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Abstract

Rivulet is a fault-tolerant distributed platform for running

smart-home applications; it can tolerate failures typical for

a home environment (e.g., link losses, network partitions,

sensor failures, and device crashes). In contrast to existing

cloud-centric solutions, which rely exclusively on a home

gateway device, Rivulet leverages redundant smart consumer

appliances (e.g., TVs, Refrigerators) to spread sensing and

actuation across devices local to the home, and avoids mak-

ing the Smart-Home Hub a single point of failure. Rivulet

ensures event delivery in the presence of link loss, network

partitions and other failures in the home, to enable appli-

cations with reliable sensing in the case of sensor failures,

and event processing in the presence of device crashes. In

this paper, we present the design and implementation of

Rivulet, and evaluate its effective handling of failures in a

smart home.
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1 Introduction

We are living in an era of “smart” homes. A multitude of

solutions [11, 15, 17, 18, 30] are becoming available to trans-

form legacy homes into intelligent ones, capable of running

a wide range of applications ranging from automated ther-

mostat control [36, 58] to identifying a physical intrusion

in the home [24]; key to the realization of such solutions

is the availability of a diverse range of sensors, actuators,

and network-enabled consumer appliances. The smart-home

applications themselves operate on streams of events gener-

ated by the sensors such as a temperature or motion sensor,

actuate, or control, physical entities such as light bulbs and

door locks, and create workflows to automate everyday tasks

such as ordering groceries.

The vast majority of existing smart–home solutions are

cloud centric wherein applications run in the cloud, and need

to frequently communicate with in-home devices. Therefore,

data from sensors and appliances needs to be sent to the

cloud, and the results of computations, including actuation

commands, are to be sent back to the home. To facilitate this

interactionmore efficiently, the solutions require homes to in-

stall low-cost gateways (called Smart-Home Hubs or simply

hubs) which are responsible for communicating with sensor

devices using different wireless protocols (e.g., Zigbee [20],

ZWave [19], Bluetooth Low Energy [7]).

A cloud-centric solution has several limitations. First, and

foremost, all applications are subject to the vagaries of the

home Internet connection, particularly the round-trip la-

tency to the cloud and network disruptions. While the cloud-

resident application itself may be highly available, delays,

faults, and congestion at the ISP directly affect the home

applications. Second, privacy is a significant concern for

smart-home residents [34], particularly given the sensitive

nature of the data (e.g., occupancy). Third, application de-

velopers must handle the relatively large volumes of sensor

data being transmitted to, stored in, and processed in the

cloud, which can be expensive [57].

We advocate a home-centric model in which applications

rely more heavily on local execution within the home; this

places greater computational responsibility on the hub and

smart consumer appliances. While the home hub alone has

limited compute power, and remains the single point of fail-

ure, smart consumer appliances are becoming increasingly
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capable; TVs [14], refrigerators [9], ovens and washing ma-

chines are going to have sufficient computational power

to run smart-home applications. Existing solutions fail to

leverage this distributed set of computational resources.

To realize a home-centric model, we have built Rivulet, a

distributed platform for running smart-home applications

on heterogeneous consumer appliances. Rivulet ensures re-

liable delivery of sensor data and actuation commands to

compute devices through a novel delivery service and handles

different failures for fault-tolerant app execution through an

execution service.

Smart-home apps process data similar to conventional

stream processing. Data (from sensors and appliances) is

continuously fed as input to an app for processing; the re-

sult of the computation can actuate another in-home device

or result in a notification being sent to a user. For exam-

ple, an app controlling the thermostat receives temperature

readings from a sensor and uses them to decide when and

how to actuate the HVAC. Rivulet applications can appro-

priately choose between two delivery guarantees – Gap, a

best-effort guarantee for delivery of sensor events to applica-

tions, andGapless, a stronger delivery guarantee that ensures

event delivery despite failures at the cost of bandwidth and

battery life. These delivery guarantees, defined post-ingest

by Rivulet, are conceptually similar to recovery guarantees

introduced by Hwang et al. [40]. An application, e.g., thermo-

stat control, that can afford to miss a few temperature values

can choose Gap delivery, while another one that cannot, e.g.,

intrusion detection, can choose Gapless. This paper makes

the following key contributions:

• We study the different types of failures that occur in

home environments, the fault-tolerance requirements of

smart home applications, and the opportunities in lever-

aging the natural redundancy of appliances to serve these

requirements. Through a survey and a home deployment, we

establish that applications differ significantly in their require-

ments for delivery guarantees for different input sensors.

