
�artz: Time-as-a-Service for Coordination in Geo-Distributed Systems

Sandeep D’souza
Carnegie Mellon University

Heiko Koehler
Nutanix Inc.

Akhilesh Joshi
Nutanix Inc.

Satyam Vaghani
Nutanix Inc.

Ragunathan (Raj) Rajkumar
Carnegie Mellon University

Abstract
Geo-distributed systems ranging from databases to cyber-

physical applications increasingly rely on a shared and pre-
cise notion of time to achieve coordination. This is especially
true for cyber-physical applications ranging from local-scale
robotic-coordination and city-scale tra�c management to
regional/planetary-scale smart grids. Each of these appli-
cations utilizes event orderings and timing o�sets to make
real-time decisions, so as to perform coordinated action at
their distributed endpoints. The emergence of edge comput-
ing, speci�cally to facilitate low-latency decision-making, is
leveraging the trend where multiple cyber-physical and soft-
ware applications with di�erent timing requirements will
coexist in both the cloud and at the edge. To enable such
fault-tolerant time-based coordinated applications running
on multi-tenant geo-scale infrastructure, we introduce the
Quartz framework, which exposes Time-as-a-Service. Quartz
allows geo-distributed application components to each spec-
ify its timing requirements, while it autonomously orches-
trates the underlying infrastructure to meet them. Centered
around a shared virtualized notion of time, based on the time-
line abstraction [1], Quartz provides an API which makes
it easy to develop time-based geo-distributed applications.
Using this API, Quartz feeds back the timing uncertainty,
i.e., the delivered Quality of Time (QoT) [1] back to each
application, enabling it to be fault-tolerant in the face of
clock-synchronization failure. Quartz is designed for con-
tainerized applications, features a distributed architecture
and is implemented using containerized micro-services. Ex-
perimental evaluations on real-world embedded, edge and
cloud platforms highlight the performance and scalability of
our architecture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SEC ’19, November 07–09, 2019, Washington DC
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6733-2/19/11. . . $15.00
https://doi.org/10.1145/3318216.3363311

CCS Concepts
•Computer systems organization→ Embedded and

cyber-physical systems.

Keywords
time-as-a-service, cyber-physical systems

ACM Reference Format:
Sandeep D’souza, Heiko Koehler, Akhilesh Joshi, Satyam Vaghani,
and Ragunathan (Raj) Rajkumar. 2019. Quartz: Time-as-a-Service
for Coordination in Geo-Distributed Systems. In SEC ’19: ACM/IEEE
Symposium on Edge Computing, November 7–9, 2019, Arlington, VA,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3318216.3363311
1 Introduction
Coordination is key to the successful operation of a dis-

tributed system. Distributed coordination occurs at di�er-
ent spatial and temporal scales, ranging from local-scale
robotic coordination – occurring at the timescale of hun-
dred microseconds to a few milliseconds, to planetary-scale
coordination among GPS satellites – occurring even at the
nanosecond timescale. A non-exhaustive list of such coor-
dinated systems includes swarm robotics [2], distributed
databases [3], tele-surgery [4], industrial robotics [5], smart
grids [6] and connected vehicles [7]. Figure 1 highlights the
spatio-temporal nature of distributed coordination.

The common thread bindingmany of the above-mentioned
applications is the need for low-latency decision-making.
This is especially true for cyber-physical applications, which
involve the cyber components of computation and network-
ing, interacting with the physical world [8]. In these systems,
the nature of coordination is usually dependent on the analy-
sis of sensed data by intelligent computational entities, which
in real-time decide a course of coordinated action/actuation at
distributed endpoints. The data-intensive and low-latency na-
ture of decision-makingmakes the cloud in tandemwith edge
cloudlets well-suited for hosting such applications. While
recent work [9–12] has focused on using edge computing
to reduce latency, the need for a distributed coordination
primitive has not received much attention.
Time is one such construct which plays an important

role in enabling coordination among distributed entities
[13]. This is especially true for cyber-physical systems (CPS)
which need to interact with the real world. A shared notion

264

SEC ’19, November 07–09, 2019, Washington DC Dsouza et al.
Coordination in Space and Time

2

Time Scale

Figure 1: The scale of coordination in time and space

of time, by means of synchronized clocks, enables: (i) events
to be ordered at distributed scale, and (ii) coordinated actua-
tion to be scheduled at/by speci�c time instants. Therefore,
maintaining a shared notion of time is critical to the reliable
operation of many large-scale distributed systems.

Clock synchronization is a mature �eld and technologies
such as GPS, Network Time Protocol (NTP) [15], and Preci-
sion Time Protocol (PTP) [16] have made it possible to pro-
vide distributed systems with a reliable and accurate shared
notion of time. However, these technologies are best-e�ort
and/or agnostic to application-speci�c requirements. Addi-
tionally, clock synchronization is not perfect, and there is
always some uncertainty in a node’s estimate of the shared
notion of time. This timing uncertainty is introduced by a
variety of factors including, but not limited to, networking
delays [15], timestamping errors, and operating system and
virtualization-induced latency and jitter [17][18]. If this tim-
ing uncertainty exceeds an application’s speci�cations, it can
a�ect the quality and reliability of coordination [19]. The
level of uncertainty acceptable to an application often de-
pends on the time granularity at which coordination occurs,
as well as the coordination policy [19].

As time is fundamental to a range of applications, it needs
to be exposed as a service to applications [14]. Therefore,
we de�ne Time-as-a-Service (TaaS) as “the ability to provide
an application-speci�c clock, which tracks a time reference,
such that the timing uncertainty does not exceed application-
speci�ed requirements.”

Time exposed as a �rst-class entity to applications is key
for TaaS. This can be done by: (i) allowing applications to
specify their timing requirements in terms of accuracy and
resolution, and (ii) feeding back the delivered timing uncer-
tainty back to the application. The latter enables applications
to adapt if timing uncertainty exceeds speci�ed limits. Thus,
fault-tolerant time-based coordination becomes enabled by
using the notion of Quality of Time (QoT) [1], which repre-
sents the end-to-end uncertainty bounds corresponding to a
timestamp, with respect to a clock reference. From an appli-
cation perspective, if these bounds exceed an acceptable limit,

the application can enter a graceful degradation mode, and
thus be fault-tolerant during clock-synchronization failure.

Based on the notion of QoT, [1] also introduced a reference
QoT Architecture along with its corresponding LAN-scale im-
plementation, called the QoT Stack for Linux. The QoT Stack
features a kernel-module-based implementation and intro-
duces a preliminary prototype to demonstrate the bene�ts
of exposing time as a �rst-class entity to applications. How-
ever, its use of kernel-space components restricts scalability
and introduces portability issues, which limit its utility for
deployments on public infrastructure.
Modern distributed applications are inherently complex,

and consist of multiple interacting components. Thus, de-
ploying these components and managing their life-cycles are
complex endeavors. Additionally, many of these components
will be deployed in the cloud or at the edge in conjunction
with other applications. In such scenarios, the use of OS-level
virtualization technologies like containerization [20] simpli-
�es the deployment and life-cycle management of distributed
applications. Thus, Quartz builds on the QoT Architecture
[1] for providing Time-as-a-Service (TaaS) to containerized
applications. Quartz features a distributed modular architec-
ture, and is implemented using containerized micro-services,
making it easy to deploy and use across a range of platforms.

Unlike the kernel-space QoT Stack [1] which operated at
LAN-scale, Quartz overcomes the scalability and portability
issues by featuring a fully user-space implementation which
(i) supports multi-tenancy, (ii) operates at geo-distributed
(WAN)-scale, and (iii) is portable to an array of application
domains and platforms. Quartz also provides an API for dis-
tributed coordination based on the timeline abstraction [1],
and allows distributed application components to specify
their required QoT. Based on these requirements, Quartz or-
chestrates the underlying system and clock-synchronization
protocols to meet these application-speci�c requirements,
and feeds back the delivered QoT back to the application.

The key contributions of this paper are as follows:
(1) Elucidating the challenges and architectural choices in

exposing Time-as-a-Service (TaaS), maintaining time-
lines and estimating QoT at geo-distributed scale.

(2) Introducing techniques to make clock-synchronization
protocols, adaptive to application QoT requirements.

(3) IntroducingQuartz, an autonomous, adaptive and fault-
tolerant middleware exposing TaaS for containerized
applications using time as a coordination primitive.

2 An Application’s Perception of Time
We �rst motivate the utility of Quartz by describing two

application scenarios which can be enabled by using a shared
notion of time andQoT. These applications are (i)DronePorter,
a �eet of drones coordinating to transport a payload, and

265

�artz: Time-as-a-Service for Coordination in Geo-Distributed Systems SEC ’19, November 07–09, 2019, Washington DC

Timeline

100 us

10 ms

100 us 100 us

Figure 2: DronePorter: Drone coordination
(ii) TimeCop, a tra�c-management solution which coordi-
nates vehicular tra�c �ow at city scale in both space and
time. However, the core concepts can be adapted to other
distributed-coordination application domains. We start by
describing the timeline abstraction introduced in [1].

Timelines: In [1], the authors introduced the timeline ab-
straction, which abstracts away clock synchronization from
applications. A timeline provides a shared virtual clock ref-
erence to all the distributed components of an application.
Consider an application that needs to perform coordinated
actions at its distributed endpoints. All these components
bind to a common timeline, each specifying its QoT require-
ments. As a result, the timeline abstraction provides the
following functionalities: (i) allows an application to specify
which components coordinate with each other using shared
time, and (ii) provides visibility into where each application
component is deployed, and what its QoT requirements are
with respect to the timeline reference. This allows the under-
lying framework to orchestrate the clock-synchronization
protocols to ensure that QoT requirements are met, while
making the achieved QoT visible to the application.
A timeline is not necessarily tied to any standard timing

reference (such as UTC), and, in the context of distributed
coordination, serves as a “narrowwaist” [18]. This enables de-
velopers to easily develop distributed time-based applications
on heterogeneous infrastructure, using a timeline-based API.
The ability of a timeline to expose a virtual clock reference
allows di�erent coordinating sub-groups with varying QoT
requirements to each have its own time reference and co-
exist on the same infrastructure [1]. Note that each node
bound to a timeline can have di�erent QoT requirements
with respect to the chosen reference. These QoT require-
ments are generally de�ned by (i) safety constraints, (ii)
performance requirements and/or (iii) the assumptions/toler-
ances of the controller/decision-making entity. Additionally,
multiple virtual timelines can coexist on a single node.

