
More Than The Sum of Its Things:
Resource Sharing Across IoTs at The Edge

Aliaa Essameldin ∗
Carnegie Mellon University

essameldin@cmu.edu

Mohammed Nurul Hoque ∗
Carnegie Mellon University

mnur@cmu.edu

Khaled A. Harras
Carnegie Mellon University

kharras@cs.cmu.edu

Abstract—The extreme growth and diversity of IoT applica-
tions, along with the heterogeneity of these devices, has led to
numerous middleware solutions emerging to address various rel-
evant challenges. These solutions have been shifting from cloud-
based approaches to edge-technologies in order to handle issues
related to privacy, latency, and bandwidth. Within this context,
we identify an opportunity to introduce a novel IoT Middleware
system that enables more seamless resource and context sharing
at the edge. We propose the Hive, a middleware system that
allows heterogeneous off-the-shelf devices in a common edge
network to seamlessly and efficiently utilize each other’s sensory
and computational resources. The Hive architecture enables a
new wave of multi-modal sensory applications, leveraging a
pool of IoT devices, that would otherwise be unattainable. We
accomplish this by decoupling the hardware, processing, and
application layers within IoT devices from each other. The Hive
abstracts each of these layers into a single resource pool that is
shared and cross utilized on-demand within the edge network
by any individual device. We implement the Hive, along with a
dedicated communication protocol for our system. We evaluate
the effectiveness of the Hive by integrating it with two sample
IoT applications: an audio-based emotion recognition system,
and a video-based facial detection application. We extensively
evaluate the impact the Hive has on these new applications
after integration, and additionally investigate its impact at scale.
Our results show how the hive boosts the overall utilization of
resources in an edge IoT network, reduces computational delay in
complex applications, and most importantly, enables applications
to perform at higher level of effectiveness.

I. INTRODUCTION

Internet of Things is the notion that any “thing” can be
connected to the Internet including machines, data manage-
ment systems, and services, creating high opportunities for
intelligent applications. Nowadays, we have allegedly reached
26.66 billion IoT connected devices [1], almost three times the
world’s current population. This abundance of devices and data
has resulted in IoTs becoming an integral tool in numerous
fields that include smart homes [2]–[9], factory automation
[10], [11], agriculture [12], healthcare [13]–[16], and vision-
based systems as well as augmented reality systems [17]–[21].

This IoT growth is empowered by a plethora of Middleware
solutions that address common IoT challenges (Section II).
While these solutions circumvent the latency network bot-
tleneck of utilizing the cloud, they do not fully utilize the
operating devices themselves; such solutions do not exploit the
system’s ability to capitalize on the overall computational and

*These authors have contributed equally to this work.

sensory capabilities of its nearby devices. Other prior work
suggests Semantic Context Sharing for improved resource
utilization, but these solutions only serve a limited and pre-
defined set of applications which is a poor fit for the dynamic
and highly diverse nature of today’s IoT networks.

We adopt a representative smart-home scenario to demon-
strate the gap that we identify in prior work and show how it
motivates our proposed work in this paper (Section III). The
scenario is one amongst many that highlight the shortcomings
of current application-centric edge-based middleware, such as
computational redundancy and limited sensor sharing amongst
edge peer IoT devices. These shortcomings drive the main
purpose of our work: Building an edge-based middleware
which can; 1) enable complete decouplement of applications,
sensors, and processors in IoT devices, 2) allow seamless
access to processed information across IoT entities, and 3) act
as an omnipotent entity that can optimize these interactions
for maximal resource utilization.

To fulfill these objectives, we build on our prior work [22]
and propose the Hive, an edge-based middleware system which
maximizes resource sharing among a group of heterogeneous
IoT devices dubbed Bees. The Hive’s objectives take shape
in the three stages of its architecture: Data, Processing, and
Core (Section IV). The data stage is responsible for the
decouplement of applications and sensors while remaining
completely oblivious to the nature of both. Its first component,
the Seeker Interface, manages all supported applications. Its
second component, the Provider Interface, allows concurrent
access to connected sensors residing at different IoT Bees.
Together, the two interfaces allow data exchange between any
number of applications and any number of sensors. At the
Processing stage, Bees share compute information to maximize
utilization of computational resources. The components at this
stage perform heavy computations at the middleware layer
so that their results can be shared by all applications and
allow computational offloading so that the computations can
be performed by any arbitrary processor in the network. The
decisions for data-exchange and Computational offloading are
made by The Core Stage of the architecture. At the core, a
single central Queen Bee is distributively elected to gather
data from all other Worker Bees to make the aforementioned
pairing decisions and accordingly connect Bees.

To manage the heavy interaction required in our architec-
ture, we develop the Hive Protocol (Section V). This protocol

20
20

 I
E

E
E

/A
C

M
 S

ym
po

si
um

 o
n

E
dg

e
C

om
pu

tin
g

(S
E

C
)

| 9
78

-1
-7

28
1-

59
43

-0
/2

0/
$3

1.
00

 ©
20

20
 I

E
E

E
 |

D
O

I:
 1

0.
11

09
/S

E
C

50
01

2.
20

20
.0

00
34

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

enables and governs communication between the components
of the architecture across all Bees allowing for interoperability
between different implementations of the Hive on differ-
ent devices and platforms. We create a generic hive packet
construct which carries data needed for identifying Bees,
separating data streams, specifying computational algorithms,
and authenticating messages. We then describe how these
packets behave to support four message classes: one class for
interfacing with Hive-supported applications (Class200), and
three that correspond to the three architectural Hive stages:
data (Class300), processing (Class400), and core (Class100).
The protocol also implements the distributed Queen election
algorithm which ensures that the system converges to a single
Queen during bootstrapping or queen failure.

We evaluate a prototype implementation of the core and data
functionalities of the Hive and its impact on two sample client
applications (Section VI). We demonstrate the robustness of
the queen election algorithm and find that our system reaches
steady-state in at most 3.5s. Then, we test the impact of the
Hive on a sound-based emotion recognition app (Vokaturi)
and identify the hive-induced improvement in its overall
performance. Next, we carry out an extensive analysis of the
costs of the Hive both, in a real-life setup for realistic results,
and in an emulated environment for at-scale analysis (Section
VII). We achieve these results through a number of case-
studies, testing many sensors streaming to a single application
and a single sensor streaming to many applications. We also
run tests with up to 10 bees on virtual machines with different
network conditions and data rates to observe the impact of the
Hive at scale in different environments. Overall, our evaluation
uncovered some insightful conclusions. First, The Hive can
seamlessly provide processed data from one provider to n
seekers while cutting overall CPU utilization down to around
1
n + c where c is a constant that depends on the rate of the
input data. In addition, the Hive achieves a delay well below
one second under reasonable data rates. Finally, the number
of Bees/IoTs we can add to a given Hive is only limited by
bandwidth.

Overall, we summarize our contributions as follows:
• We design and implement an edge-based middleware

IoT system, the Hive, that enables IoT ensembles to
seamlessly share resources in order to improve applica-
tion experience while increasing overall effectiveness and
efficiency.

• We create a dedicated Hive protocol that enables these
IoT ensembles to easily participate and intercommunicate
within the Hive.

• We practically demonstrate the promise of the Hive
by integrating it with two representative sample IoT
applications, namely, audio-based emotion recognition
and video-based facial detection, and show how both
applications greatly improve in performance as a result
of this integration.

• We extensively evaluate the video-based Hive prototype,
and show its promise and impact on different metrics at
scale.