• We formulate two configurable delivery guarantees for

smart home applications: Gap, and Gapless, and introduce

low-overhead protocols to provide those guarantees.

• We extend the traditional stream-processing program-

ming model to provide developers with a declarative ap-

proach to express the desired levels of fault tolerance.

Rivulet has been implemented on hardware for smart-home

hubs, and Android phones; we performed a feasibility study

using a sample home deployment and an array of real sen-

sors and actuators. As part of Rivulet’s implementation, we

developed Z-Wave and Zigbee adapters in order to commu-

nicate with a realistic set of devices popular in smart homes.

Our testbed evaluation showed that Rivulet’s Gapless and

Gap protocols provide fault tolerance at a low overhead, and

that applications continued to run in the presence of failures.

2 Challenges & Motivation

In this section, we first outline some of the challenges that

exist in home environments, and then present the findings of

our study of smart-home applications to motivate the need

for the different delivery guarantees.

2.1 Challenges in a Home Environment

A home is not a data center. Smart homes, unlike data cen-

ters, are rarely managed by a professional system administra-

tor, and are especially susceptible to errors in management,

configuration and device failures. Furthermore, failures are

also harder to recover from due to lack of redundant in-

frastructure and expertise. Conventional distributed system

techniques cannot always be applied in a home since many

underlying assumptions (e.g., majority of replicas are not

faulty) cannot always be guaranteed.

In a study, Hnat et al. [39] deployed over 350 sensors across

20 homes for over 8 months and observed a variety of failures

from process failures (due to plug disconnections, hardware

failures, and driver crashes), link loss between sensors and

hubs (due to concrete slab flooring, copper siding, and radio

interference), and sensor failures (due to battery drain and

plug disconnections). Moreover, a process downtime of up

to 14% was observed, whereas sensor-process link loss and

sensor failures occurred for 1-2% of the time. As we discuss

in Section 2.2, for certain apps, even short periods of unavail-

ability are undesirable, and therefore a smart-home platform

should be able to handle hub failures, link losses, and sensor

failures.

Diverse wireless networks. Variety of low-power wireless

networks such as ZigBee [20], Z-Wave [19], or BLE [7] exist

for sensing devices. Such technologies are prone to message

loss and differ significantly in their communication proper-

ties, e.g., communication range and multicasting, compared

to a typical home WiFi network. The specific choice of net-

work is based on a combination of the desired energy profile

and communication range along with the physical form fac-

tor; not all hubs can communicate with all kinds of sensors

that may be present in a home, leading to cliques of inter-

connected sensors and hubs. Due to the limited range of

aforementioned networks (e.g., 10-20 meters for Zigbee, 40

meters for Z-Wave, and 100 meters for BLE), the physical

placement of devices and sensors poses an additional chal-

lenge; events from a given sensor may only be reachable to a

subset of the processes. The network communication is also

subject to radio interference from other home appliances [56]

(e.g., microwave ovens, cordless phones) as well as signal

degradation from walls and other obstructions [43, 46].

To better understand event loss and duplication in a typical

home, we conducted a preliminary study. We deployed six

off-the-shelf sensors (four motion and two door sensors) in

a home for a period of 15 days. We used Z-Wave sensors

configured to multicast events to three Z-Wave processes.
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Application Primary Function Sensor Type Type Delivery Type

Occupancy-based HVAC Set the thermostat set-point based on the occupancy [58] Occupancy Efficiency Gap

User-based HVAC Set the thermostat set-point based on the user’s clothing level [32] Camera Efficiency Gap

Automated lighting Turn on lights if user is present, e.g., SmartLights [1] Occupancy, camera, microphone Convenience Gap

Appliance alert Alert user if appliance is left on while home is unoccupied [60] Appliance, whole-house energy Efficiency Gap

Activity tracking Periodically infer physical activity using microphone frames [42] Microphone Convenience Gap

Fall alert Issue alert on a fall-detected event [27, 51, 62] Wearables [27] Elder care Gapless

Inactive alert Issue alert if motion/activity not detected [1] Motion, door-open [15] Elder care Gapless

Flood/fire alert Issue alert on a water(or fire) detected event [2] Water, smoke [4, 12] Safety Gapless

Intrusion-detection Record image/issue alert on a door/window-open event Door-window [4] Safety Gapless

Energy billing* Update energy cost on a power-consumption event [61] Energy [4] Billing Gapless

Temperature-based HVAC Actuate heating/cooling if temperature crosses a threshold [36] Temperature Efficiency Gapless

Air (or light) monitoring Issue alert if CO2/CO level surpasses a threshold [1, 66] CO, CO2 Safety Gapless

Surveillance Record image if it has an unknown object [24] Camera Safety Gapless

Table 1. Desired delivery types for selected example applications.