DronePorter: Consider a �eet of n drones (as shown in
Figure 2) transporting an object �, too large to be carried by
a single drone. To successfully transport �, the drones need
to follow a coordinated �ight-plan such that (i) the object

is not damaged or destabilized, and (ii) the drones do not
collide with each other or obstacles in the environment. One
way to accomplish this is by having a master entity, which
can be one of the drones, send out timestamped �ight-plans
with way-points to each of the drones, such that each drone
tries to reach a given way-point at the speci�ed time.

To coordinate successfully, the clock on each drone needs
to be synchronized such that the accuracy is within some
speci�ed limits. This accuracy (or uncertainty) speci�cation
can depend on multiple factors, ranging from the velocity
and size of the drones, to the other uncertainties in the envi-
ronment. For example, to meet a particular velocity, while
maintaining safety, having a tighter clock-synchronization
accuracy can be used to compensate for higher localization
uncertainties or higher environmental uncertainties [21].
Therefore, in this scenario, each drone can use Quartz to
bind to a timeline each specifying its QoT requirements. If
the QoT deviates beyond these requirements, the drones
can be noti�ed, and can adapt by moving into a graceful-
degradation mode. Additionally, as shown in Figure 2, we
can also have an edge/cloud controller also join the timeline,
and provide (i) high-level objectives/guidance to the �eet of
coordinating drones, and (ii) �eet-management capabilities.

TimeCop: Consider a city with an adaptive tra�c signal
deployed at each intersection, which contains: (i) a tra�c
signal with an interface through which the phase (tra�c-
signal state) can be set, and (ii) camera-based sensors which
provide per-lane queue lengths (number of vehicles).

Each intersection is controlled by a tra�c controller, which
can be deployed on an edge device at or near the intersection,
for low-latency decision-making. This controller is responsi-
ble for controlling the timing and phase of the tra�c signals
at the intersection. The tra�c controller makes decisions
periodically, by taking as input (i) the number of vehicles
per ingress lane at the intersection (read from the tra�c
sensors) in the last interval, and (ii) the number of vehicles
inbound from adjacent intersections (published by adjacent
intersections). The generated output is the next phase of
the tra�c signal. In this scenario, a shared notion of time is
key to ensure that (i) the state from adjacent intersections
has accurate timestamps, and (ii) the phase of the tra�c sig-
nals at an intersection can be switched at an accurate time
instant to ensure e�cient tra�c �ow. Thus, each intersec-
tion controller uses Quartz to bind to the tra�c-management
timeline with a QoT requirement of +/-1 ms, while Quartz
ensures that all controllers bound to the timeline share the
same notion of time with the desired QoT speci�cation. Thus,
the timeline abstraction allows a coordinating group of end-
points to be speci�ed. Quartz also appends every timestamp
with accurate QoT estimates, enabling controllers to decide
“data validity” based on the QoT bounds, i.e., data with QoT

266

SEC ’19, November 07–09, 2019, Washington DC Dsouza et al.12th May 2017

Edge A

Intersection
Controller z

Per-Lane
Traffic State

Traffic Light
Phase

Edge C

Intersection
Controller y

Edge B

Intersection
Controller x

Timestamped
Adjacent Intersection

State

traffic-management
Timeline

Figure 3: TimeCop: City-Scale Tra�c Management

bounds beyond tolerable limits can be discarded or used with
abundant caution. Figure 3 illustrates the TimeCop solution.
Consider a scenario where multiple applications such as

TimeCop and DronePorter are deployed on the same infras-
tructure. For example, DronePorter’s high-level controller
can be deployed on the same edge device as TimeCop’s
per-intersection tra�c controllers. One can also envision
a situation where multiple such emerging smart-city appli-
cations are deployed on the same infrastructure. In such a
scenario, the ability to simultaneously maintain multiple
per-application timelines allows (i) each application’s co-
ordinating components and their QoT requirements to be
individually speci�ed, and (ii) the system to meet the poten-
tially di�erent QoT requirements of each application.

With each application component specifying the required
QoT, the system knows the maximum level of uncertainty
tolerable by the distributed-coordination application. Since
each node independently computes its QoT with respect to
the reference, a node can enter a graceful-degradation [27]
mode when the level of uncertainty exceeds the tolerable
limit. Additionally, if a coordination message is delayed or ar-
rives too late, all a node needs to do is compare the message
timestamp against the current time on its local clock [13].
Given that commodity oscillators drift slowly, the probabil-
ity of clock-synchronization failure is much lower than the
probability of CPUs, networks or disks failing [3]. Therefore,
utilizing a shared notion of time with the added notion of
QoT can enable scalable and fault-tolerant coordination [19].

3 Quartz: Time-as-a-Service (TaaS)
Wenow introduceQuartzwhich exposes Time-as-a-Service

to containerized applications. We describe Quartz by start-
ing at the application level and explaining the capabilities
Quartz provides through its API. Subsequently, we focus on
its architecture and its implementation as micro services.

Quartz API: Quartz features a rich API that is centered
around the notion of a timeline – a virtual sense of time to
which applications bind with their desired accuracy level and
minimum clock resolution [1]. A timeline is the key primi-
tive specifying the application components which coordinate
with each other. The Quartz API provides applications the

ability to (i) bind/unbind from a timeline, (ii) specify/update
their QoT requirements, (iii) schedule computation, sensing
and actuation by/at a reference time instant, (iv) timestamp
events and (v) get latency estimates between a pair of nodes
on a timeline. For an application involving distributed coor-
dination, latency estimates give a good idea of how far into
the future actuation commands should be scheduled.
All API calls return the QoT delivered to the application,

providing the ability to adapt to changes in QoT. Table 1 pro-
vides an overview of the key API calls supported by Quartz.

Listing 1 shows a simple applicationwritten usingQuartz’s
Python API binding. The sample application binds to a time-
line with an accuracy and resolution requirement of 1ms
each. The application then periodically wakes up every sec-
ond and reads the time. This is indicative of a collection
of periodic time-triggered application components which
each wake up at their own speci�c time instants to perform
some coordinated action. Similarly, we can also envision
event-driven applications which, in response to an event,
capture a timestamp of the event. Such event timestamps
can be captured using a callback function facilitated by the
timeline_timestamp_events API call.

Listing 1: Simple Periodic App using the Quartz API
1 def main_func (t im e l i n e _ uu i d : str , app_name : s t r) :
2 # I n i t i a l i z e the T ime l i n eB ind ing c l a s s as an app
3 b ind ing = TimelineBinding ("app")
4 # Bind to the t im e l i n e with 1ms accu ra cy and r e s o l u t i o n
5 r e t = b ind ing . t imeline_bind (t ime l i n e _uu i d , app_name , 1ms , 1ms)
6 i f r e t != ReturnTypes . QOT_RETURN_TYPE_OK :
7 print ('Unable to bind to timeline , terminating ')
8 e x i t (1)
9 # S e t the S chedu l i ng Pe r i od and O f f s e t (1 s and 0 ns r e p e c t i v e l y)
10 b ind ing . timeline_set_schedparams (1 0 0 0 0 0 0 0 0 0 , 0)
11 while running :
12 # Wait u n t i l the nex t p e r i o d
13 b ind ing . t imel ine_waitunti l_nextperiod ()
14 # Do Something �> Read the t ime with the un c e r t a i n t y
15 t l _ t im e = b ind ing . t imeline_gett ime ()
16 print ('Timeline time i s %f ' % t l _ t im e [" time_estimate "])
17 print ('Upper Uncertainty i s %f ' % t l _ t im e [" interval_above "])
18 print ('Lower Uncertainty i s %f ' % t l _ t im e [" interval_below "])
19 # Unbind from the t im e l i n e
20 b ind ing . timeline_unbind ()

3.1 Quartz: Architecture & Implementation
To enable time-based geo-distributed applications at scale

and deliver Time-as-a-Service, Quartz is tasked with the fol-
lowing primary objectives: (i) maintaining the notion of a
timeline at geo-distributed scale, (ii) meeting application-
speci�c QoT requirements with respect to the chosen time-
line reference, and (iii) computingQoT estimateswith respect
to the chosen timeline reference. While meeting the above
objectives, Quartz is also tasked with optimizing system re-
sources bymerging multiple timelines under the hood, based
on application requirements and how they are deployed.

Given the above objectives, Quartz needs to overcome the
following challenges (i) scalability: both geographical and

267

�artz: Time-as-a-Service for Coordination in Geo-Distributed Systems SEC ’19, November 07–09, 2019, Washington DC

Table 1: Quartz API Calls
Category API Call Return Type Functionality
Timeline timeline_bind (node_name, accuracy, resolution) timeline Bind to a timeline

Association timeline_unbind (timeline) status Unbind from a timeline
timeline_setaccuracy (timeline, accuracy) status Set Binding accuracy
timeline_setresolution (timeline, resolution) status Set Binding resolution

Time timeline_gettime (timeline) timestamp+QoT Get timeline reference time with uncertainty
Management timeline_translate (timestamp, src_timeline, dst_timeline) timestamp+QoT Translate a timestamp on one timeline into another

Event timeline_waituntil (timeline, absolute_time) timestamp+QoT Absolute blocking wait
Scheduling & timeline_sleep (timeline, interval) timestamp+QoT Relative blocking wait
Timestamping timeline_set_schedparams (timeline, period, start_o�set) status Set period and start o�set

timeline_waituntil_nextperiod (timeline) timestamp+QoT Absolute blocking wait until next period
timeline_timer_create (timeline, period, start_o�set, count, callback) timer Register a periodic callback
timeline_timestamp_events (timeline, event_type, event_con�g, enable, callback) status Con�gure events/external timestamping on a pin

Latency timeline_reqlatency (timeline, src_node, dst_node, num_measure, percentile) duration Get the latency between two nodes on a timeline

quantitative, (ii) autonomy: the system should adapt to ap-
plication demands and faults, (iii) portability: easy to deploy
and manage, and (iv) ease of development. Challenges (i)
and (ii) are in�uenced by the architecture, while (iii) depends
on the implementation, and (iv) depends on the API.