II. RELATED WORK

A. Cloud-based Solutions

Traditional IoT Middleware solutions such as those in [23]–
[25] address many of the common IoT challenges such as
interoperability, data management and limited storage. Sim-
ilar solutions have been in industry such as Cisco’s Jasper,
Amazon’s AWS IoT Core and PTC’s ThingWorx. These
solutions, however, rely on cloud-based infrastructures. This
makes them non-ideal for real-time IoT applications because
communication to cloud servers can cause delay that is much
higher than the latency requirements of such applications as
discussed in [26], [27] and empirically shown in [28], [29].
Therefore, recent work in the area has been considering edge-
computing as an alternative for providing IoT services.

B. Edge-based Solutions

Moving Middleware operations closer to the Edge has been
shown to decrease delay, increase privacy and even address
multiple resilience issues [30]–[37]. The trend has been re-
flected on proposed IoT architectures across different domains
in literature [38], [39] and industry [40]–[42]. Some solutions,
such as [43], even present an architecture that recognizes
the trade-off between edge and cloud-based management and
dynamically shifts between using the two paradigms in real-
time according to the system’s varying needs. While this prior
work addresses many of the shortcomings of the traditional
cloud-based approach, it has been solely focused on providing
computational resources at the Edge server to avoid the large
network bottleneck of utilizing the cloud. It does not consider
harvesting non-computational resources from the IoT devices
themselves.

C. Resource Sharing Solutions

State-of-the-art solutions impose a level of application con-
tainment on the system, which makes sharing context and data
across different applications running on the same Network a
non-trivial task. Some previous work has proposed creative
solutions for sharing storage space by distributing data across
Edge IoT devices [44]–[48], but we were not able to find a
fit as good for sharing context and computational resources.
When we investigated the prominent industrial Iot Edge frame-
works (e.g. Microsoft Azure and Apache Edgent), we found
that they do not support sending data over dynamic P2P paths
which keeps them from supporting dynamic IoT scenarios like
the ones discusses in this paper. Context-sharing in and off
itself is not a new problem in ubiquitous computing. [49]
considers 50 different research and commercial projects over
the last decade in the field of context-aware computing. Recent
work builds on the general rule and modules suggested, such
as [50] which proposes a solution for context-sharing across
applications in smart buildings, and [51] which presents an
approach for remote health monitoring. But not unlike modern
edge IoT solutions, these solutions enable context sharing only
for a limited set of predefined applications within a given
domain, which is not flexible enough for today’s dynamic and
rapidly evolving IoT applications.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

III. HIVE MOTIVATION AND OBJECTIVES

In this section, we demonstrate the shortcomings in current
state-of-the-art IoT solutions with regards to expected future
IoT use cases. We use a sample smart-home scenario where
users have various IoT systems running and expect them to
work seamlessly together to provide a better experience. The
scenario presented in Fig. 1 is that of a household containing 5
devices: Dev1 is Usr1’s laptop, Dev2 is Usr2’s phone, Dev3 is
a raspberry-pi equipped with a microphone and a temperature
sensor, and Dev4 and Dev5 are off-the-shelf CCTV camera.
The house has App1, which is a smart surveillance system
like the one offered by SierraOne [52] and many other
companies. These systems recognize individuals and objects
to recognize threats, which entails heavy and real-time image
processing. App2 is a typical video conferencing tool that
does some image processing to change the user’s background
like the case in Zoom [53]. App3 is a speech-based emotion
recognition solution such as those offered by Affectiva [54]
and Vokaturi [55], aimed to continually monitor the mental
health of residents. App4 is a room temperature monitoring
app and App5 is a computationally demanding phone game.

Today’s IoT solutions as in Fig 1(a), meets each applica-
tion’s basic requirements, but fails to wield the advantages of
the IoT ensemble as a whole. Consider these examples:

1) Usr1 wants to talk and walk while on a video call
via App1, but despite having enough cameras and mi-
crophones around, App2 cannot access App1’s cameras
nor App3’s microphones because they were not directly
configured to serve it.

2) Assuming 1 is solved, App1 and App2 may both be
running similar feature-extraction algorithms on the same
video stream, yet the user will have to pay the energy cost
of this demanding computation twice because there is no
straight forward way to avoid redundant computations.

3) App5 cannot leverage processors on the management
node or laptop to reduce on the phone.

4) A mental health monitoring system can make more in-
sightful conclusions given the temperature of the room,
but unless App3 is pre-configured to talk to App4, it
cannot benefit from the temperature readings made by
the sensor on Dev3.

To overcome these limitations, we designed the Hive, a
system consisting of a pool of Bees, a group of smart devices
running a middleware which abstracts all resources in the
network into a pool of applications, a pool of sensors, and
a pool of processors that can seamlessly access one another
(see Fig 1 (b)). To fully address the gaps identified, the Hive
must fulfill the following objectives: 1) Data can be seamlessly
and simultaneously collected from any single sensor by an any
subset of applications and from any subset of sensors by any
single application. 2) An application can access information
that is collected and processed by other applications. 3) All ap-
plications and sensors can run their computations on arbitrarily
any processor in the network. 4) The omniscient middleware
gets to optimize all resource sharing related decisions (e.g.

(a) State-of-the-art

(b) Our Vision

Fig. 1: Communication between IoT components of a given
smart-home scenario given two Middleware models

which sensors should serve a given application, which bee
should be doing the processing, etc.). The Hive aims to enable
these objectives through a comprehensive system that we detail
in the upcoming sections of this paper.

IV. HIVE SYSTEM ARCHITECTURE

The Hive consists of a system daemon and an accompanying
API, this allows it to work across different devices while
expecting minimal integration efforts from application devel-
opers. The architectural breakdown of the daemon depicted
in Fig. 2 enables the desired decouplement by orchestrating a
data-exchange flow that is compatible with any arbitrary type
of data, device, and application. This flow is divided into three
stages: data, processing, and core. At the data stage, applica-
tions and sensors on a device are abstracted into applications
and sensors pool respectively. Any application pool can collect
data from any sensors pool that is connected to the Hive.
At the processing stage, data collected can be offloaded to
and processed on any edge-connected device. This effectively
abstracts computational units on all devices in the network into
a processor pool. Finally, the core stage creates and manages
connections between these pools of applications, sensors, and
processors (as per our vision shared in Fig. 1). Fig. 2 shows
all architectural components serving the applications pool in
red, those serving the sensors pool in green, those serving
the processors pool in blue, and components concerned with
connecting all devices in grey. We now describe the roles these
components play in each stage in more detail.

A. Data Stage

In this stage, we decouple applications and sensors while
allowing arbitrarily many applications to collect data from

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Hive Architecture

many sensors. In a given data-exchange, we refer to a Bee
where an application has requested data as a Seeker Bee, and
one where a sensor is providing data as a Provider Bee. A
device can simultaneously act as a seeker in one exchange
and a provider in another. The architectural components on
each side of the exchange are described in more detail below.

1) The Seeker’s Side: The Seeker Interface allows arbi-
trarily many Hive-supported applications to access the Hive
resources without exposing the details of the Hive to the
application nor the opposite, ensuring complete decouplement
of applications. The Hive API on the supported application
contacts the local middleware instance through the App Re-
quest Handler. The Handler is responsible for authenticating
applications, updating the local database with their informa-
tion, and forwarding their data requests to the The Data
Seeking Client. This client collects the data requested by an
application from the top Provider Bees specified in the local
App Database. After the data is collected, The Data Manager
is responsible for any operations that need to be done on it
such as filtering or aggregating data streams from multiple
providers, or passing the data to be processed in the second
stage before it is passed back to the Request Handler then to
the application. The Data Manager can allow context sharing
since it has the processed data known by all applications (such
as results of localization or feature extraction).