Figure 1. Number of events received at different processes

from different sensors in a sample home deployment.

Figure 1 shows the number of events received at each process

from the different sensors. We observed a significant skew

in the number of events received at the three hubs in case

of certain sensors, e.g., differences of 2357 events (in case of

Door 1), 58 events (in case of Motion 1), and 21 events (in

case of Motion 3); this skew is due to both radio interference

and obstructions (e.g., walls, objects) commonly occurring in

homes. Moreover, this problem will be further exacerbated

for wearable sensors, where a sensor may be in the vicinity

of different processes at different times due to user mobility.

2.2 Motivation

Given the limitations of home networks and the challenges

in reliably communicating with sensors, we wanted to un-

derstand the impact of event loss on applications. To do so,

we surveyed a number of smart-home applications.

For many sensors, an event conveys a specific physical

observation to an application, and failing to deliver that event

can have grave consequences. For example, Panic-Button [1]

and iFall [62] are elder-care apps that process events from

a wearable sensor worn by an elder and notify caregivers

if a fall is detected [27, 51]. Other apps process events from

moisture [2, 4] and fire [12] sensors to notify homeowners.

Intrusion-detection apps process door-open events by taking

a picture of the person entering and issuing alerts. In these

cases, a gap in the event stream is clearly undesirable and

potentially catastrophic.

Slip&Fall [1] and Daily Routine [1] are SmartThings [15]

apps that use motion, door, and cabinet sensor events to

detect if an elder did not return from the bathroom after a

specified period of time, or if she is not active by a specified

time daily, in which case they notify caregivers. In these

cases, gaps in the event stream may lead the app to issue

false notifications to the caregivers.

In certain applications, gaps in the event stream can lead to

incorrect output to the user, while leaving the app with little

means to correct it. For example, EnergyDataAnalytics [61]

is an app that uses a full-house power sensor to calculate

the total energy cost, taking into account the pricing scheme

(e.g., time-of-day) and verifies a user’s utility bill. In this case,

missing events can lead to incorrect reported costs.

While Gapless delivery guarantee is ideal for smart-home

applications, some apps, however, can livewithout this strong

guarantee. For such apps, short-lived gaps do not have a no-

ticeable or catastrophic impact. Table 1 summarizes these

applications and their mandate for either Gap or Gapless

delivery. For instance, consider an app that uses occupancy

sensors to set the target temperature of a thermostat [58];

when missing sensor values, the app uses pre-determined

policy or defaults to the last set temperature. Similarly, apps

that infer home occupancy (e.g., to automate home light-

ing [1]), can tolerate short-lived gaps in the event stream

of the occupancy sensor by inferring occupancy from other

sensors such as door open, microphones, or cameras.

Consequently, a reliable event delivery service is needed,

one that runs across available hubs, ingests events from in-

range sensors, and delivers events to applications running

on different hubs.

3 Rivulet Overview

In this section, we first explain the design assumptions. We

then give a high level overview of Rivulet’s applications. Fi-

nally, we introduce the system deign, and give an overview

of Rivulet’s deployment and execution of applications. Each

instance of Rivulet runtime (process for short hereafter)

has IP connectivity and is able to communicate with other

processes. These processes run on smart phones, tablets, and

home appliances which are increasingly well-equipped with

a reasonable degree of computing/memory resources.
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3.1 Design Assumptions

In Rivulet, we consider a crash-recovery failure model: a

process behaves correctly when running, and halts all activ-

ity when it crashes. Failed processes are assumed to recover

eventually (or permanently taken out of service).

We assume that communication among processes occurs

over a transport layer that provides a reliable, in-order point-

to-point message delivery protocol, such as TCP/IP. Further,

the inter-process network may suffer from arbitrary parti-

tions, e.g., due to one or more faulty network devices such

as a home WiFi router.

We assume that sensors and actuators can crash and re-

cover. A crashed sensor simply reports no events, while a

faulty actuator does not respond to commands. Moreover,

sensors and actuators have very limited compute power (e.g.,

micro-controller), and are unable to run Rivulet processes

on themselves.