A hierarchical architecture yields both scalability and au-
tonomy. Therefore, Quartz features a 3-tier hierarchical ar-
chitecture with services which operate at the following tiers:
1) A Node represents any single computing node/device

(virtual or physical) with an independent clock.
2) A Cluster represents any administrator-de�ned set of

networked nodes which can communicate with each other.
An example cluster is a set of nodes connected over a LAN.
Note that a node cannot belong to more than one cluster,
since each node has a single independent clock.

3) The Global scope represents the global set of clusters.
Based on the scope at which a timeline is discoverable by

other nodes, we de�ne two types of timelines:
1) A Local Timeline is discoverable only on nodes inside

the cluster in which the timeline is created. It is useful for
applications with coordination restricted to the cluster scope.

2) A Global Timeline can be discovered by any node in
the global set of clusters. It is useful for applications which
have coordinating components spanning multiple clusters.

When a timeline is created, its type must be speci�ed. This
allowsQuartz to choose an appropriate clock-synchronization
protocol and virtual timeline reference.
We implement Quartz using user-space micro-services,

which are designed to run natively or as Docker [20] con-
tainers. Each service exposes an interface for exchanging
information and receiving requests. Figure 4 illustrates the
Quartz Architecture, and highlights the interactions between
the various components through their exposed interfaces.
We �rst describe each service’s high-level implementation
before stating how they provide di�erent functions:
1) The Timeline Service is the interface through which

applications interact with Quartz, i.e., most API requests are
handled by the timeline service. It exposes a unix-domain
socket (UDS)-based interface through which applications on
the node can send requests to the service. It is also tasked

with performing the bookkeeping of the timelines that exist
on a node, the applications bound to each timeline, and the
QoT requirements of each application and timeline. There-
fore, the timeline service maintains timelines at the scope of
a node, and hence, each node has its own timeline service.
2) The QoT Clock-Synchronization Service synchro-

nizes the per-timeline clocks and computes the QoT esti-
mates. Since every node has a hardware clock, which serves
as a basis for per-timeline virtual clocks, each node has its
own clock-synchronization service. Like the timeline service,
it also exposes a UDS-based interface through which the
timeline service can send it requests. In its current imple-
mentation, the synchronization service supports NTP [15],
PTP [16] and Huygens [26] clock-synchronization protocols.
3) The Coordination Service is responsible for main-

taining timelines within the scope of a cluster. Hence, every
cluster must have one active coordination service. Within
a cluster, the coordination service helps each node discover
other nodes on a timeline, and conveys QoT requirements
across nodes. This information is used by each node’s time-
line service to orchestrate its node’s clock-synchronization
service, based on application QoT requirements. It exposes a
REST API accessible to all the nodes within the cluster. The
REST API allows the timeline service on each node to register
(POST) timelines and its QoT requirement with the coordi-
nation service. This also allows timeline services on other
nodes in the cluster to discover timelines (GET) and update
(PUT) the most-stringent QoT requirement on a timeline.

4) TheGlobalDiscovery Service serves as Quartz’s global
book-keeper, and is tasked with maintaining timelines at the
global scope, by allowing a cluster to discover the presence
of other timelines and clusters bound to it. The discovery
service maintains a key-value store of timelines and their rel-
evant metadata along with the clusters associated with each
timeline. It also provides an interface for cluster-speci�c coor-
dination services to discover each other, and exchange time-
line and QoT information. It is implemented using Apache
Zookeeper [34], which provides a consistent and highly-
available �lesystem-like abstraction. The discovery service

268

SEC ’19, November 07–09, 2019, Washington DC Dsouza et al.

maintains a /timelines Zookeeper node, under which dif-
ferent timelines are registered. This allows cluster-speci�c
coordination services to register the presence of timelines
associated with their cluster, as /timelines/<timeline-name>.
Under this timeline-speci�c Zookeeper node, a child node
exists for each cluster participating in the timeline. In particu-
lar, the ability to (1) set watches on Zookeeper nodes: receive
asynchronous noti�cation on changes to a node or its chil-
dren, and (2) ephemeral nodes: elements which disappear
on a network disconnect, allows the coordination service to
detect if another cluster has joined or left a timeline.

As may be expected, using a hierarchical architecture pro-
vides a very clear distribution of responsibilities. Therefore,
even if higher-layer services (global or cluster-level) are tem-
porarily lost, lower-layer services (cluster or node-level) can
still continue to operate and provide essential functionality.

Quartz Clocks: Quartz also features timeline-speci�c
clocks, which are required for providing applications with
their own shared notion of time. At the node scope, Quartz
utilizes a core clockCcore [1] derived from a hardware clock,
which maintains a monotonic free-running notion of time
with undisciplined drift and o�set. Each timeline-reference
clock is maintained as a mapping from the core clock us-
ing the parameters tldr if t (drift correction), corelast (the
core-clock timestamp at the last synchronization event) and
tllast (timeline-reference timestamp at the last synchroniza-
tion event). Using the current core timestamp, corenow , the
timeline-reference time, tlnow , can be projected as follows:

tlnow = tllast + tldr if t ⇤ (corenow � corelast) (1)

A key proposition of Quartz is the ability to provide high-
probability QoT bounds to applications. Therefore, every
timestamp provided to applications has its QoT bounds ap-
pended to it. At any instant of time, the timing uncertainty
� is given by the following equation:

� = tlbound + tlskew ⇤ (corenow � corelast) (2)

where, tlskew is a high-probability upper bound on the drift of
the timeline-speci�c clock, and tlbound is a high-probability
upper bound on the o�set of the timeline-speci�c clock. Note
that the probability of these bounds should be con�gurable
by a system designer. Therefore, given a QoT accuracy re-
quirementQ , the probability of the bounds being invalid can
be given by P(� > Q). Therefore, for each timeline clock,
with high probability 1 � P(� > Q), we can say that a times-
tamp tlnow 2 [tlnow � �, tlnow + �].

Hardware Timestamping:Most modern network inter-
faces have their own clocks and also provide the ability to
timestamp some or all network packets in hardware at the
physical layer [16]. This enables both accurate packet times-
tamping and clock synchronization, and is referred to as
hardware timestamping. Therefore, Quartz also supports

12th May 2017

Request Timeline
Shared Memory

Sync Commands
/Updates

QoT Clock-
Sync Service

Application 1

QoT API Library
(Python/C++)

Timeline Service

Timeline Clock Parameters Shared-Memory

Timeline Unix-Domain Socket

Clock-Sync Unix-Domain Socket

App Timeline/QoT
Requests

App Timeline/
QoT Requests

Read/Write
Clock Params

Read Clock
Params

Create
Shared Memory

Sync Commands
/Updates

Application N

QoT API Library
(Python/C++)

App Timeline/QoT
Requests

Read Clock
Params

.....

Coordination
Service

REST Interface

Local Timeline
Updates

Local Timeline
Updates

Global
Timeline
Updates

Figure 4: Quartz Time-as-a-Service. Solid boxes indi-
cate components, dashed boxes indicate interfaces.

network-interface clocks Cnet , and maintains an accurate
mapping between the core clock and network clock(s).

3.2 Quartz: Inner Workings
Figure 5 provides a global view of Quartz, which high-

lights its hierarchical architecture.We now describe the inner
workings of the services and their interactions.

3.2.1 Facilitating Low-Latency Clock Reads From an appli-
cation perspective, it is desirable that the timeline refer-
ence be read with low latency. To read a timestamp with
its corresponding QoT, an application requires the current
core-clock timestamp along with the timeline-projection and
QoT parameters (Equations 1 & 2). Therefore, for each time-
line, the timeline service creates a shared-memory region
which holds the timeline projection and QoT calculation
parameters. Applications can request to map this shared-
memory region, with read-only privilege, into their own
virtual-memory space. Thus, by reading the core clock and
applying the timeline projection parameters from shared
memory, an application can read the timeline reference with
low latency. In Quartz, we choose the Linux real-time clock
(CLOCK_REALTIME) as our core clock, as it is available on
all Linux systems, and can be read with low latency from
user space [35]. Applications obtain read-only access to the
timeline-clock sharedmemory. This prevents malicious appli-
cations from modifying parameters held in shared-memory.

3.2.2 Handling Application Requests Quartz provides a li-
brary implementation of its API which helps applications
make requests, and removes the complexity of directly in-
teracting with the timeline service. The API calls made by
the application are handled by the timeline service. How-
ever, only API calls related to (i) binding/unbinding from a
timeline, (ii) updating timeline QoT requirements, and (iii)
getting latency estimates between a pair of nodes, need to be
handled by the timeline service. All other API calls related to

269

�artz: Time-as-a-Service for Coordination in Geo-Distributed Systems SEC ’19, November 07–09, 2019, Washington DC
12th May 2017

…

Cluster N

Global Discovery Service

…

Cluster 1

...
App 1

Cluster Node 1

Timeline
Service

REST NATS

Clk-Sync
Service

App 2 App 3 App 1

Cluster Node 1

Timeline
Service

REST NATS

Clk-Sync
Service

App 2 App 4

Coordination Service

App 3

Cluster Node N

Timeline
Service

REST NATS

Clk-Sync
Service

App 4

Coordination Service

Figure 5: Quartz Time-as-a-Service at global scope

scheduling sensing/computation/actuation, and timestamp-
ing events are handled by the library in the context of the
application. Quartz implements C++ and Python bindings.
However, the API can be generalized to any programming
language which supports socket programming and shared
memory. We now describe how Quartz handles API requests.