2) The Provider’s Side: The Provider Interface allows
arbitrarily many sensors to serve the hive with no awareness
of which or how many applications their data will be serv-
ing, ensuring sensory decouplement. It receives data requests
from the Hive on The Data Request Handler which parses
and passes the requests to the The Data-Providing Server.
The server collects data from the Hardware Module which

controls the intended server and passes the results through
the Data Manager if needed. The Provider’s Data manager is
responsible for any operations that need to be done on the
data before sending it back such as checking it for a certain
threshold or passing it to be processed in the second stage. This
capability can reduce redundant computations in the network
because it can ensure that common algorithms (such as feature
extraction) are run only once on the data instead of redundantly
on multiple Seekers. (This is discussed further in Section V).

B. Processing Stage

After data is collected either at a Provider (pre-exchange) or
a Seeker (post-exchange), it can be processed further before
it is passed back from the Hive to the application. Pushing
heavy processing from applications level to the middleware
allows for better utilization of computational resources in the
hive via computational offloading, with the added benefit of
making development easier for IoT Engineers. In a given
computational offload, we refer to the offloading device where
the data was collected as Manager Bee and to the offloadee
where the algorithm will run as Agent. The architectural
components on each side of the computational offload are
described in more detail below.

1) The Manager’s Side: The Computational Manager al-
lows the Seeker and Provider Interfaces to access the Hive’s
processors without exposing the details of the Processing
Stage’s operations to the Interfaces nor the opposite, effec-
tively decoupling the processors pool from the other two. It
receives processing requests and data streams on The Compu-
tational Client then passes them to The Offloader which then
contacts the appropriate Agent bee and collects results as a
derived data stream that it passes back to the Data Interfaces.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

2) The Agent’s Side: The Computation Agent allows a
processing unit on any given bee to perform computations
for any Manager bee and return results. The data and requests
are received from the Manager on The Computational Server
which is responsible for receiving the processing request from
the Manager, invoking the relevant Software Component that
would process it, then passing the results back. Software
Components are the contained code snippets that contain
different computationally demanding algorithms (e.g. video
feature extraction).

C. Core Stage

The Core of the Hive is the glue that brings everything
together; it enables and manages connections between the
different components to maximize robustness and utilization.
Core functions are centralized at a single distributively elected
node, referred to as the Queen Bee, which manages all other
connected devices referred to as Worker Bees. The core archi-
tectural components at the Queen Bee and their counterparts
at each Worker Bee are described below.

1) The Worker’s Side: The Worker Core assists the Queen
in maintaining the robustness of the system and optimizing its
resource usage. Robustness is achieved through the Registrar.
Upon boot-up, it authenticates the Worker Bee with the Queen.
After that, it is responsible for responding to Queen Heartbeats
and restarting the Queen election process in case the Queen
dies. In case the current node is elected as Queen, the Registrar
replaces the Worker Core with a Queen Core.

To assist the Queen in optimizing resource usage, the
Service Discovery module discovers and monitors available
sensors and the Resource Monitor monitors the state and health
of the local resources. This information is periodically passed
from all Workers to the Queen. The Queen is then able to
answer queries from the Worker’s Providers Tracker about
the optimal Providers for a given datatype and Agents Tracker
for optimal Agents that this Bee should offload to. They then
update the Seeker Interface’s database and the Computational
Manager’s offloader respectively.

2) The Queen’s Side: The Queen Core authenticates and
tracks all Worker Bees in the system, collects relevant infor-
mation from them, and centrally decides on optimal Seeker-
Provider and Manager-Agent pairings. The Registrar handles
requests from the Worker’s Registrar, verifies their validity via
the Authentication Module, adds them to the global database
then continues to track their status via the Bees Status-
Tracker. The tracker sends registered Worker Bees periodic
Queen Heartbeats and uses the Heartbeat ACKs to verify the
Bees’ connection status. If a Bee is found dead, the Tracker
immediately updates the database.

The Queen makes two types of decisions to optimize uti-
lization of resources: Seeker-provider pairings (which sensor
would each application use) and Manager-Agent pairings
(which Agent would run the code). To make valid Seeker-
Provider pairings, the Provider Load Balancer keeps the cen-
tral database updated with information about available sensors
in the network which it collects from the workers’ Service

Discovery Modules. The Seeker Bee Manager then accesses
this data and constructs a prioritized pairings table in the
database that it then uses to answer queries from any Worker’s
Provider Tracker. Similarly, the Energy Load Balancer collects
data from Workers’ Resource Monitor and uses it to balance
processing load across devices and accordingly answer queries
made by Workers’ Agents Trackers. The Load Balancer is
most effective in event-triggered load spikes which require
more demanding processing. The exact distribution of load
will depend on the energy capabilities of online devices and
the nature of the task at hand. Exact task scheduling heuristics
are covered and tested in prior work [56].

V. HIVE PROTOCOL

This section describes the Hive Protocol which enables
seamless and robust communication between the components
of the hive and is similarly divided into data, processing
and core functionalities. We first discuss the design logic
underlying the communication flow overall. Next, we present
how this flow is manifested in the protocol’s four main classes
of packets. Then we present the general Hive packet construct
that enables this protocol. Last, we describe the main core
functionality: Distributed Queen Election.

A. Communication Flow

The hive achieves its unique level of flexibility and careful
deliberation of the underlying communication flow. Below we
describe the most significant points of flexibility and how they
were accomplished:

Processing Request flexibility: Without assuming a specific
kind of algorithm that will be requested, it is difficult to
decide whether computational requests should be made by the
Provider, thus avoiding computational redundancy across seek-
ers; or by the seeker, thus avoiding unnecessary networking
cost. The hive mediates this by allowing both Data Managers
to make processing requests. The Data Seeking Client decides
-based on the algorithm requested- whether the Seeker or the
provider should place the request. The computation client is
responsible for multiplexing concurrent ones.

Device Oblivion: To maintain complete device oblivion
the Seeker and Provider always exchange data across Hive
Protocol even if they are on the same device. This ensures that
the Provider Load Balancer maintained by the Queen is always
up to date since the Seeker Interface would always go through
it. Given this up-to-date input on how many Seekers each
Provider is serving, the Queen makes more optimal decisions
on Provider-Seeker pairings.

Processing Unit Oblivion: Similarly, computation managers
and agents will always exchange data across the Hive Protocol
even if they are on the same device. This ensures that the
Energy Load Balancer is always up to date.

B. Hive Packet

The Hive Packet consists of seven headers with a total size
of 20 bytes followed by packet body that can carry extra

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Exchange of Different Packet Classes in the Hive

information, and ending with a 4-bytes-long hash. The typical
usage of the headers and the hash is described below:

Packet Type (2 bytes): The packet type is a three-digit
integer. The first integer depends on the packet class (see 4.B).
The second digit defines the packet function. The third digit
indicates the state of the function: a request, an accept (ACK)
or a reject (Error).

Hive ID (2 bytes): This unique ID, along with the Au-
thentication Hash, allows two Hives to be colocated without
interference. Devices first check if their Hive IDs match before
they try to resolve the Hash.

Source and Destination Bee IDs (8 bytes): These define
the packet source and destination using the Hive’s addressing
scheme. By handling addressing in the Hive layer, we decouple
the Hive from its underlying network technologies.

Data Type ID (2 bytes): This is the ID of the Hardware
Module that will be handling this request. It differentiates
between different data streams. SOUND, VIDEO and TEMP
are examples of Hardware Component IDs.

Algorithm ID (2 bytes): This identifies the Software Com-
ponent that will be used on this stream, if any. This is part of
the data level since a Seeker specifies software components in
its data request to the Provider whenever applicable to allow
provider to potentially run an algorithm once for potentially
many Seekers (see 5.D). It is also a part of the processing
level since it is how the Data Managers communicate with the
Computational Manager (and then the Manager communicates
with the Agent) which Software Component to run on the data.

Body length: The length of the packet body in bytes.
Authentication Hash: A 32-bit integer which uses the

Hive ID and a user-defined password to ensure that packets
exchanged in the Hive are from user-authenticated devices.