Lastly, we assume a best-effort communication layer be-

tween every sensor/actuator and processes: each sensor is

able to send sensed events to a subset of processes, and each

actuator is able to receive events from a subset of processes.

This allows our model to be applicable to a wide variety

of (low-power) wireless technologies that are used by off-

the-shelf sensors/actuators, e.g., Zigbee [20], ZWave [19],

BLE [7], and TCP/IP. For instance, by leveraging a mesh

network, a ZWave sensor is capable of sending its events to

all the in-range processes that are capable of talking ZWave,

while a BLE sensor may only send its events to a single

process running on a host with BLE support.

3.2 Apps as Directed Acyclic Graphs

Rivulet applications are built as directed acyclic graphs with

three types of nodes: sensor, logic, and actuator. Sensor nodes

represent physical sensors and are the source of events, logic

nodes encapsulate application-specific processing, and actu-

ator nodes represent physical devices for the app to control.

Event streams flow from sensor nodes to logic nodes, and

command streams flow from logic nodes to actuator nodes.

For instance, consider an application that (i) turns on a

light (called LightActuator) whenever a door sensor (called

DoorSensor) emits a door-open event, and (ii) turns the light

off whenever the door sensor emits a door-close event; the

developer constructs the following graph:

DoorSensor⇒ TurnLightOnOff⇒ LightActuator

The DoorSensor node encapsulates the logic of receiv-

ing data values (called events) from the physical sensor, the

LightActuator transmits actuation commands to the light

switch, while the TurnLightOnOff (TL) node checks if the

door has been opened (or closed) and turns the light on (or

off) accordingly. Since most smart-home applications are

stateless [1], Rivulet does not natively support stateful ap-

plications; applications are free to use existing distributed

storage systems to replicate state.

Rivulet on hub Rivulet on TV Rivulet on fridge

Door SensorLight Actuator

D
elivery Service

Execution
Service

DS1

LA1 LA2 LA3

DS2 DS3

TL1 TL2 TL3

DS : Door sensor node TL :TurnLightOnOff logic node LA:Light actuator node

L

Figure 2. Rivulet System

3.3 System Design

We now explain how Rivulet deploys and executes our ex-

ample application graph in a scenario with three hosts: a TV,

a fridge, and a hub (Figure 2). Each host runs an instance of

a Rivulet process providing delivery and execution services.

For each sensor or actuator node in the graph, each process

creates either an active node denoted by solid circles, or a

shadow node denoted by dashed circles in Figure 2. An ac-

tive sensor node (or active actuator node) is created if and

only if a process can directly communicate with a sensor

(or actuator). A process can directly communicate with a

sensor (or actuator), if its host has the necessary hardware

to directly communicate with the sensor (or actuator), and

the sensor (or actuator) is within its range. Otherwise, the

process creates a shadow node.

For instance, assume that only the TV and the fridge can

directly talk to the door sensor. Hence, they both create

active nodes for the door sensor (i.e., DS2 and DS3). The hub,
on the other hand, is unable to directly communicate to the

door sensor, and creates a shadow node DS1 representing
the door sensor. Similarly, the light actuator can solely talk

to the hub, therefore creates active node LA1, and the TV

and fridge create shadow nodes LA2 and LA3.

A sensor shadow node can receive events from its active

peers in other processes and forward them to its peers or

to local logic nodes. An actuator shadow node can receive

actuation commands and forward them to its active peers in

other processes. These shadow nodes thus acts as placehold-

ers, giving logic nodes the illusion that all sensors/actuators

are available locally; this enables a simple application pro-

gramming model (Section 6).

For each logic node in the application graph, every process

either creates an active node or a shadow node. Active logic

nodes receive input events, perform required computations

using them, and emit the result to local actuator nodes.

Shadow logic nodes, on the other hands, are simply place-

holders, and provide no specific functionality. In Figure 2, the
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hub has an active logic node TL1 which receives events for-
warded by the shadow sensor node DS1, and emits resulting
commands to the active actuator node LA1.

Rivulet’s delivery service is responsible for forwarding

and delivering events between nodes based on the configured

Gap and Gapless delivery guarantees (Section 4). Rivulet’s

execution service employs an active-passive replication tech-

nique for executing logic nodes (Section 5). Application logic

nodes, e.g., TurnLightOnOff, are instantiated as active nodes

on one process (e.g., hub) and as shadow nodes on other

processes (e.g., TV and fridge). To simplify the discussion in

the paper we assume that an application program is encap-

sulated into a single logic node.