TimelineCreation/Deletion:When an application binds
to a timeline, the information is sent to the timeline service
using the API. If the timeline does not exist on the node,
the timeline service creates an instance of the timeline. This
instance keeps track of all applications on the node bound
to that timeline, and the instance is deleted when no active
bindings exist. The timeline service also checks if the time-
line exists at the coordination service (GET), and if not, it
registers the timeline at the cluster scope (POST). If the time-
line exists at cluster scope, then the timeline service updates
(PUT) the QoT requirements, if they are more stringent than
the timeline’s most stringent existing QoT requirements. Sim-
ilarly, the coordination service updates (creates) the timeline
on the global discovery service at global scope if it exists
(does not exist). A similar chain of events occurs for time-
line deletion. The timeline service also creates a per-timeline
shared-memory clock used to hold the timeline-projection
and QoT-estimation parameters. This shared-memory re-
gion is passed to the clock-synchronization service, which
updates the projection and QoT-estimation parameters to
synchronize the local timeline clock to the timeline reference.

Event Timestamping: Since Quartz is designed for con-
tainerized applications, there are three types of possible
events: (1) software events timestamped by the system clock,
(2) network events timestamped by the system clock (soft-
ware/kernel timestamping) or the network-interface clock
(hardware timestamping), and (3) externally-timestamped
events on a sensor. While events of type (1) and (2) are com-
monly observed in software systems, events of type (3) are
most likely to be observed in embedded systems.
To support time-stamping software and network events,

the clock-synchronization service maintains a mapping be-
tween the core and network clocks (if hardware timestamp-
ing is supported), along with the projection from the system

(core) time to the timeline reference. Whenever these pro-
jection parameters are updated, the clock-synchronization
service publishes them using NATS [36], which provides
publish-subscribe-based communication. The API library
subscribes to these projection parameters and maintains a
ring bu�er of the last n parameters. Based on the incoming
event system/network timestamp, the Quartz API library
chooses the appropriate parameters from the ring bu�er to
project the event timestamp to the timeline reference.

In some embedded systems with general-purpose I/O pins,
some pins have the ability to detect a voltage-change event
and record (or capture) a corresponding hardware-timer
value. This voltage-change event can also be triggered by a
sensor. Through appropriate transformations, this hardware-
timer value can be mapped to a timestamp on a timeline. In
Quartz, we expose all such timestamping hardware using
the Linux ptp_clock [37] abstraction.

Event Scheduling: Scheduling an application on a time-
line is important for executing distributed tasks/actuation
synchronously. Therefore, the Quartz API library provides
the ability to schedule events after a �xed time instant or
duration on the timeline reference, in the form of wait-
until calls, which suspend the application until a speci�ed
time instant. The library implements event scheduling in-
ternally, and schedules all events on the core clock. There-
fore, the timeline-projection parameters are used to trans-
late a scheduling request on the timeline reference to the
core clock. Given that Quartz uses the Linux real-time clock
(CLOCK_REALTIME), the Quartz API Library internally uses
the existing clock_nanosleep POSIX API [24] to schedule
computation/actuation on CLOCK_REALTIME.

3.2.3 Clock Synchronization and QoT Estimation Quartz fea-
tures a �exible implementation allowing integration with
multiple clock-synchronization protocols over IP-compliant
networks. Our implementation utilizes NTP [15], PTP [16]
andHuygens [26] clock-synchronization protocols, and avoids
re-inventing the wheel. This is because existing protocols
like NTP and PTP are well-tuned for modern hardware,
and are based on standards and implementations that have
evolved and been re�ned over time. Meanwhile, Huygens is
a recently-proposed protocol for data centers [26].
However, unlike traditional clock-synchronization pro-

tocols which are best-e�ort, Quartz monitors the delivered
QoT to check if it is within the application-speci�ed limits,
and orchestrates the synchronization-protocol parameters
to meet them. We now describe how Quartz provides an au-
tonomous clock-synchronization service, which dynamically
responds to application QoT requirements as well as external
changes (network disconnections, changes and load). Quartz
is autonomous in the sense that, based on application re-
quirements, it chooses an appropriate: (i) protocol, (ii) clock

270

SEC ’19, November 07–09, 2019, Washington DC Dsouza et al.

yes no
Are QoT

Requirements

satisfied?

Per-timeline

delivered QoT

Increment Good

samples counter

no

yes

 Server NOT

selected AND

good samples >

threshold

Set Timeline

Server on

Coordination

Service

Decrement good

samples counter

yes
server

not
selected root

dispersion
< QoT

Server selected

AND required QoT >

root dispersion

Adjust Clock-

Sync Rate

Got
Server

no
server exists

Get Timeline Server

from Coordination

Service

Try out Server

no

yes

Bad Samples

> threshold

Pick new server

from NTP pool

Figure 6: Adaptive NTP: Server Selection & Rate Adap-
tation

reference, and (iii) clock-synchronization tuning parameters.
We �rst describe how Quartz synchronizes clocks for global
timelines, and subsequently local timelines.

Global-TimelineClock Synchronization: As global time-
lines can potentially span multiple clusters in di�erent geo-
distributed regions, the simplest way to maintain a shared
notion of time is to synchronize all clocks to a common ref-
erence. To do so, Quartz uses the Network Time Protocol
(NTP) [15] to synchronize the global timeline reference to
Universal Coordinated Time (UTC). We use the chrony [40]
implementation of NTP, which synchronizes the local clock
by communicating with a set of NTP servers, and choosing
the best source as the reference clock [40]. However, tradi-
tional NTP clients are often either con�gured using default
or application/topology-speci�c tailor-made con�gurations.
As Quartz is aware of application requirements, it responds
to application demands by dynamically con�guring NTP.

At startup, the Quartz timeline service automatically cre-
ates a default global timeline, and starts an NTP session on
the synchronization service. Since, in our implementation,
all global timelines follow a single clock reference, it su�ces
to maintain a single set of timeline-projection parameters for
all global timelines. When an application binds to a global
timeline specifying its timing requirements, Quartz checks if
the application QoT requirement is being met. As all global
timelines follow UTC, the QoT requirements of a global time-
line are always de�ned with respect to UTC. Therefore, we
use the root dispersion and clock skew values provided by
NTP, which give a conservative estimate of how far or un-
certain the clock is relative to UTC, to obtain a node’s QoT.
If the application QoT requirements are not being met, then
Quartz tries to (i) either modify the synchronization rate,
or (ii) if the root dispersion corresponding to the chosen

reference indicates that the QoT requirements cannot be sat-
is�ed, it picks a new server from the pool of NTP servers.
For a newly-created timeline, if the chosen server is able to
deliver the desired QoT, Quartz registers this server with the
cluster-speci�c coordination service, which in turn registers
it with the discovery service. This allows other nodes on
the same timeline, at both cluster and global scope, to select
the same server as one of their reference sources. Thus, we
ensure that nodes on the same timeline have a similar set
of clock references. If available, Quartz also automatically
chooses network hardware timestamping. Figure 6 presents
a �ow chart illustrating how we make NTP adaptive.

Local-Timeline Clock Synchronization: As local time-
lines are constrained to the cluster scope, we utilize PTP or
Huygens (based on the system con�guration) to synchronize
the clocks in the cluster. When a local timeline is created
on a node, the timeline service requests the synchronization
service to start a timeline-speci�c synchronization session,
and monitors the delivered QoT.

Precision Time Protocol (PTP) [16]: If PTP is the con�gured
local-timeline protocol, then there is no need to choose a
reference, as PTP automatically chooses a reference using the
best-master clock-selection (BMC) protocol [16]. However,
Quartz modulates the PTP synchronization rate (message-
exchange frequency) in order to match the application QoT
requirements to the delivered QoT. Quartz uses the linuxptp
[41] implementation of the PTP standard.
Huygens [26]: is the state-of-the-art protocol well-suited

to operate at cluster scale. Huygens uses a mesh of probes,
which estimates the o�sets between pairs of nodes using a
Support Vector Machine (SVM). Based on the probe-mesh
topology, the pair-wise o�sets are sent to a centralized server,
which uses the network e�ect to calculate the �nal node o�-
sets with respect to a pre-de�ned in-cluster clock reference.
As Huygens is not open-source, we have written our own
implementation which consists of three major components:
(1) per-node probe client-server pair which compute the
pair-wise o�sets and periodically publish the o�sets, (2) per-
cluster o�set-calculator which calculates and publishes the
�nal o�sets by subscribing to the pair-wise o�sets, and (3)
per-node o�set-receiver which subscribes to the �nal o�sets.

If Huygens is the con�gured protocol, then the clock syn-
chronization (1) topology, (2) rate and, (3) clock reference
can be con�gured. Whenever a local timeline is created on
a node, a unique o�set-receiver is started per-timeline (al-
lowing per-timeline clock-references), while the probe mesh
and the o�set-calculator are started at the �rst time a local
timeline is created on the cluster. To meet the application-
speci�ed QoT, Quartz modulates the probe-mesh frequency,
while monitoring the delivered QoT. In this initial version of
Quartz, given that Huygens is designed to operate with a cen-
tralized server, we statically de�ne the clock-synchronization

271

�artz: Time-as-a-Service for Coordination in Geo-Distributed Systems SEC ’19, November 07–09, 2019, Washington DC

topology and the master reference. However, future exten-
sions can make topology and master selection dynamic.
QoT Estimation: To estimate the QoT for local timelines

using PTP or Huygens, the timing uncertainty relative to the
local-timeline-reference needs to be computed by each node.
Our implementation utilizes the methodology proposed in
[42] to compute timing uncertainty. The proposed approach
takes a sliding window of n samples of the clock frequency-
drift and o�set (computed by the clock-synchronization pro-
tocol). After estimating the distribution of their variances, it
computes a high-probability upper-bound on the clock o�set
and the drift, which can be used to estimate the QoT (Equa-
tion 2). Both the number of samples n and the con�dence
probability of the bounds can be con�gured.
Adaptive Synchronization Rate: Unlike NTP, both PTP

and Huygens are master-driven synchronization protocols.
This means that the master node drives the synchroniza-
tion rate. For example, in PTP, the master clock reference
sends periodic multi-cast SYNC packets to all the slaves at
a pre-determined rate. The slave nodes then respond with
follow-up packets, and hence, the master controls the rate
of clock synchronization. Note that, having a single rate for
the entire network implies the node with the tightest QoT
requirements holds signi�cant in�uence on the synchroniza-
tion rate. On the other hand, NTP is a client-driven protocol,
and each client can independently decide and adapt its clock-
synchronization rate by initiating a synchronization-request
with an NTP server(s). Therefore, for both PTP and Huygens,
we employ a similar clock-synchronization rate-adaptation
strategy. Each node in a timeline periodically publishes its
current delivered QoT on a particular timeline-speci�c topic
using the NATS publish-subscribe mechanism. The master
node listens to all the slave nodes, and tries to con�gure
the synchronization rate to try to meet the QoT require-
ments of all the nodes on the timeline. Each master node has
a protocol-speci�c lower and upper bounds on the rate of
packets it can send. At the start, the master sends a burst of
packets to quickly synchronize all the clocks. Subsequently,
the master reduces its rate to the recommended protocol-
speci�c rate. Based on whether the QoT requirements are
being met or not, the master can gradually increase or de-
crease its synchronization rate.
Our implementation is open source and can be found at:

https://bitbucket.org/sandeepdsouza93/quartz/. We now illus-
trate how TimeCop (Section 2) is deployed using Quartz.