C. Protocol Classes

The Hive Protocol is divided into four functions addressing
the 3 levels of operation of the hive depicted in Figure 3. The
protocol’s three main functions are determined by the 100,
200, 300 and 400 class packets. In all packets, the packet type
is indicated by the first two digits: the first is the class and the
second in the function in that class. The third digit is either 0

or 5 for the initial packet itself, 1 or 6 for an error and 2 or
7 for an acknowledgement.

The class-100 packets are for control packets carrying out
core functionalities. These packets are used to coordinate
between the different bees and exchange management infor-
mation. They are responsible for the boot-up process, Queen
election and re-election, address resolution and pairing of
Seeker and Provider Bees. They are exchanged over UDP.

The class-200 and class-300 packets are for data func-
tionalities. 200-class packets are for IPC between the Hive
layer, which runs as a system daemon, and the applications
running on the device. Whenever an application registers,
it starts a TCP connection with the Hive layer over which
class-200 packets are exchanged. They are used to confirm
the registration, authenticate and serve the application. The
class-300 is for control over actual data exchanged between a
Seeker and a Provider. For Data exchange, two direct channels
are established between Seeker and Provider bees (without
interference of the Queen). One of them is a TCP connection
for data control packets and the second is a UDP stream
carrying the actual data.

The class-400 packets are for task-offloading between a
Computational Manager and Agent. Three channels are es-
tablished for computational offloading between Manager and
Agent bees (without interference of the Queen). One of them
is a TCP connection for class-400 control message exchange
between both parties, the second is a UDP stream from the
Manager to the Agent with the data, and the third is a UDP
stream from the Agent to the Manager with the computational
results. The results-stream is passed as is from the Seeker In-
terface to the Application, in case of post-exchange processing,
or from the Provider Interface to the Seeker Interface to the
Application, in case of pre-exchange processing.

D. Queen Election Algorithm

We use a variation of a classic distributed leadership election
algorithm [57] to bootstrap the Queen election and ensure
the robustness of the system. The algorithm ensures that the
system will always converge to a single Queen. Then, the
Queen can track all Worker Bees to ensure the robustness of
data connections.

The process is summarized in the State Machine illustrated
in Figure 4. As shown in the figure, when a device boots up
it enters a unique boot-up status. It will wait for a heartbeat,
which is a periodic broadcast from the Queen. If this new
device hears a heartbeat, it becomes a Pending Worker; other-
wise, it assumes there are no queens around and declares itself
as the Queen. If two devices boot up at the same time, they
may both declare as queens, but eventually one would hear the
heartbeat of the other. When that happens, the two compete.
Competition between Queens is a comparison between up-
times. The Queen with the longest up-time wins because this
indicates that it is a more stable device in the house. Stability
is important because we want to avoid the delay introduced
by Queen re-election. After the competition, one device stays
as Queen and the other demotes itself to Pending Worker.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Queen Election Process State Machine

Pending workers become Workers after they register all their
data and synchronize with the Queen. Finally, the device
remains as a worker bee unless it misses 3 heartbeats in a row
from the Queen bee. It then it assumes the Queen is dead,
elects itself as Queen and the election process restarts.

We argue that this algorithm will eventually converge to
a single Queen with any number of nodes and after any
number of Bees leaving or joining the hive. [57] presents a
proof that given an n-node network, composed of a connected
component of size m < n, and of n −m isolated nodes, for
every k < n − 1 node disconnections and q < n −m nodes
joining, exactly a single node in the network will have equal
number of cand messages (Queen Heartbeat) sent and accept
(ACK) messages received. We also note that this proof does
not account for message loss due to congestion, which is very
likely in our system. However, the Hive Protocol accounts for
it by sending the Queen Heartbeats periodically. Namely, our
protocol does not guarantee that there will be a single Queen at
any given second, but it guarantees that eventually the system
will converge to a single Queen. Given the role of the Queen
in the system, this leniency is tolerable.

VI. PRELIMINARY ASSESSMENT

In this section, we evaluate the functionality of a prototype
implementation of the Hive. We begin by testing the core
functionality of the system: the boot-up process responsible for
electing the Queen. Then, we test the prototype on a sample
emotion recognition application to demonstrate how the hive
can improve the quality of the application.

A. Queen Election

We begin by testing the robustness of the Queen Election
Algorithm implemented in the core module against various
failures. The set-up has 5 Raspberry Pi’s (RPI2 model B+)
with IDs 001 to 005. All Bees are connected via Wi-Fi over a
Cisco Linksys E900 router. We observe the bees’ status over
time and in different scenarios. We trigger the algorithm by
booting up all the devices, then again by killing the elected
Queen. Figure 5 shows the Queens declared over time.

We observe that, initially, not all bees declare themselves
as Queens. Bee001, which was first to boot-up, declares itself
as Queen and is followed by Bee002 and Bee003. Bee004
and Bee005 hear Bee001’s broadcast (Queen Heartbeat) be-
fore their boot-up timeout and directly declare themselves as
workers. Bee002 and Bee003 eventually hear the broadcast
and after competing with Bee001, demote themselves leading

Fig. 5: Changing number of Queens during Boot-up

the system to converge to a single Queen after approximately
3.2 seconds. Afterwards, we kill Bee001, the Queen, at ap-
proximately 5.5, this can be seen in Figure 5 as a dip where
the system declares that it momentarily has 0 queens. All other
bees detect the loss of a queen after missing three consecutive
heartbeats, and declare themselves as Queens at approximately
7.25; they then compete and converge to a single new queen
by second 7.5.

After observing and plotting the behavior of the system
during queen election, we switch to 3 nodes setup and run
further tests, 10 times each. The system consistently passes
those tests. Below, we describe each test, the delay we measure
in it and the average of this delay over the 10 runs.

• Sequentially turn on all devices: First device to boot-up
becomes the queen and the other two register as workers.

• Turn on devices at the same time: Each device declares
itself as queen, then they compete and elect a single
queen. Delay from boot-up to the last worker registration
is 3.21s on average.

• Disconnect Queen: One or both workers detect that a
Queen is gone and election restarts. Delay from the
Queen’s death to the last device’s registration with the
new queen is 2.35s on average.

• Disconnect a Worker: Queen detects that a worker dis-
connected and clears up its resources from the Hive.
Resources are cleared after an average of 3.5s from the
worker’s death.

These tests also demonstrate the Hive’s behavior in case of
a network partition. The partition that has the Queen (Bee001)
will detect Workers’ disconnection while the disconnected
Workers in the other partition will detect Queen disconnection
and elect their own. Once connectivity is retrieved between the
partitions, the Queens will compete and converge in less than
3.21s as per the second experiment described above.

B. Sound

Context-aware event-driven sensing is one of the features
that motivated our system design. Given the importance of this
feature, we implement and test it in our preliminary prototype
using the following scenario: in case a user is being recorded

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Left: Sound collected without using the hive on (a) laptop and (b) RPI. Right: (c) Sound collected using the hive

Fig. 7: Left: Emotion recognition from both bees without using
the hive. Right: Emotion recognition from a single bee using
the hive.

by any hive-based application, the event in which they move
between devices triggers the hive to start collecting sound
from the microphone that is closer to the user. There are
countless potential IoT applications that can use this feature.
This feature achieves collaboration between devices in two
ways: first, devices can produce triggering events for other
devices, in this case the location of the user. Second, sensors
can collaborate to collect an optimal data stream, in this case
toggling between microphones to collect the clearest sound
from the microphone on the device closest to the user.

We enable this feature by implementing a simulated local-
ization software component LOC that returns user location.
The Data Request Handler accepts a request if the user is in
the same room as the device and rejects it otherwise. If the
Bee accepts the request, it collects the sound stream using an
ALSA-based sound component that we implement.

