(MIDDLEWARE ’17), Las Vegas, NV, December 2017.

[21] Masoud Saeida Ardekani and Douglas B. Terry. A Self-
Configurable Geo-Replicated Cloud Storage System. In
Proceedings of the 11th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’14), Broom-
field, CO, October 2014.

[22] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. So-
teria: Automated IoT Safety and Security Analysis. In
Proceedings of the 2018 USENIX Annual Technical Con-
ference (ATC ’18), Boston, MA, July 2018.

[23] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy.
A Simple, Fast Dominance Algorithm. Rice University,
CS Technical Report 06-33870, January 2001.

[24] Jason Croft, Ratul Mahajan, Matthew Caesar, and
Madan Musuvathi. Systematically Exploring the Behav-
ior of Control Programs. In Proceedings of the 2015
USENIX Annual Technical Conference (ATC ’15), Santa
Clara, CA, July 2015.

[25] James Davis, Arun Thekumparampil, and Dongyoon
Lee. Node.Fz: Fuzzing the Server-Side Event-Driven
Architecture. In Proceedings of the 2017 European Con-
ference on Computer Systems (EuroSys ’17), Belgrade,
Serbia, April 2017.

[26] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J.
Brush, Bongshin Lee, Stefan Saroiu, and Paramvir Bahl.
An Operating System for the Home. In Proceedings of
the 9th Symposium on Networked Systems Design and
Implementation (NSDI ’12), San Jose, CA, April 2012.

[27] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. War-
ren. The Program Dependence Graph and Its Use in
Optimization. ACM Transactions on Programming Lan-
guages and Systems, 9(3):319–349, July 1987.

[28] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic,
and Marimuthu Palaniswami. Internet of Things (IoT):
A vision, architectural elements, and future directions.
Future Generation Computer Systems, 29(7):1645–1660,
September 2013.

USENIX Association 2019 USENIX Annual Technical Conference 103

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://docs.aws.amazon.com/lambda/latest/dg/retries-on-errors.html
https://docs.aws.amazon.com/lambda/latest/dg/retries-on-errors.html
https://docs.aws.amazon.com/lambda/latest/dg/retries-on-errors.html
https://docs.microsoft.com/en-us/azure/cosmos-db/programming
https://docs.microsoft.com/en-us/azure/cosmos-db/programming
https://www.bluetooth.com
https://www.bluetooth.com
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps/dianoga/co2-vent.src
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps/dianoga/co2-vent.src
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps/dianoga/co2-vent.src
http://cloc.sourceforge.net
http://cloc.sourceforge.net
https://docs.python.org/2/reference/expressions.html
https://docs.python.org/2/reference/expressions.html
http://docs.groovy-lang.org/docs/groovy-2.4.0/html/api/org/codehaus/groovy/ast/package-summary.html
http://docs.groovy-lang.org/docs/groovy-2.4.0/html/api/org/codehaus/groovy/ast/package-summary.html
http://docs.groovy-lang.org/docs/groovy-2.4.0/html/api/org/codehaus/groovy/ast/package-summary.html
https://community.smartthings.com/t/inconsistent-behavior/35284
https://community.smartthings.com/t/inconsistent-behavior/35284
https://community.smartthings.com/t/inconsistent-behavior/35284
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://www.openhab.org
https://www.openhab.org
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.smartthings.com/
https://support.smartthings.com/hc/en-us/article_attachments/200715310/ssa_manual_14may2011_-_new_address0.pdf
https://support.smartthings.com/hc/en-us/article_attachments/200715310/ssa_manual_14may2011_-_new_address0.pdf
https://support.smartthings.com/hc/en-us/article_attachments/200715310/ssa_manual_14may2011_-_new_address0.pdf
https://support.smartthings.com/hc/en-us/article_attachments/200715310/ssa_manual_14may2011_-_new_address0.pdf
http://www.z-wavealliance.org
http://www.z-wavealliance.org
http://www.zigbee.org/
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/index.html
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/index.html
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/index.html
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps

[29] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian
Seredinschi. Incremental Consistency Guarantees for
Replicated Objects. In Proceedings of the 12th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’16), Savannah, GA, November 2016.

[30] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and Anang D. Satria. What
Bugs Live in the Cloud? A Study of 3000+ Issues in
Cloud Systems. In Proceedings of the 5th ACM Sym-
posium on Cloud Computing (SoCC ’14), Seattle, WA,
November 2014.

[31] Pat Helland and Dave Cambell. Building on Quicksand.
In Proceedings of the 4th Conference on Innovative
Data Systems Research (CIDR ’09), Pacific Grove, CA,
January 2009.