3.3 Enabling TimeCop with Quartz
To demonstrate TimeCop, since we do not have ready

access to real tra�c controllers in a city, we simulate a city-
scale tra�c scenario with multiple intersections, using the
open-source SUMO tra�c simulator [28]. We use TraCI [28]

to interface with the simulation, and ensure that each time-
step in the simulation mirrors the �ow of time in the real
world. Using TraCI, we expose each intersection as MQTT
[30] endpoints which (i) periodically publish intersection
sensor state – the number of vehicles queued per-incoming
lane in the last period, and (ii) listen for commands – the next
phase of the tra�c signals at the intersection. Note that using
MQTT decouples the simulation logic from the controllers.

Each containerized intersection controller is deployed us-
ing the Nutanix Xi IoT [31] platform. Each controller gets
the intersection state by subscribing to the MQTT endpoints
corresponding to the intersection. The controller is based
on deep reinforcement-learning [32], which uses the current
intersection state to dynamically decide the next phase of the
tra�c signals at the intersection. The controller also periodi-
cally receives timestamped state from adjacent intersections,
which it uses to improve tra�c �ow in coordination with
other intersections. The chosen phase is published to the
intersection MQTT endpoint listening for commands. Each
intersection controller uses Quartz to bind to the tra�c-
management timeline with a QoT requirement of +/-1 ms,
while Quartz ensures that all controllers bound to the time-
line can meet their QoT speci�cation.

The source code to build and deploy TimeCop can be found
at: https://bitbucket.org/sandeepdsouza93/tra�c_app/

4 Evaluation
Wenow evaluate the performance and scalability of Quartz.

We �rst assess the accuracy of the clock-synchronization
protocols that Quartz supports: NTP [15], PTP [16] and
Huygens [26]. For these protocols, we consider di�erent
time-stamping options (hardware/software) and platforms.
In particular, we consider two embedded/edge-form-factor
platforms: Intel NUC [43] and Beaglebone Black (BBB) [44].
Secondly, we highlight the ability of Quartz to adapt to
application-speci�c QoT requirements, and accurately es-
timate the delivered QoT. Lastly, we evaluate the scalability
of Quartz by creating a geo-distributed-scale deployment.

Tomeasure clock-synchronization accuracywe have setup
a testbed consisting of Intel NUCs (dual-core Intel Core i3, 8
GB RAM) and Beaglebone Blacks (uni-core ARM Cortex-A8,
1 GB RAM) nodes. The two platforms are representative of
both embedded (BBB) and edge-computing (NUC) devices.
In terms of packet timestamping, the NUC supports hard-
ware timestamping of all UDP packets and the BBB supports
hardware timestamping of PTP-compliant packets.
The test-bed consists of two LANs: greenwich and rose-

line. Greenwich has two clusters (i) NUC-Amethyst: Kuber-
netes cluster with 4 NUCs, and (ii) BBB-Citrine: 4 BBBs with
Docker; and an event generator BBB-Onyx. The event gen-
erator creates events (UDP packets, or voltage-change on a

272

SEC ’19, November 07–09, 2019, Washington DC Dsouza et al.

hardware pin), which serve as opportunities for other nodes
to timestamp. By comparing the timestamps of a common
event, the o�set between two clocks can be measured. Rose-
line has one cluster BBB-Ametrine: 4 BBBs with Docker.

We now describe each of the cluster types and their utility.
1) The BBB Clusters are used to benchmark the perfor-

mance of (i) Huygens and PTP with hardware timestamp-
ing, and (ii) NTP with software timestamping. The BBB
hardware strictly restricts hardware timestamping to PTP-
compliant multi-cast packets sent/received on port 319 over
4 prescribed multi-cast IPs [47]. This constrains us to per-
forming Huygens micro-benchmarks with not more than 4
nodes. However, the BBB have GPIO pins which allow 42ns-
resolution timestamping on a rising or falling edge (gener-
ated by the event-generator BBB-Onyx). This allows us to
externally measure the o�set between two clocks and vali-
date our implementation. In addition, having two BBB clus-
ters on di�erent LANs (citrine on greenwich, and ametrine
on roseline) also enables clock-synchronization accuracy
measurements between the two LANs.
2) The NUC Cluster is used to benchmark the perfor-

mance of NTP, PTP and Huygens with hardware timestamp-
ing. The NUC features a desktop-class processor and a low-
cost gigabit network interface [45] which supports hardware
timestamping. As the NUC does not have external pins, the
synchronization accuracy cannot be externally measured. In-
stead, we use the event generator (BBB-Onyx) to periodically
generatemulti-cast UDP packets, which the NUC timestamps
in the network-interface hardware. We use these timestamps
(after applying the timeline-projection parameters) to com-
pute a safe upper bound on the clock o�set.

4.1 Quartz: Clock-SynchronizationAccuracy
We now evaluate the performance of NTP, PTP and Huy-

gens in various scenarios based on (i) timestamping capa-
bility (hardware/software), (ii) platform (NUC/BBB), and
(iii) server stratum (for NTP). Our micro-benchmarks are
intended to provide a glimpse of the best-e�ort accuracy de-
liverable by a protocol on a given platform. This helps us to
gain insights required to autonomously select an appropriate
protocol and con�guration within Quartz.

1) NTP: The NTP accuracy results are summarized in Ta-
ble 2. In all the experiments, we utilize publicly-available
NTP pool servers, and each node can pick its own server. This
provides us with a good estimate of the accuracy achievable
in real-world deployments without the need for custom NTP
infrastructure. However, better accuracy can be achieved
using custom NTP-server deployments. If we compare the
measured accuracy based on platform type or timestamp-
ing capabilities, no signi�cant di�erences are observed as (i)
NTP requires few resources, and (ii) most NTP servers do

Table 2: NTP [15] Accuracy (µs)
Platform Timestamps Cluster Stratum Max Mean Std. Dev

NUC HW Intra 1 4267 380 633
HW Intra 2 12607 2480 3351

BBB SW Intra 1 1638 542 245
SW Intra 2 5855 2380 717

SW Inter 1 2127 929 553
SW Inter 2 6033 3582 1032

Table 3: PTP [16] Accuracy (µs)

Platform Timestamps Rate (s) Max Mean Std. Dev

NUC HW 1 183 31 113
HW 2 220 24 32
HW 4 13 9 2

BBB HW 1 14 2 3
HW 2 39 8 7
HW 4 39 5 7

not support hardware timestamping on their end. However,
regardless of platform, the choice of server (stratum) plays an
important in the accuracy obtained, as lower-stratum NTP
servers track UTC with lower error. Thus, even choosing dif-
ferent stratum 1 servers can yield sub-millisecond accuracies
across di�erent LANs (Inter). Thus, NTP is well suited for
global-scale applications which have QoT requirements in
the order of 100s of µs to several ms.

2) PTP: Both platforms support hardware timestamping of
IEEE 1588 PTP packets, and the accuracy results are summa-
rized in Table 3. The network we utilize is not PTP-compliant
and does not correct for queuing delays, which is mostly
true for real-world networks. For both platforms, we ob-
serve that PTP at LAN-scale can yield accuracies in the order
of 1-100 µs. This is primarily due to the use of hardware
timestamping. On the NUC, decreasing the synchronization
rate causes a slight increase in accuracy. In contrast, on the
BBB, a lower synchronization rate yields marginally better
accuracy. Thus, a faster rate does not always imply better
accuracy. The Allan intercept of the clock [46], an indica-
tor of clock stability, in�uences the optimal rate. Therefore,
choosing the correct rate autonomously is useful in achieving
application-speci�ed levels of QoT.
3) Huygens: The accuracy micro-benchmarks for Huy-

gens are summarized in Table 4. For both platforms, we
consider a toy deployment of 4 nodes (in their clusters) with
the probe-mesh pairs setup to form a 4-node loop. We ob-
serve that Huygens at LAN-scale can yield accuracies in the
order of 100s of µs. The values in the table are for a pair
of nodes separated by one hop in the probe mesh, while
the values within parentheses are for a pair of nodes sepa-
rated by two hops. Huygens relies on exchanging 10-100s
of packets between nodes every second, and is designed for
data-centers and not low-cost hardware. In both platforms,
while using hardware timestamping, we observed signi�cant

273

�artz: Time-as-a-Service for Coordination in Geo-Distributed Systems SEC ’19, November 07–09, 2019, Washington DC

Time (seconds)

200 400 600 800

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

×10
4

0

0.5

1

1.5

2

2.5

NTP Quartz Adaptive

Offset

Node 1 QoT w.r.t UTC

Node 2 QoT w.r.t UTC

Node1

Server

Selected

App2 binds

to timeline

gl_test

Specified QoT 1ms

(a)
Time (seconds)

200 400 600 800

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

0

1000

2000

3000

4000

5000

6000

7000

NTP QoT Bounds on Failure

Offset

Node 1 QoT w.r.t UTC

Node 2 QoT w.r.t UTC

Network

Disconnect

Specified QoT 1ms

(b)
Time (seconds)

200 400 600 800 1000

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

0

1000

2000

3000

4000

NTP Interference

Offset

Node 1 QoT w.r.t UTC

Node 2 QoT w.r.t UTC

CPU

work-

load

added

Network

workload

added

Specified QoT 1ms

(c)
Time (seconds)

200 400 600 800 1000 1200 1400

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

0

500

1000

1500

2000

NTP Inter-Cluster

Offset

Node 1 QoT w.r.t UTC

Node 2 QoT w.r.t UTC

(d)

Figure 7: Quartz NTP: (a) Adaptive clock-synchronization, (b) QoT bounds on clock-synchronization failure, (c)
E�ect of CPU & network interference on QoT, and (d) Inter-cluster QoT estimation.