We test this implementation with two experiments in which
a source of sound is moving from one room to the other. Each
room has a different IoT device equipped with a microphone.
The objective is to have the Hive automatically select one of
the Bees to capture the sound stream. In the first experiment,
we run a simple sound capturing application to track a
travelling sound source and show how this feature can provide
a higher and clearer sound stream. In the second experiment,
we run a sound-based emotion recognition application that
uses the Vokaturi library [55] to show the impact of the Hive
on a real potential smart home application. We describe both
experiments in more detail below.

The sound stream used is a melody that we played from a
moving device. The sound is collected and printed by a hive-
supported application on Bee003. We first move the source
device from the proximity of Bee001 to Bee002 and collect the
sound samples from each bee, without defining the triggering

event. We achieve this by only allowing one of them to register
to the hive at a time. Then, after defining LOC as the algorithm
used, since it is a stream-defining algorithm, we allow both
Bee001 and Bee002 to register and collect the sound from both
microphones. The results of this experiment are presented as
sound waves (amplitude over time) in Figure 6.

Figure 6 (a) and (b) shows the two sound streams collectable
without event-triggered sensing. Without event-triggered sens-
ing, the application can either use the microphone on Bee001,
where sound is loud then fades away, or the microphone on
Bee002, where it is low then rises. We experimentally verify
that the difference in sound intensity between 01 and 02 is
because 01 is a laptop with a stronger microphone than the
Pi. As seen in Figure 6 (c), after defining the trigger (shown
in red), the hive only collects sound from Bee001 until the
sound emitting device is close enough to Bee002, then it
starts picking up the sound stream from Bee002 instead. This
provides a smoother sound stream with appropriate volume.

We repeat the previous experiment using an emotion recog-
nition application on top of our Hive prototype to demonstrate
ease of integration. We use a 9-second human sound recording
instead of the melody and create two copies of the recording,
each chopped into 9 one-second pieces. One copy, running on
the laptop, had sound that was reduced in intensity (volume)
by 10% after each second. The other copy, running on the
RPI1 had sound that increased in intensity by 10% after each
second. This setup was developed to emulate user movement
between two devices without introducing other variables that
can impact the system performance. The hive collects the
sound stream in an identical manner to the previous experiment
and feeds it to the emotion recognition application. The
application uses the Vokaturi [55] open source API to classify
the sound recording as one of five main emotions. The library
also reports the classification’s confidence level.

Figure 7 shows the confidence levels reported with and
without the hive’s event-triggered sensing feature. The graph
on the left shows the reported confidence levels from the
laptop (Dark purple) and pi (light blue). As seen in the graph,
without the hive, the application developer would have to
choose between rising or falling confidence. However, as the
graph on the right shows, hive empowered the application with
higher quality data; confidence level stayed consistently above
40%. We note that the confidence levels is a function of the
library used, not the Hive; the experiment is rather concerned
with the variance of confidence with the movement of the
sound source.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

VII. VIDEO INTEGRATION AND EVALUATION

We extensively evaluate our Hive prototype to better un-
derstand the costs, benefits, and bottlenecks of using it. We
first demonstrate two case-studies on two real-life scenarios
using physical hardware, then study both scenarios on-scale
using virtual machines on a simulated network. In our first
scenario, we test for a Seeker’s (application) ability to seek
data from arbitrarily many Providers (sensors); and in the
second, we test a Provider’s ability to provide data and
processed information to arbitrarily many Seekers. Together,
these case studies demonstrate the decouplement that we are
after: we can have arbitrarily many applications dynamically
access arbitrarily many sensors and processors. The case
studies also serve to show the cost-benefit balance of the hive
in a real-world demonstration. The scale tests demonstrate the
Hive’s versatility at-scale and under many environments. All of
our testings are done using real-time video-based applications
since video is a more intensive resource to help stress-test the
Hive and evaluate the data exchange process.

A. Video Implementation

For our testing, we developed a Face Detection Module,
a sample Hive software module in python for processing
the video streams. The module uses OpenCV’s built-in Haar
cascade classifier to compute face detection confidence scores
for each video frame and make it available at the provider
as ”video metadata” data type. To aid our measurements, it
also puts a timestamp on the data for each frame. Providers
use this module to provide meta-data streams with video
to one or more seekers. A seeker can then combine video
streams from all the providers it is receiving from and output
a stream consisting of the frames with the highest confidence
scores. Note that the video input at a provider is encoded
and compressed so that the data transmitted over the network
to seekers is minimal. The streams are decoded on a seeker
to select the frames from all streams. The frames are then
delivered decoded, i.e. raw, to the apps. The fact that the
software module is written separately in a different language
from the Hive demonstrates the system’s modularity and its
ability to plug-in components as necessary.

We also wrote three hive-supported video applications that
require face-detection. App1 represents a video conferencing
app that displays the stream with the best frontal face. It
also outputs the delay of each frame by calculating the time
since the frame’s timestamp as recorded by the Face Detection
Module, this constitutes the delay of the hive from provider
to application. App2 represents a crowd counting application,
reading the metadata stream from the hive and counting the
number of faces detected in the streams. App-3 represents
a surveillance app that also receives the metadata from the
hive and monitors the confidence scores, outputting a warning
message if a face is detected with threshold confidence that
exceeds a certain threshold. For each of the three apps, we
also wrote a non-hive version, which reads a video source,
runs the face detection itself, and outputs the same result. The
three applications, together with the sound application in the

Fig. 8: Experimental set-up for Video-based Case Study
Parameter case study values scalability tests values

Video resolution 640x360, 854x480, 1280x720
Frame rate 6, 12 24
Delay (ms) 1.5 5, 20, 50

Bandwidth (Mbps) 45 10, 20
Providers/Seekers 1. . . 3 1. . . 9

TABLE I: Evaluation Parameters

last section, demonstrate the flexibility of the Hive and its
impact on applications’ performance.

B. Video Integration Tests

1) Experimental Set-up: To test the performance of video-
based applications on the hive in a real-life environment, we
use the experimental set-up shown in Figure 8. The set-up
has 4 bees: 3 Raspberry Pi’s (RPI2 Model B+) each equipped
with a camera module (v2) and a laptop running Fedora 31
with a core i5-8250u processor. The Pi’s are fixed close to one
another in one half of the room and the laptop is sitting behind
an obstacle as shown in Figure 8. All devices have both the
hive and non-hive versions of all three applications above. All
devices are connected via Ethernet over a Cisco Linksys E900
router, except for the Laptop which is connected over Wi-Fi.
We measured the link between the laptop and the Pi’s at 45
Mbps bandwidth and 3 ms round-trip time.

In our experiments, we measure delay, bandwidth, and CPU
utilization. Minimized delay is an essential quality for real-
time IoT applications, reduced CPU utilization caters to low-
energy devices allowing higher heterogeneity of Bees and
bandwidth verifies the system’s effectiveness in different real-
istic environments. We vary the video quality and the number
of seekers as in Table I. The 720p resolution is not used in
the experiments involving Pi’s because they are incapable of
running face detection consistently at high resolution. We did
not implement the code offloading module of the Hive in our
prototype so the Computational Manager can run any software
modules only locally.

2) Scenario A: One Seeker, Many Providers: This scenario
demonstrates how the Hive can improve the performance of
an application on a Seeker Bee by allowing seamless access to

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Video as observed by different providers vs stream as
displayed on seeker

data from multiple sensors (potentially on multiple Provider
Bees). The Hive is boot-up with cameras on the three Pi’s and
App1 running on the laptop. As specified in the application’s
data request, the hive collects data from multiple provider Bees
and uses the face detection meta-data from the provider to
make a post-exchange decision on which stream it should feed
the application.