[32] Scott Hendrickson, Stephen Sturdevant, Tyler Harter,
Venkateshwaran Venkataramani, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Serverless
Computation with OpenLambda. In Proceedings of the
8th USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud ’16), Denver, CO, June 2016.

[33] Timothy W. Hnat, Vijay Srinivasan, Jiakang Lu, Tamim I
Sookoor, Raymond Dawson, John Stankovic, and Kamin
Whitehouse. The hitchhiker’s guide to successful res-
idential sensing deployments. In Proceedings of the
9th ACM Conference on Embedded Networked Sensor
Systems (SenSys ’11), Seattle, WA, November 2011.

[34] Manos Kapritsos, Yang Wang, Vivien Quéma, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All about
Eve: Execute-Verify Replication for Multi-Core Servers.
In Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’12),
October 2012.

[35] Mary Beth Kery, Claire Le Goues, and Brad A. Myers.
Examining Programmer Practices for Locally Handling
Exceptions. In Proceedings of the 13th International
Conference on Mining Software Repositories (MSR ’16),
Austin, TX, May 2016.

[36] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel
Madden, and Alan Fekete. MDCC: Multi-Data Center
Consistency. In Proceedings of the 2013 European
Conference on Computer Systems (EuroSys ’13), Prague,
Czech Republic, April 2013.

[37] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi
Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi.
SAMC: Semantic-Aware Model Checking for Fast Dis-
covery of Deep Bugs in Cloud Systems. In Proceedings

of the 11th Symposium on Operating Systems Design
and Implementation (OSDI ’14), Broomfield, CO, Octo-
ber 2014.

[38] Chieh-Jan Mike Liang, Börje F. Karlsson, Nicholas D.
Lane, Feng Zhao, Junbei Zhang, Zheyi Pan, Zhao Li,
and Yong Yu. SIFT: Building an Internet of Safe Things.
In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks (IPSN ’15),
Seattle, WA, April 2015.

[39] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from Mistakes — A Comprehensive Study
on Real World Concurrency Bug Characteristics. In
Proceedings of the 13th international conference on
Architectural support for programming languages and
operating systems (ASPLOS ’08), Seattle, WA, March
2008.

[40] Julie L. Newcomb, Satish Chandra, Jean-Baptiste Jean-
nin, Cole Schlesinger, and Manu Sridharan. IOTA: A
Calculus for Internet of Things Automation. In Proceed-
ings of the 2017 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on
Programming and Software (ONWARD ’17), Vancouver,
Canada, October 2017.

[41] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn.
Speculative execution in a distributed file system. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 191–205, 2005.

[42] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In Proceedings of the
2018 USENIX Annual Technical Conference (USENIX
ATC ’18), Boston, MA, July 2018.

[43] Gene Pang, Tim Kraska, Michael J. Franklin, and Alan
Fekete. PLANET: Making Progress with Commit Pro-
cessing in Unpredictable Environments. In Proceedings
of the 2014 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’14), Snowbird, UT,
June 2014.

[44] Stefan Tilkov and Steve Vinoski. Node.js: Using
JavaScript to Build High-Performance Network Pro-
grams. IEEE Internet Computing, 14(6):80–83, Novem-
ber 2010.

[45] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. Practical Trigger-Action Program-
ming in the Smart Home. In Proceedings of the 2014
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’14), Toronto, Canada, April 2014.

104 2019 USENIX Annual Technical Conference USENIX Association

[46] Qi Wang, Wajih Ul Hassan, Adam M. Bates, and Carl A.
Gunter. Fear and Logging in the Internet of Things. In
Proceedings of the 25th Annual Network and Distributed
System Security Symposium, (NDSS ’18), San Diego,
CA, Februay 2018.

[47] Benjamin Wester, James A. Cowling, Edmund B.
Nightingale, Peter M. Chen, Jason Flinn, and Barbara
Liskov. Tolerating Latency in Replicated State Machines

Through Client Speculation. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’09), April 2009.

[48] Pamela Zave, Eric Cheung, and Svetlana Yarosh. To-
ward user-centric feature composition for the Internet
of Things. arXiv preprint arXiv:1510.06714, October
2015.

USENIX Association 2019 USENIX Annual Technical Conference 105

	Introduction
	Background & Model
	Smart-home Platforms
	Programming Model
	Failures in IoT Environments

	Problem Study
	Inconsistency
	Dependency
	Analysis and Findings

	Transactuations
	Abstraction & API
	Chaining transactuations

	Relacs
	Relacs Store
	Execution Model
	Relacs Runtime
	Fault Tolerance
	Implementation
	Discussion

	Evaluation
	Programmability
	Correctness
	Overhead

	Related Work
	Conclusion
	Acknowledgment