Table 4: Huygens [26] Accuracy (µs)
Platform Timestamps Rate (ms) Max Mean Std. Dev

NUC HW 10 401 (1596) 294 (1099) 21 (501)
HW 100 405 (382) 104 (105) 64 (75)
SW 10 1835 (1205) 294 (252) 242 (163)
SW 100 1251 (965) 234 (328) 259 (243)

BBB HW 100 13000000 2000000 3000000
SW 10 782 170 153
SW 100 4593 1091 340

timestamping errors at the network interface. This was es-
pecially severe for the BBB, which incorrectly orders/loses
timestamps when packets arrive rapidly. Hence, we observe
accuracies of the order of a few seconds, as the BBB NIC is
only designed to timestamp PTP packets arriving at a rate of
about 1-4 packets per second [47]. We also run Huygens with
kernel timestamping, and observe that it yields an accuracy
in the order of 100s of µs, and the synchronization is stable.
Therefore, while NTP and PTP are well-suited to run on

low-cost platforms, Huygens needs more resources.

4.2 Quartz: Adaptiveness & QoT Estimates
The key proposition of Quartz is to provide Time-as-a-

Service, and adapt to application-speci�c QoT demands. We
now evaluate Quartz’s ability to: (i) orchestrate clock syn-
chronization protocols to deliver application-speci�c QoT re-
quirements, and (ii) report accurate QoT estimates to applica-
tions during transient (external disturbances) or permanent
failure (network disconnect). We �rst focus on NTP, as it is
our protocol of choice for providing TaaS at geo-distributed
scale (global timelines). Subsequently, we benchmark PTP
and Huygens for cluster-scale local timelines.

4.2.1 Global Timelines: Figures 7 (a)-(d) showcase four sce-
narios, where two application components �1 and �2, on two
di�erent nodes (Node1 and Node2), each bind to a global
timeline gl_test, specifying their QoT requirements of +/-1
ms relative to UTC. Each �gure plots the measured o�set
between the two nodes, as well as the QoT estimate that
Quartz provides to each application. As the QoT bounds pre-
sented for global timelines are always relative to UTC, the
bounds can be lesser than the measured o�set between two

nodes. As mentioned in Section 3.2.3, all global timelines are
maintained relative to UTC, and hence, we use only one NTP
instance to synchronize all the global timelines.

Adaptivity: Figure 7 (a) showcases Quartz’s ability to
adapt to application-speci�c QoT requirements. At time t = 0,
�1 on Node1 (NUC-Amethyst-1) binds to the timeline gl_test.
As the existing clock reference cannot satisfy �1’s require-
ments, Node1’s synchronization service tries new servers
from the NTP pool, until the �rst dashed line, when it selects
a suitable server which meets �1’s requirements. At time
t = 500, �2 on Node2 (NUC-Amethyst-2) binds to gl_test. As
Node2’s current reference cannot satisfy �2’s requirements,
Node2’s timeline service queries the cluster-scope coordi-
nation service for any known NTP servers being used by
other apps on gl_test. As a server exists (registered by �1),
Node2’s synchronization service selects it, and is able to meet
�2’s QoT requirements. Thus, the o�set between the nodes
reduces, and is re�ected in the QoT bounds returned to �2.

QoT-based Fault Detection: Figure 7 (b) plots a network
disconnection scenario where clock synchronization is lost,
as a node(s) is unable to communicate. At time t = 180, we
simulate a network-disconnect/synchronization-service fail-
ure by killing the synchronization service on both Nodes1&2
(NUC-Amethyst-1&2). In this scenario, the API library (used
by �1 & �2) uses the last-known QoT parameters to keep
estimating the QoT (using Equation 2), until the clock is
re-synchronized. As highlighted in Figure 7 (b), the bounds
diverge linearly at the rate given by the upper bound of the
clock drift (tlskew). When the bounds exceed application-
speci�ed QoT requirements, the application is noti�ed.

Resilience to CPU/Network Interference: Processing
and networking resources are essential to clock synchroniza-
tion. Figure 7 (c) illustrates the e�ect of adversarial CPU and
network-intensive workloads on the QoT and o�set between
two nodes (NUC-Amethyst-1&2). Between time t = 500 and
t = 700, we introduce a CPU-intensive workload on Node1
using the stress tool [48]. The stress tool creates 10 CPU-
intensive threads which nearly saturate the CPU on node1.
Observe that, as NTP is a lightweight protocol, there is no
signi�cant e�ect on the measured clock-synchronization

274

SEC ’19, November 07–09, 2019, Washington DC Dsouza et al.

Time (seconds)

50 100 150 200

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

10

15

20

25

Measured Offset & QoT (Quartz PTP)

Offset

Node 2 QoT w.r.t Node1 (Master)

(a)
Time (seconds)

100 200 300 400 500 600

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

0

500

1000

1500

2000

2500

3000
Measured Offset & QoT (Quartz Huygens)

Offset

Node 2 QoT w.r.t Node1 (Master)

(b)

Figure 8: Quartz QoT estimation: (a) PTP (b) Huygens

accuracy, and this is also re�ected in the QoT bounds. At
time t = 700, we introduce a network-intensive workload on
Node1 using the iperf tool [52]. The iperf tool fully saturates
the network interface on Node1 with TCP tra�c. Shortly
after the network load is introduced, there is a degradation
in clock-synchronization accuracy, as re�ected by the ~4x
increase in the measured o�set between Nodes1&2. Note
that the QoT bounds delivered to the application on Node1
also suddenly increase to re�ect this degradation in clock-
synchronization accuracy. Hence, Quartz detects transient
changes in QoT due to anomalies or interference.

Inter-ClusterQoTEstimation: Computing accurate QoT
estimates across clusters in di�erent LANs is key to provid-
ing TaaS at geo-scale. Figure 7 (d) plots the measured o�set
between two nodes (BBB-Citrine-1&BBB-Ametrine-1) in dif-
ferent LANs (greenwich and roseline), as well as the reported
QoT. As the QoT is de�ned relative to UTC, for the bounds
to be valid, the sum of the two QoT bounds should not be
less than the measured o�set between the two nodes.

4.2.2 Local Timelines : Figures 8 (a) & (b) plot the QoT es-
timates for local timelines, when using PTP and Huygens
respectively. For both protocols, the QoT and o�set of Node2
are de�ned relative to the timeline reference (Node1). Both
sets of measurements were obtained using a pair of NUCs
(NUC-Amethyst-1&2). For Huygens, we observed signi�-
cantly higher QoT bounds than the measured o�set. This is
due to the high variance in the clock o�set and drift measure-
ments caused by hardware timestamping instabilities/errors
in the network interface. Therefore, for local timelines, we
focus on the PTP protocol. We utilize a pair of nodes in the
BBB-Citrine cluster to perform experiments. As stated be-
fore, the BBB have GPIO pins which allow 42ns-resolution
timestamping of a voltage-change event (generated by the
event-generator BBB-Onyx). We use this to externally mea-
sure the o�set between two clocks.

Adaptivity: Figures 9 (a) & (b) showcase Quartz’s ability
to orchestrate PTP to adapt to application QoT requirements.
The left y-axis shows the measured o�set and the estimated
QoT, and the right y-axis shows the binary logarithm (log2)
of the period of the PTP SYNCmessages [16]. As described in
section 3.2.3, Quartz modulates PTP’s clock-synchronization

Table 5: Continental-scale Scalability Results
Speci�ed QoT (Accuracy) Worst Delivered QoT Best Delivered QoT

500µs 442µs 284µs
1ms 994µs 233µs

rate to meet application QoT requirements. We consider �1
on Node1 (BBB-Citrine-1) and �2 on Node2 (BBB-Citrine-2)
bound to the local timeline test. In both Figures 9 (a) & (b), �1
on Node1 is elected as the timeline master-clock reference,
and the application QoT requirements are set to (a) 10µs and
(b) 5µs respectively. In Figure 9 (a), Quartz initially increases
the rate to quickly meet the QoT requirements, and then
slows down once the QoT requirements are met. Similar
observations can be made for the case illustrated in Figure 9
(b). Note that for a multi-cast protocol like PTP, decreasing
the synchronization rate can lead to signi�cant reduction
in network bandwidth consumed. Additionally, in case (b),
sometimes during durations of high-synchronization rates,
there can be timestamping instabilities, which cause the
o�set, and the delivered QoT to spike. We believe that this is
due to an issue in the BBB hardware timestamping.

QoT-based Fault Detection: Figure 9 (c) plots a network
disconnection scenario where clock synchronization is lost,
as a node(s) is unable to communicate. At time t = 280, we
simulate a network-disconnect failure by killing the synchro-
nization service on Node2 (BBB-Citrine-2). Similar to the
NTP case, the API library (used by �2) uses the last-known
QoT parameters to keep estimating the QoT (using Equation
2), until the clock is re-synchronized. As highlighted in Fig-
ure 9 (c), the bounds are diverged linearly at the rate given
by the upper bound of the clock drift (tlskew).

Resilience to CPU/Network Interference: Figure 9 (d)
illustrates the e�ect of CPU and network-intensive work-
loads on Quartz PTP. At time t = 200, we introduce a CPU-
intensive workload on Node2 using the stress tool [48] for
100 seconds, which fully saturates the CPU on the BBB. Since
PTP is lightweight, there is no signi�cant e�ect on the clock-
synchronization accuracy, and the observed QoT bounds. At
time t = 400, we introduce a network-intensive workload on
Node2 using iperf [52] for 100 seconds. This saturates all the
network bandwidth, and PTP packets cannot get through.
Thus, the clock o�set and the observed QoT diverge. As soon
as the network interference goes away, Quartz increases the
PTP clock-synchronization rate to ensure that the delivered
QoT quickly returns to the desired level (10µs).
Therefore, Quartz adapts to application demands and ex-

ternal interference at both cluster and global scales.