We study how The Hive can allow any application request-
ing an optimal data stream, in this case, an optimal face video
stream, to receive it from any sensors around the network, for
example, surveillance cameras around the house. The scenario
we mimic is a person having a video call while moving around
the room. As shown in Fig. 8, the Pi’s cover a part of the
room that the laptop, the Seeker on which the application is
running, has no visual coverage. The movement of the subject
is also shown in the figure. The subject first faces Pi1 at
time T1, then moves to face Pi2 at T2 and finally Pi3 at T3.
Figure 9 shows the frames as captures by each Pi individually
and the final stream given to the seeker application (laptop).
Notice that there are instances where the subject is visible
by more than one provider as in T1, but the Hive chooses
the highest confidence of a forward face. The Hive’s value
lies in enabling the application to access data that would
otherwise be unattainable. The opportunities that this unlocks
for application developers are endless.

Next, we use a pre-recorded video, for better control, to
evaluate the performance under this setup in terms of delay
and bandwidth usage. Figure 10 shows how delay changes
with different video qualities. The bandwidth results are as
expected; it increases linearly with the number of seekers. The
usage increases by less than 100% going from 6 fps to 12
fps because of video compression optimizations. Delay almost
halves as we double the frame rate while increasing resolution
and the number of seekers causes minimal change.

To make better sense of the empirical data from our ex-
periment, we can model the hive costs abstractly based on the
description of our implementation. The are several components

360p 480p

Fig. 10: One seeker, many providers performance

360p 480p

Fig. 11: Many seekers, one provider performance

to hive delay dhive. First, we feed sensory data to the hive
using ffmpeg as a “hardware module.” The delay introduced
by ffmpeg is not included in our measurements because it is a
function of the hardware module rather than a reflection of the
actual hive performance. We timestamp the frame just before
running face detection, which is the first component of delay
ddetect. Frames are scaled down to a fixed dimension before
running the model, hence ddetect does not depend on video
resolution. Next, the frame and its metadata are copied over
through the hive pipeline from the provider to the data manager
at the seeker that combines the streams and finally to the
app, potentially going through a network in the middle. These
copy operations incur a cost dcopy, which depends on data size
which is a function of video resolution. The multiple copy
operations cause a frame to be buffered multiple times before
reaching the destination. For example, the seeker software
module combines frames from all providers before handing
the complete result frame to the data manager. Ignoring all
other sources of delay, this causes the frame at the app to be
some constant b frames behind the new frame being generated
at the source. At a frame rate of r, a frame is generated every
1/r interval which causes a buffering delay of b/r. In total,

dhive ≈ ddetect + dcopy + b/r (1)

Looking back at the result, b/r is the delay component that

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

(a) 360p (b) 480p (c) 720p

Fig. 12: Many seekers, one provider CPU utilization

causes delay to decrease with a higher frame rate. On the other
hand, dcopy is the only component that depends on resolution,
which we deduce to be small based on the results as the delay
is virtually the same with both resolutions.

3) Scenario B: Many Seekers, One Provider: This scenario
demonstrates how the Hive can increase the utilization of
resources on the network by enabling a single sensor to
concurrently provide video data to multiple applications while
sharing computations. We first, test performance using the
same configuration as before with the laptop as the provider
and the three Pi’s as seekers running App1. The results are
shown in Figure 11. These results match the ones for one
seeker, many providers case with the exception that delay is
overall reduced by around one third. This is attributable to
the fact that the bulk of processing happens on the provider
side, and in this case, the provider is a laptop that has a more
powerful CPU than the Pi’s which are the providers in the
previous case.

4) Hive Cost-Benefit Analysis: We utilize our video setup
to assess the costs and benefits of the hive. Two fundamental
costs associated with the hive are CPU utilization and delay.
A key advantage of the hive is avoiding redundancy by per-
forming computations once and sharing results. This reflects
on the CPU utilization when the same app is run on different
machines using the same resources. On the other hand, the
hive requires coordinating devices, which we expect to add
some delay overhead compared to a setup with fixed, hard-
coded data paths.

To evaluate the save in CPU utilization we achieve by using
the hive, we test two configurations, local and networked.
In the local configuration, we run a single instance of the
hive on the laptop and run the hive apps also on the laptop
and compare it against running the non-hive versions of the
apps on the laptop. In the networked configuration, We run
the applications each on a Pi, running the laptop as the only
provider. In both cases, we use 12 fps recorded video and vary
the video resolution and the number of applications (seekers).
Since the face detection components are run on the provider,
the face detection algorithm now only runs once with the hive
and the results are streamed to all the different seekers. Figure
12 shows the results for the local configuration.

Similarly to equation (1), we can model the CPU utilization
with and without the hive to explain the results. Denoting the
set of providers with P and the set of application with A the

(a) 360p (b) 480p

Fig. 13: Hive delay cost

CPU cost of a single instance can be expressed as follows:

chive ≈ cdecode + cdetect +

(∑
P

cdecode

)
+ ccopy (2)

cno-hive ≈
∑
A

(cdecode + cdetect) (3)

In the hive case, the video stream is decoded once in
the provider interface to run face detection then as many
times as P in the seeker interface to decode all received
streams, and finally there is the cost of copying the frames
through the hive pipeline including the network. We ignored
the costs of the applications themselves since, in the hive
case with our particular applications, they are very simple
and negligible compared to the other costs, e.g. App2 just
adds up the counts of face detection scores above a threshold
in the provider-computed metadata. In the non-Hive case,
each application decodes the video stream and runs the face
detection independently.

The local configuration shows the computational gain of the
hive achieved through the elimination of redundancy. Looking
at Fig. 12 in light of equations (2) and (3), for the no-hive
case, cdetect is independent of resolution. The cost of decoding
cdecode should be dependent on resolution, but we see that cost
increases only minimally with the resolution, which indicates
cdetect is dominating. In the hive case, note |P| = 1. There is a
noticeable overhead compared to the 1-App no-hive case, but
adding applications causes virtually no change, verifying our
assumptions that application cost is negligible. On the other
hand, increasing video resolution increases the cost of the hive.
Given that cdetect is independent of resolution and cdecode is
minimal as shown by the no-hive case, it seems that ccopy, the
cost of copying the video stream through the stages of the
hive pipeline, is the main overhead compared to non-hive. In
summary, with n seekers, where the no-Hive case costs some

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

360p 480p 720p

Fig. 14: Many seekers, one provider results

kn, the hive costs ak + c where c is a function of data rate
(video resolution). This is significant save in CPU utilization.

To ensure the Hive is advantageous even if we introduce
network overhead, we also run the networked configuration
and observed a similar pattern. Comparing CPU utilization
in this case, however, is tricky as comparing laptop CPU to
Pi CPU is not possible directly. We weighted the results by
benchmarking each CPU and observed the same trend as above
but omitted the graphs for brevity. Nevertheless, We note that
in this scenario, the Bees do not have a local video source,
so without middleware like the Hive, they would not even
function simultaneously.

Next, we evaluate the impact of the hive on delay. We repeat
the setup in scenario B but fixing the frame rate at a nominal
value of 12 and comparing the hive delay with non-hive delay.
The non-hive setup is the same as the networked configuration
we discussed earlier. The results are summarized in Figure 13.
We notice our hive prototype adds a delay overhead ranging
between 0.3 s and 0.4 s which are attributable to the flexibility
and agility the hive provides, in contrast to the non-hive
setup which is hardcoded to stream to fixed targets. Also, we
observe the hive delay stays relatively constant as we vary our
parameters, which demonstrates that the bulk of the delay is
a one-off cost that diminishes with scale.