4 Delivery Service

In this section, we describe Rivulet’s delivery service and

its provision for Gap and Gapless delivery guarantees for

both push-based and poll-based sensors. Push-based sen-

sors detect, or respond to, physical phenomenon by emitting

“events”; for example, a “door open” or a “motion” event.

Poll-based sensors, on the other hand, generate events only

in response to requests; for example, a temperature or a hu-

midity sensor is polled for the current value. For ease of dis-

cussion, we assume that the time length of the polling epoch

is defined such that the app requires one event per epoch;

for example, one temperature event every 10 seconds [36].

The delivery service comprises of two components: (1) Event

ingest fetches events from sensors, and delivers commands

to actuators. Since push-based sensors pro-actively send

events to processes, the delivery service has little role to play.

For poll-based sensors, however, Rivulet coordinates across

processes to perform more efficient polling. (2) Event for-

warding for reliable delivery of events to active logic nodes

for subsequent execution. We limit the discussion focus on

delivering events from sensors to applications as the delivery

of actuation commands is analogous.

4.1 Gapless Delivery

The goal of Gapless delivery is to ensure that any event

received from a sensor by any correct process will be even-

tually delivered to, and processed by, the applications that

are interested in that event. Rivulet employs a coordinated

polling mechanism along with a novel ring based protocol

to ingest and forward events in order to provide Gapless.

Note that Rivulet provides the Gapless guarantee post in-

gest. In other words, if an event never gets delivered to any of

the processes from a push-based sensor, there is no way that

Rivulet can notice this, and hence the system cannot provide

any guarantee. On the other hand, for poll-based sensors,

Rivulet can detect a lack of event delivery in an epoch, and

can notify the application by throwing an exception.

Event Ingest. For push-based sensors, events arrive at processes

pro-actively; since Rivulet has no control over event arrivals,

it cannot employ any special mechanisms for these types

of sensors. For poll-based sensors, multiple processes can

potentially poll without coordination leading to increased

contention and battery drain on the sensors; Rivulet medi-

ates to improve poll efficiency.

The simplest solution to provide Gapless delivery for poll-

based sensors is to allow all active sensor nodes to periodi-

cally poll the physical sensor without any coordination. Note

that once processes receive events from sensors, they can

employ event forwarding across the ring. This approach,

however, will lead to over-polling leading to increased bat-

tery drain on the sensor.

Moreover, we observed (Figure 8 in Section 8.5) that many

off-the-shelf sensors only support one outstanding poll re-

quest, and simply drop the other requests, often silently

leading to undesirable semantics. Consequently, an uncoor-

dinated approach will also substantially increase the number

of failed poll requests in cases where sensors do not handle

concurrent requests; this leads to an adverse impact on appli-

cation behavior by introducing delays, time outs, and even

triggering unexpected application code paths.

To address the above issues, the delivery service employs

coordination when polling. Upon initialization, active sensor

nodes select their polling schedules such that no concur-

rent requests are issued to the sensor. We note that sensor

nodes do not need to communicate with each other to select

their polling schedules. For example, sensor node i can start
polling at time (i ∗e )/n of every epoch where n is the number
of active sensor nodes, and e is the epoch duration. This is
possible because applications’ epoch lengths are typically

significantly larger than the time taken to poll a sensor, e.g.,

10 seconds epochs as compared to a 500 ms polling period

in case of a ZWave temperature sensor.

Active sensor nodes then proceed to poll the physical sen-

sor, and broadcast the received event using event forwarding

service explained next. If an active sensor node receives an

event for the current epoch via event forwarding from an-

other node, it simply cancels its scheduled poll for that epoch.

Thus, in the more common failure free case, and as long as

the time taken to propagate an event across nodes is smaller

than the epoch duration, a sensor is only polled once per

epoch. We evaluate the benefit of coordinated polling using

real sensors in Section 8.5.

Event Forwarding. Since the process that hosts an appli-

cation may fail in the middle of processing an event, the

event forwarding component needs to replicate ingested

events at all available processes along with delivering them

to applications; this is key to the fault tolerance provided

by Rivulet. Replicating events at all available processes guar-

antees that as long as one correct process exists in the sys-

tem, that process eventually promotes all its shadow logic

nodes to active logic nodes; this consequently ensures that
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all outstanding events are delivered to active logic nodes for

processing (Section 5).