4.3 Scalability
We now demonstrate Quartz’s ability to provide Time-

as-a-Service at geo-distributed scale, by utilizing clusters

275

�artz: Time-as-a-Service for Coordination in Geo-Distributed Systems SEC ’19, November 07–09, 2019, Washington DC

Time (seconds)

200 400 600 800 1000 1200 1400

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

0

5

10

15

20

Quartz PTP Adaptive

L
o

g
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 P
e
ri

o
d

 (
lo

g
2
(s

))

0

1

Offset

Node2 QoT w.r.t Node1 (Master)

Specified QoT 10 µs

(a)
Time (seconds)

200 400 600 800

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

0

5

10

15

20

Quartz PTP Adaptive

L
o

g
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 P
e
ri

o
d

 (
lo

g
2
(s

))

-5

-4

-3

-2

-1

0

1
Offset

Node2 QoT w.r.t Node1 (Master)

Specified QoT 5 µs

(b)
Time (seconds)

150 200 250 300 350 400

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

0

10

20

30

40

PTP QoT Bounds on Failure

Offset

Node2 QoT w.r.t Node1 (Master)

Specified QoT 10 µs

Network

Disconnect

(c)
Time (seconds)

0 100 200 300 400 500 600

O
ff

s
e
t

&
 Q

o
T

 (
µ

 s
e
c
o

n
d

s
)

0

5

10

15

20

25

30

35

40

45

50

55

60
PTP Interference

L
o

g
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 P
e
ri

o
d

 (
lo

g
2
(s

))

-4

-3

-2

-1

0

1

Offset

Node2 QoT w.r.t Node1 (Master)

CPU

work-

load

added

Network

workload

added

Specified QoT 10 µs

(d)

Figure 9: Quartz PTP: Adaptive clock-synchronization with QoT requirement (a) 10µs, (b) 5µs, (c) QoT bounds on
clock-synchronization failure, and (d) E�ect of CPU & network interference on QoT.
Table 6: Geo-distributed Scalability: Microsoft Azure
QoT Spec. Region Worst QoT Best QoT Average QoT Fraction

500µs east-us 506µs 200µs 327µs 0.98916
central-us 504µs 216µs 354µs 0.98844
west-europe 508µs 249µs 415µs 0.97398
east-australia NA NA NA NA
east-asia NA NA NA NA

1 ms east-us 635µs 199µs 365µs 1
central-us 568µs 140µs 293µs 1
west-europe 640µs 307µs 476µs 1
east-australia 1003µs 490µs 758µs 0.99076
east-asia 1006µs 459µs 645µs 0.97398

deployed using Virtual Machines (VMs) hosted in the pub-
lic cloud. Our experiments are meant to demonstrate scale,
and hence we consider global timelines maintained using
Quartz’s Adaptive NTP clock-synchronization protocol. As
we cannot externally measure synchronization accuracy in-
side the VMs, we rely on the ability of our system to accu-
rately provide QoT estimates, to check if di�erent application-
speci�ed QoT levels can be achieved across all the geo-
distributed clusters. We conduct two sets of experiments:

(1) Continental Scale: We deploy Quartz across 15 VMs
running across three Amazon Web Services (AWS) [49] re-
gions spanning the continental United States (5 VMs each
in us-east-1 Virginia, us-east-2 Ohio and us-west-2 Oregon).
Each VM is con�gured as a standalone Kubernetes cluster
using the Nutanix Xi IoT [31] platform, which also helps
deploy the Quartz micro-services as Kubernetes pods. In
this experiment, we deploy an application with 15 coordinat-
ing components, each running in one of the 15 VMs. Each
application component binds to a common global timeline
gl_test, and speci�es its QoT requirement. This experiment
gives us an idea of the accuracy that Quartz can achieve at
continental scale, for a geo-distributed deployment on a sin-
gle network backbone. We conducted this experiment over
a period of 5 hours and considered two QoT-speci�cation
levels (required clock-synchronization accuracy): 500 µs and
1 ms. For a given speci�ed QoT level, Table 5 summarizes
the best and worst QoT level delivered by Quartz across the
15 geo-distributed clusters. As seen in Table 5, the best QoT
represents the tightest accuracy bounds observed, and the
worst QoT represents the loosest bounds observed.

Table 7: Geo-distributed Scalability: Google Cloud
QoT Spec. Region Worst QoT Best QoT Average QoT Fraction

500µs asia-east 716µs 230µs 376µs 0.96025
asia-south 886µs 214µs 390µs 0.94606
us-west 501µs 184µs 289µs 0.99850

europe-north 389µs 186µs 291µs 1
south-america 1100µs 276µs 473µs 0.87861

1 ms asia-east 648µs 292µs 426µs 1
asia-south 813µs 237µs 484µs 1
us-west 1009µs 224µs 542µs 0.99566

europe-north 509µs 204µs 309µs 1
south-america 746µs 277µs 458µs 1

(2) Global Scale:We deploy Quartz across 20 VMs span-
ning �ve continents and two public cloud providers. Our
deployment consists of 10 VMs running in �ve Microsoft
Azure (Azure) [50] regions (2 VMs each in east-us, central-us,
europe-west, australia-east and asia-east), and 10 VMs run-
ning in �ve Google Cloud (GCP) [51] regions (2 VMs each
in asia-east, asia-south, us-west, europe-north and south-
america-east). Each VM is con�gured as a standalone Kuber-
netes cluster. In this experiment, we deployed an application
with 20 coordinating components, each running in one of
the 20 VMs. Each application component binds to a common
global timeline gl_test, and speci�es its QoT requirement.
This experiment was used to assess the accuracy that Quartz
can achieve for a geo-distributed deployment. We conducted
this experiment over a period of 5 hours and considered two
QoT-speci�cation levels (required clock-synchronization ac-
curacy): 500 µs and 1 ms. Tables 6 and 7 summarize the best,
worst and average observed QoT, along with the fraction of
time the speci�ed QoT requirements were satis�ed, for the
VMs deployed in Azure and GCP respectively.

For our continental-scale experiments on AWS (Table 5),
we observe that Quartz can reliably deliver an accuracy level
of 500µs. On the other hand, for our global-scale deployment
across Azure and GCP (Tables 6 and 7), we observe that some
nodes cannot achieve a QoT level of 500µs. This is especially
true for the Azure nodes deployed in the east-australia and
east-asia regions (values indicated by NA in Table 6). This
is because Quartz is unable to choose an appropriate NTP
server to satisfy the QoT speci�cation of 500µs.

The lowest-possible uncertaintywith respect to UTC, achiev-
able by a client using a speci�c NTP server, depends on the

276

SEC ’19, November 07–09, 2019, Washington DC Dsouza et al.

server’s: (i) stratum [15], i.e., how closely it tracks UTC, and
(ii) the round-trip network latency between the server and
the client. For example, if Quartz chooses a low-stratum
server located in the United States (US), which tracks UTC
accurately, then the high round-trip latency between the
server in the US and a client in Australia will constitute the
dominant factor in the clock-synchronization uncertainty or
QoT reported by Quartz. This may prevent the QoT require-
ments of 500 µs from being met.

Thus, Quartz maintains global timelines with sub millisec-
ond accuracy, while estimating QoT at geo-distributed scale.

5 Related Work
We now present a survey of relevant prior work.
Clock Synchronization: The utility of a shared notion

of time in distributed systems has been well-studied in prior
work. In [13], the bene�ts of using synchronized clocks in
distributed systems was analyzed. The author concluded that
synchronized clocks can improve performance by replacing
communicationwith local computation [13]. In the context of
model-based design, PTIDES [22] is a hardware-software co-
design framework to model, design and deploy time-critical
embedded applications, using a shared notion of time. For
safety-critical systems in the automotive and aerospace do-
mains, the Time-Triggered Architecture (TTA) [23] provides
a deterministic way to deploy systems using a shared clock.
However, both PTIDES and TTA are designed for the em-
bedded domain, and cannot scale to geo-distributed cyber-
physical applications which run in distributed heterogeneous
environments including the cloud and the edge.

There has also been somework on distributed-programming
idioms that support time as a �rst-class citizen. Examples
include Stampede [53] which uses application-speci�ed “vir-
tual time” as the basis for enabling temporal causality in
distributed applications, Stampede-RT [54] which allows
distributed applications to timestamp events with real-time
tags, and Persistent Temporal Streams [55] which uni�es in-
memory and stable storage temporal events of a given activ-
ity. However, these systems do not expose timing uncertainty
to applications, which is key to providing time-as-a-service.
Google’s geo-distributed Spanner database utilizes syn-

chronized clocks with the uncertainty information to achieve
global-scale consistency [3]. However, Spanner is a closed
system, is not adaptive and relies on dedicated infrastruc-
ture. Additionally, the TrueTime API [3] is tailored only to
database transactions and does not treat the notion of QoT
as an application-speci�ed requirement.

Clock-synchronization technologies such as GPS, Network
Time Protocol (NTP) [15], and Precision Time Protocol (PTP)
[16], can achieve a reliable and accurate shared notion of
time. Most recently, a number of protocols [25][26] have

been proposed to achieve nanosecond-accuracy clock syn-
chronization in data-centers. Notable among these is Huy-
gens [26] which uses a peer-to-peer probing mesh along with
Support Vector Machines (SVM) to compute clock o�sets
between nodes. However, all the above mentioned proto-
cols are best-e�ort and do not consider application-speci�c
QoT requirements. Therefore, most systems using these pro-
tocols end up being over-engineered to meet the needs of
pre-determined applications. Hence, there is a need for an
application-level framework which can respond to appli-
cation timing demands, while making it easy to develop
time-based distributed applications.

Timelines and the QoT Stack: In [1], the authors intro-
duced the timeline abstraction, which abstracts away clock-
synchronization from applications. The authors also intro-
duced the QoT Architecture [1] along with its kernel-space
realization for Linux, called the QoT Stack. Subsequently,
the work in [18] proposed QuartzV, which adds para-virtual
extensions to the QoT Stack, to provide near-native timing
performance for applications running in virtual machines.
However, the QoT Stack utilizes kernel-space components,
which signi�cantly limit both its portability and scalability.