C. Scalability Testing

1) Experimental Set-up: For scalability, we run 10 in-
stances of the Hive on 10 virtual machines running on Intel
Xeon X5690 each assigned two threads and with interconnec-
tions of at least 1 GB/s and less than 1 ms round-trip time.
The scalability tests allow us to test the versatility of the hive
under many different networking conditions and on a larger

scale than with physical devices. We use the Linux tool tc
with the netem queuing discipline to simulate the different
network conditions and use a pre-recorded video as the hive
video input. The parameters are listed in Table I.

2) Scenario A: Many Seekers, One Provider: We examine
the impact of n seekers on one provider in terms of delay and
CPU load on the provider. In Fig. 14 we plot the average of
delay of all n streams, over 10 measurements across n for the
10 Mbps case as well as bandwidth usage and CPU utilization
at the provider. We notice the hive has a base delay of about
120 ms which increases with the induced network delay.
The delay does not change noticeably as we increase seekers
until the total bandwidth exceeds the available bandwidth at
which point, it abruptly jumps to much higher values. This is
consistent with our modeling of delay in (1). CPU utilization
also stays almost constant. Looking at (2), the only component
that should be affected is ccopy as receivers are added, but the
portion of this component on the provider uses a compressed
stream, and the branching happens at one point only: at the
providing server, hence the change is minimal. We did not plot
delay for 20 and 50 Mbps because they do not saturate the
bandwidth at 9 seekers and the delay virtually stays the same.

3) Scenario B: One Seeker, Many Providers: We now
examine the impact of n providers on one seeker in terms
of system delay and CPU load on the seeker. In Fig. 15 we
plot the average delay of all n streams, over 10 measurements
across n for each combination of network parameters. We also
plot the CPU load and bandwidth utilization at the seeker.
Results are similar to the many seekers, one provider case,
except for CPU utilization which increases uniformly with
the number of providers. From (2), we can see that the sum∑

P
cdecode increases and more videos are decoded which is

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

360p 480p 720p

Fig. 15: One seeker, many providers results

a significant cost. Besides, the portion of copy operation
(ccopy) on the seeker side copies raw frames which is more
expensive than the compressed stream copy which happens
on the provider side. Nevertheless, at the scale we were able
to test, only exceeding the bandwidth was a limiting factor.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the Hive, an Edge-based IoT
middleware that completely decouples applications, sensors
and computational units in a manner that allows IoT systems
to utilize access to all resources available on the network.
The architecture achieves this decouplement on three different
stages: data exchange, processing and core. The supporting
protocol governs and organizes communication between en-
tities. We then demonstrated the impact of the middleware
using audio and video apps in cases of many sensors to one
application and one sensor to many applications using physical
hardware. We verified the system’s ability to handle up to
10 nodes in each scenario under different network conditions
using a virtual set-up. We found that the Hive cuts CPU
utilization by a factor of 1/n + c where one sensor feeds n
applications while maintaining a delay below 1s under most
conditions. To the extent of our tests, bandwidth was the only
factor limiting delay. We conclude that the edge-based design
approach that we adopt for the hive increases the performance
of IoT real-time applications while improving their overall
CPU utilization and having negligible impact on delay. In
the future, we want to enhance the scalability of the system
by implementing and comparing different load-balancing and
computational offloading schemes to find ones that are most
suitable for the Hive.

REFERENCES

[1] N. G., “How many iot devices are there?” 2019. [Online]. Available:
https://techjury.net/blog/how-many-iot-devices-are-there/

[2] O. Hamdan, H. Shanableh, I. Zaki, A. R. Al-Ali, and T. Shanableh,
“Iot-based interactive dual mode smart home automation,” in 2019 IEEE
International Conference on Consumer Electronics (ICCE), Jan 2019,
pp. 1–2.

[3] H. Abdelnasser, K. Harras, and M. Youssef, “A ubiquitous wifi-based
fine-grained gesture recognition system,” IEEE Transactions on Mobile
Computing, vol. 18, no. 11, pp. 2474–2487, 2018.

[4] H. Abdelnasser, K. A. Harras, and M. Youssef, “Magstroke: A magnetic
based virtual keyboard for off-the-shelf smart devices,” in IEEE SECON,
2020, pp. 1–9.

[5] M. A. Shah, K. A. Harras, and B. Raj, “Sherlock: A crowd-sourced
system for automatic tagging of indoor floor plans,” in IEEE MASS,
2020.

[6] H. Abdelnasser, M. Youssef, and K. A. Harras, “Magboard: Magnetic-
based ubiquitous homomorphic off-the-shelf keyboard,” in IEEE
SECON, 2016, pp. 1–9.

[7] O. Hashem, M. Youssef, and K. A. Harras, “Winar: Rtt-based sub-meter
indoor localization using commercial devices,” in IEEE PerCom, 2020,
pp. 1–10.

[8] M. Ibrahim, M. Gruteser, K. A. Harras, and M. Youssef, “Over-the-air
tv detection using mobile devices,” in IEEE ICCCN, 2017, pp. 1–9.

[9] M. A. Shah, B. Raj, and K. A. Harras, “Inferring room semantics using
acoustic monitoring,” in IEEE MLSP, 2017.

[10] G. C. Nobre and E. Tavares, “Scientific literature analysis on big data
and internet of things applications on circular economy: a bibliometric
study,” Scientometrics, vol. 111, no. 1, pp. 463–492, 2017.

[11] M. Aazam, K. A. Harras, and S. Zeadally, “Fog computing for 5g tactile
industrial internet of things: Qoe-aware resource allocation model,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 3085–
3092, 2019.

[12] A. Madushanki, M. Halgamuge, H. Wirasagoda, and A. Syed, “Adoption
of the internet of things (iot) in agriculture and smart farming towards
urban greening: A review,” International Journal of Advanced Computer
Science and Applications, vol. 10, pp. 11–28, 04 2019.

[13] P. Gupta, A. Pandey, P. Akshita, and A. Sharma, “Iot based healthcare
kit for diabetic foot ulcer,” in Proceedings of ICRIC 2019. Cham:
Springer International Publishing, 2020, pp. 15–22.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

[14] M. Aazam, S. Zeadally, and K. A. Harras, “Health fog for smart
healthcare,” IEEE Consumer Electronics Magazine, vol. 9, no. 2, pp.
96–102, 2020.

[15] M. F. Al-Sa’D, M. Tlili, A. A. Abdellatif, A. Mohamed, T. Elfouly,
K. Harras, M. D. O’Connor et al., “A deep learning approach for vital
signs compression and energy efficient delivery in mhealth systems,”
IEEE Access, vol. 6, pp. 33 727–33 739, 2018.

[16] A. Emam, A. A. Abdellatif, A. Mohamed, and K. A. Harras, “Edge-
health: An energy-efficient edge-based remote mhealth monitoring sys-
tem,” in IEEE WCNC, 2019, pp. 1–7.

[17] A. Saeed, A. Abdelkader, M. Khan, A. Neishaboori, K. A. Harras, and
A. Mohamed, “Argus: realistic target coverage by drones,” in ACM/IEEE
IPSN, 2017.

[18] Ó. Blanco-Novoa, P. Fraga-Lamas, M. A. Vilar-Montesinos, and T. M.
Fernández-Caramés, “Towards the internet of augmented things: An
open-source framework to interconnect iot devices and augmented
reality systems,” in Multidisciplinary Digital Publishing Institute Pro-
ceedings, vol. 42, no. 1, 2019, p. 50.

[19] A. Saeed, A. Abdelkader, M. Khan, A. Neishaboori, K. A. Harras, and
A. Mohamed, “On realistic target coverage by autonomous drones,”
ACM Transactions on Sensor Networks (TOSN), vol. 15, no. 3, pp. 1–33,
2019.

[20] A. Saeed, M. Ammar, E. Zegura, and K. Harras, “If you can’t beat them,
augment them: Improving local wifi with only above-driver changes,”
in IEEE ICNP, 2018.

[21] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab,
A. K. Al-Ali, K. A. Harras, and M. Guizani, “Design challenges of multi-
uav systems in cyber-physical applications: A comprehensive survey and
future directions,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 4, pp. 3340–3385, 2019.

[22] A. Essameldin and K. A. Harras, “The hive: An edge-based middleware
solution for resource sharing in the internet of things,” in MobiCom
Smart Objects Workshop, 2017, pp. 13–18.

[23] N. Sinha, K. E. Pujitha, and J. S. R. Alex, “Xively based sensing
and monitoring system for iot,” in 2015 International Conference on
Computer Communication and Informatics (ICCCI). IEEE, 2015, pp.
1–6.

[24] E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver, A. Wasicek, and
M. Weber, “A vision of swarmlets,” IEEE Internet Computing, vol. 19,
no. 2, pp. 20–28, 2015.

[25] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P. Calbimonte,
M. Riahi, K. Aberer, P. P. Jayaraman, A. Zaslavsky, I. P. Žarko et al.,
“Openiot: Open source internet-of-things in the cloud,” in Interoperabil-
ity and open-source solutions for the internet of things. Springer, 2015,
pp. 13–25.

[26] P. Hofmann and D. Woods, “Cloud computing: The limits of public
clouds for business applications,” IEEE Internet Computing, vol. 14,
no. 6, pp. 90–93, 2010.

[27] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog computing
in industrial internet of things and industry 4.0,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4674–4682, 2018.

[28] S. Mubeen, P. Nikolaidis, A. Didic, H. Pei-Breivold, K. Sandström,
and M. Behnam, “Delay mitigation in offloaded cloud controllers in
industrial iot,” IEEE Access, vol. 5, pp. 4418–4430, 2017.

[29] P. Ferrari, A. Flammini, E. Sisinni, S. Rinaldi, D. Brandão, and M. S.
Rocha, “Delay estimation of industrial iot applications based on messag-
ing protocols,” IEEE Transactions on Instrumentation and Measurement,
vol. 67, no. 9, pp. 2188–2199, 2018.

[30] A. Mtibaa, K. A. Harras, and A. Fahim, “Towards computational
offloading in mobile device clouds,” in IEEE CloudCom, vol. 1, 2013,
pp. 331–338.

[31] K. Habak, E. W. Zegura, M. Ammar, and K. A. Harras, “Workload
management for dynamic mobile device clusters in edge femtoclouds,”
in ACM/IEEE SEC, 2017, pp. 1–14.

[32] J. Wang, S. Pambudi, W. Wang, and M. Song, “Resilience of iot systems
against edge-induced cascade-of-failures: A networking perspective,”
IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6952–6963, Aug
2019.

[33] V. Prokhorenko and M. Ali Babar, “Architectural resilience in cloud, fog
and edge systems: A survey,” IEEE Access, vol. 8, pp. 28 078–28 095,
2020.

[34] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” in
IEEE CLOUD, 2015, pp. 9–16.

[35] K. Habak, C. Shi, E. W. Zegura, K. A. Harras, and M. Ammar, “Elastic
mobile device clouds: Leveraging mobile devices to provide cloud
computing services at the edge,” Fog for 5G and IoT, p. 159, 2017.

[36] H. K. Gedawy, K. Habak, K. Harras, and M. Hamdi, “Ramos: A
resource-aware multi-objective system for edge computing,” IEEE
Transactions on Mobile Computing, 2020.

[37] H. Gedawy, K. A. Harras, K. Habak, and M. Hamdi, “Femtoclouds
beyond the edge: The overlooked data centers,” IEEE Internet of Things
Magazine, vol. 3, no. 1, pp. 44–49, 2020.

[38] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Where’s the bear? -
automating wildlife image processing using iot and edge cloud systems,”
in 2017 IEEE/ACM Second International Conference on Internet-of-
Things Design and Implementation (IoTDI), April 2017, pp. 247–258.

[39] A. M. Rahmani, T. Nguyen gia, B. S. Negash, A. Anzanpour, I. Azimi,
M. Jiang, and P. Liljeberg, “Exploiting smart e-health gateways at
the edge of healthcare internet-of-things: A fog computing approach,”
Future Generation Computer Systems, 02 2017.

[40] “Cisco edge intelligence.” [Online]. Available:
https://www.cisco.com/c/en/us/solutions/internet-of-things/edge-
intelligence.html

[41] “The future of computing: intelligent cloud and intelligent edge.”
[Online]. Available: https://azure.microsoft.com/en-us/overview/future-
of-cloud/

[42] “Apache-edgent,” 2016. [Online]. Available:
https://edgent.incubator.apache.org/

[43] A. Javed, K. Heljanko, A. Buda, and K. Främling, “Cefiot: A fault-
tolerant iot architecture for edge and cloud,” in 2018 IEEE 4th World
Forum on Internet of Things (WF-IoT), 2018, pp. 813–818.

[44] A. Elgazar, M. Aazam, and K. Harras, “Edgestore: Leveraging edge
devices for mobile storage offloading,” in IEEE CloudCom, 2018, pp.
56–61.

[45] A. Saeed, M. Ammar, K. A. Harras, and E. Zegura, “Vision: The
case for symbiosis in the internet of things,” in Proceedings of the
6th International Workshop on Mobile Cloud Computing and Services.
ACM, 2015, pp. 23–27.

[46] A. E. Elgazar and K. A. Harras, “Enabling seamless container migration
in edge platforms,” in ACM CHANTs, 2019, pp. 1–6.

[47] A. E. Elgazar, M. Aazam, and K. A. Harras, “{SMC}: Smart media
compression for edge storage offloading,” in 2nd {USENIX} Workshop
on Hot Topics in Edge Computing (HotEdge 19), 2019.

[48] A. Elgazar and K. Harras, “Teddybear: Enabling efficient seamless
container migration in user-owned edge platforms,” in IEEE CloudCom,
2019, pp. 70–77.

[49] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE Communi-
cations Surveys Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[50] C. Kamienski, F. Borelli, G. Biondi, W. Rosa, I. Pinheiro, I. Zyri-
anoff, D. Sadok, and F. Pramudianto, “Context-aware energy efficiency
management for smart buildings,” in 2015 IEEE 2nd World Forum on
Internet of Things (WF-IoT), 2015, pp. 699–704.

[51] R. Fallahzadeh, Y. Ma, and H. Ghasemzadeh, “Context-aware system
design for remote health monitoring: An application to continuous
edema assessment,” IEEE Transactions on Mobile Computing, vol. 16,
no. 8, pp. 2159–2173, 2017.

[52] “Sierra one technologies.” [Online]. Available:
https://www.sierraonetech.com/

[53] “Meet from literally anywhere: Zoom virtual background,” 2020.
[Online]. Available: https://blog.zoom.us/wordpress/2016/09/23/zoom-
virtual-background/

[54] “Introducing affectiva’s emotion recognition through speech.”
[Online]. Available: https://blog.affectiva.com/introducing-affectivas-
emotion-recognition-through-speech

[55] “Vokaturi emotion recognition by speech.” [Online]. Available:
https://vokaturi.com/

[56] H. Gedawy, K. Habak, K. Harras, and M. Hamdi, “An energy-aware iot
femtocloud system,” in 2018 IEEE International Conference on Edge
Computing (EDGE). IEEE, 2018, pp. 58–65.

[57] M. Franceschetti and J. Bruck, “A leader election protocol for fault
recovery in asynchronous fully-connected networks,” California Institute
of Technology, Tech. Rep., 1998.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:25:26 UTC from IEEE Xplore. Restrictions apply.