6 Conclusion
Time is a key primitive for enabling coordination in dis-

tributed systems. In this work, we introduced Quartz which
provides Time-as-a-Service to geo-distributed containerized
applications, which coordinate using a shared notion of time.
Based on the notion of Quality of Time (QoT) in conjunc-
tion with the timeline abstraction, Quartz exposes an API
which simpli�es the development of geo-distributed coor-
dinated applications, and allowing applications to specify
their QoT requirements. Quartz orchestrates the underly-
ing infrastructure to meet these application-speci�c require-
ments, and exposes the delivered QoT back to the application.
Thus, time-based distributed-coordination applications can
be fault-tolerant in the face of clock-synchronization failure.
Quartz features a micro-service architecture. This makes

it scalable and easy to deploy on platforms ranging from
embedded devices to the edge, and the cloud. Our evaluation
indicates that Quartz adapts to application demands, and
maintains a timeline across multiple geo-distributed nodes.
Future work will look at improving Quartz’s security prop-
erties, as well as supporting admission control based on
application requirements and system capabilities.
While Quartz is most relevant for CPS, the core concept

of Time-as-a-Service is also useful for distributed software
applications, such as databases and logging systems. We
strongly believe that the ability to request and observe QoT
can be used to relax many of the stringent asynchronous
assumptions associated with distributed systems.

277

�artz: Time-as-a-Service for Coordination in Geo-Distributed Systems SEC ’19, November 07–09, 2019, Washington DC

Acknowledgements
The authors would like to thank the anonymous review-

ers for their constructive feedback, and our shepherd Umak-
ishore Ramachandran for his help and guidance. The authors
would also like to thank our collaborators at Nutanix Inc.
for supporting this work, and particularly Govardhan Reddy
Jalla for setting up some of the experiments. This research
is funded in part by the National Science Foundation under
award CNS-1329644. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
o�cial policies or endorsements, either expressed or implied,
of NSF, or the U.S. Government.

References
[1] F. Anwar, S. D’souza, A. Symington, A. Dongare, R. Rajkumar, A. Rowe

and M. Srivastava, “Timeline: An Operating System Abstraction for
Time-Aware Applications”, in Proc. of IEEE Real-Time Systems Sympo-
sium, 2016

[2] B. Regula, “Formation control of a large group of UAVs with safe path
planning”, in Proc. of IEEE Mediterranean Conference on Control and
Automation, 2013.

[3] J. C. Corbett et al., “Spanner: Google’s globally distributed database”, in
ACM Transactions on Computer Systems (TOCS), vol. 31, no. 3, 2013

[4] S. Natarajan and A. Ganz, “SURGNET: An Integrated Surgical Data
Transmission System for Telesurgery”, in International Journal of
Telemedicine and Applications, Article ID 435849, 2009

[5] J. Enright and P. Wurman, “Optimization and Coordinated Autonomy
in Mobile Ful�llment Systems”, In Proc. of AAAI Workshop, 2011

[6] M. Buevich, X. Zhang, D. Schnitzer, T. Escalada, A. Jacquiau-Chamski, J.
Thacker and A. Rowe, “Microgrid Losses: When the Whole is Greater
Than the Sum of Its Parts”, In Proc. of 7th IEEE/ACM International
Conference on on Cyber-Physical Systems, 2016

[7] SAE J2735 Standard, https://ntl.bts.gov/lib/51000/51100 /51167/DE156E
CC.pdf

[8] R. Rajkumar, I. Lee, L. Sha and J. Stankovic, “Cyber-Physical Systems:
The Next Computing Revolution”, in Proc. of Design Automation Con-
ference, 2010

[9] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog computing and its
role in the Internet of Things”, in Proc. of the MCC workshop on Mobile
cloud computing, 2012

[10] P. Simoens et. al, “Scalable Crowd-Sourcing of Video from Mobile
Devices”, CMU-CS-12-147 Tech Report, 2012

[11] M. Satyanarayanan et al., “The Case for VM-Based Cloudlets in Mobile
Computing”, in IEEE Pervasive Computing, Vol. 8, Issue: 4, Oct.-Dec.
2009

[12] C. Hung, G. Ananthanarayanan, P. Bodík, L. Golubchik, M. Yu, V.
Bahl and M. Philipose, “VideoEdge: Processing Camera Streams using
Hierarchical Clusters”, in ACM/IEEE Symposium on Edge Computing,
October 2018

[13] B. Liskov, “Practical Uses of Synchronized Clocks in Distributed Sys-
tems”, in Proc. of ACM symposium on Principles of distributed computing,
1991

[14] T. Mizrahi and Y. Moses, “Serving time in the cloud: Why time-as-
a-service?”, in Proc. of IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), 2016
[15] D. L. Mills, “Internet time synchronization: the network time protocol,”

in IEEE Transactions on Communication, vol. 39, no. 10, 1991.
[16] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “IEEE 1588-standard for a

precision clock synchronization protocol for networked measurement
and control systems”, in IEEE Instrumentation and Measurement Society
Standard, 2005

[17] T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch, “Virtualize every-
thing but time”, in Proc. of OSDI, 2010

[18] S. D’souza and R. Rajkumar, “QuartzV: Bringing Quality of Time to
Virtual Machines”, in Proc. of IEEE Real-Time and Embedded Technology
and Applications Symposium, 2018

[19] S. D’souza and R. Rajkumar, “Time-based Coordination in Geo-
Distributed Cyber-Physical Systems”, in Proc. of USENIX Workshop
on Hot Topics of Cloud Computing, 2017

[20] Docker Containerization Platform, https://www.docker.com/
[21] S. D’souza and R. Rajkumar, “A Cyber-Physical OS for Enabling Spatio-

Temporal Coordination at Geo-distributed Scale”, in Proc. of Workshop
on Next Generation OS for Cyber-Physical Systems (NGOSCPS), 2019

[22] J. Zou, S. Matic, E. Lee, T. Feng and P. Derler, “Execution Strategies for
PTIDES, a Programming Model for Distributed Embedded Systems”, in
Proc. of the IEEE Real-Time and Embedded Technology and Applications
Symposium, 2009

[23] H. Kopetz, “The time-triggered architecture”, in Proc. of the IEEE, Vol.
91, No. 1, January 2003

[24] M. Kuhn, “Implementing POSIX clocks under Linux”,
https://www.cl.cam.ac.uk/ mgk25/posix-clocks.html

[25] K. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon, “Globally syn-
chronized time via datacenter networks”, in Proc. of the 2016 conference
on ACM SIGCOMM, 2016

[26] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and A.
Vahdat, “Exploiting a Natural Network E�ect for Scalable, Fine-grained
Clock Synchronization”, in Proc. of NSDI, 2018

[27] J. Gertler, “Analytical Redundancy Methods in Fault Detection and
Isolation”, in Preprints of IFAC/IMACS Symposium on Fault Detection,
Supervision and Safety for Technical Processes, 1991

[28] Simulation of Urban Mobility (SUMO), http://sumo.dlr.de/index.html
[29] SUMO Tra�c Control Interface, http://sumo.dlr.de /wiki/TraCI
[30] MQTT connectivity protocol, http://mqtt.org/
[31] Nutanix Xi IoT Platform, https://www.nutanix.com/products/iot
[32] V. Mnih et al., “Human-level control through deep reinforcement learn-

ing”, in Nature, 518.7540 (2015): 529
[33] Kubernetes, https://kubernetes.io/
[34] Apache Zookeeper, https://zookeeper.apache.org/
[35] VDSO - overview of the ELF shared object, http://man7.org/linux/man-

pages/man7/vdso.7.html
[36] NATS Pub-Sub, https://nats.io/
[37] PTP hardware clock infrastructure for Linux,

https://www.kernel.org/doc/Documentation/ptp/ptp.txt
[38] Docker: Add host device to container,

https://docs.docker.com/engine/reference /commandline/run/add-
host-device-to-container—device

[39] Ping, https://linux.die.net/man/8/ping
[40] Chrony NTP, https://chrony.tuxfamily.org/
[41] The Linux PTP Project, linuxptp.sourceforge.net/
[42] A. Bondavalli, F. Brancati, and A. Ceccarelli, “Safe estimation of time

uncertainty of local clocks”, in Proc. of International Symposium on
Precision Clock Synchronization for Measurement, Control and Commu-
nication, 2009

[43] Intel NUC Kit NUC7i3BNK, https://www.intel.in/content
/www/in/en/products/boards-kits/nuc/kits/nuc7i3bnk.html

[44] Beaglebone Black, https://beagleboard.org/black

278

SEC ’19, November 07–09, 2019, Washington DC Dsouza et al.

[45] Intel Ethernet Connection I219-V, https://downloadcenter
.intel.com/product/82186/Intel-Ethernet-Connection-I219-V

[46] D.W. Allan, “Clock Characterization Tutorial”,
https://tf.nist.gov/general/pdf/2082.pdf

[47] AM335X CPSW Ethernet Driver Guide, proces-
sors.wiki.ti.com/index.php/AM335x_CPSW_(Ethernet)_Driver27
s_Guide

[48] Stress, https://linux.die.net/man/1/stress
[49] Amazon Web Services, https://aws.amazon.com/
[50] Microsoft Azure, https://azure.microsoft.com/
[51] Google Cloud Platform, https://cloud.google.com/

[52] Iperf Network Measurement Tool, https://iperf.fr/
[53] U. Ramachandran, R. S. Nikhil, J. M. Rehg, Y. Angelov, A. Paul, S. Ad-

hikari, K. M. Mackenzie, N. Harel, and K. Knobe, “Stampede: A Cluster
Programming Middleware for Interactive Stream-Oriented Applica-
tions”, in IEEE Transactions on Parallel and Distributed Systems, vol. 14,
no. 11, 2003

[54] D. Hilley and U. Ramachandran, “Stampede RT: Programming Ab-
stractions for Live Streaming Applications”, in Proc. of International
Conference on Distributed Computing Systems (ICDCS), 2007

[55] D. Hilley and U. Ramachandran, “Persistent Temporal Streams”, in
Proc. of ACM Middleware, 2009

279