In order to replicate an event at all available processes,

one approach would be to broadcast received events (at dif-

ferent processes) to all other processes using a well-known

(reliable) broadcast protocol [23, 63]. However, conventional

broadcast protocols designed for a server environment im-

pose high overhead for the common failure-free scenario;

sensor-process link losses are relatively rare in many cases

(e.g., 0.01% in Figure 1). This is because in the absence of such

link loss, an event from a multicast-based sensor will be re-

ceived at multiple processes, and broadcasting it from every

receiving process would impose a significant overhead on

all processes and the home network. Hence, Rivulet adopts

a more optimistic approach wherein a process first tries to

propagate a received event using a novel light-weight ring

protocol, which we describe next; only if it fails, does Rivulet

resort back to reliable broadcast [23].

Every process pi maintains a local view (denoted as vi ) of
potentially available processes. Observe that pi always exists
in vi since process pi never suspects itself. The process local
view is generated by exchanging keep-alive messages every

t seconds with other processes. Since Rivulet must work

with any number of processes, including home environments

with only one or two processes, majority-based distributed

protocols for maintaining agreed-upon views cannot be used.

Thus, local views of different processes may be inconsistent.

The protocol uses the following message format: (e : S :
V ) where e denotes the event, S denotes the list of processes
that have seen the event, andV denotes the list of processes

that need to see the event. If an active sensor node at process

pi receives an event e from the physical sensor and this event

was not previously seen, it sends message (e : {pi } : vi ) to its
ring successor sensor node according to its local view vi . By
incorporating its local view vi , process pi declares the list of
processes that suppose to deliver the event. Additionally, if

the process also contains an active logic node, it delivers the

event to the logic node so event can be processed.

Upon receiving (e : S : V ) from another process, the sen-

sor node at process pi first checks whether it has previously
seen the event or not. If the event has not been seen, it sends

message (e : {pi } ∪ S : vi ∪ V ) to its immediate succes-
sor based on its local view vi . Otherwise, the sensor node
evaluates the following two conditions:

• S � V , which holds true if due to some failure (or asyn-
chrony), certain processes did not receive the event.

• pi ∈ S , which holds true if process pi previously had
seen the event.

If both conditions hold true, pi knows that: (1) it has previ-
ously forwarded the event to its successor, and (2) the event

has not been delivered to all processes (as per the local view

of some process). Consequently, process pi initiates a reli-
able broadcast to send the event to all available processes.

Otherwise, the received event is ignored.

Figure 3. Gap and Gapless Deliveries Under Failures

Whenever process pi updates its local view vi and has a
new successor, it synchronizes its set of received events with

the new successor, and re-sends every event that the new

successor has not received. To perform this synchronization

efficiently, pi first queries the new successor for the times-

tamp of the last event it has received, as in Bayou [68]. It

then computes the set of events that need to be sent to the

new successor.

Figure 3 shows an example of Gapless delivery in case of

failures. Observe that due to concurrent link losses, the third

event never reaches any of the processes. Therefore, Rivulet

cannot do anything about it. But unlike Gap delivery, the

second event will be delivered despite the link loss.

In addition to working for any number of processes, our

Gapless delivery protocol improves the network overhead

substantially. It benefits from the direct receipt of an event

at multiple (saym) processes, and only requires n messages
where n is the number of processes. In contrast, using a

broadcast protocol that initiates broadcasts from every process

that receives an event from the physical sensor incurs a mes-

saging overhead ofO (m×n) even in the failure free case [23].

4.2 Gap Protocol

Gap delivery provides best-effort delivery of events from

sensors to logic nodes and actuation commands from logic

nodes to actuators. However, delivery is not guaranteed in

case of failures, such as a process crash, sensor-process link

loss, or a network partition. For Gap, Rivulet organizes all

sensor nodes for a given sensor, one per process, into a single

logical chain.

Event Ingest. Similar to Gapless, the delivery service does

not use any special mechanisms for push-based sensors. For

poll-based sensors, it uses a simple mechanism to improve

polling efficiency. The active sensor node closest to an active

logic node, in the chain, periodically polls the sensor. All

other active sensor nodes do not poll the sensor. Observe

that in case of a failure of the process that is responsible for

polling, polling will resume after the next active sensor node

in line removes the failed sensor node from its chain, and

consequently becomes closest to the active logic node.
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Event Forwarding. A sensor node delivers an event that it

receives to its co-resident logic node only if this logic node

is active. Otherwise, the active sensor node that is closest, in

a chain, to the active logic node forwards the event to the

sensor node that is co-resident with the active logic node.

The receiving sensor node then delivers the event to its co-

resident active logic node. Other active sensor nodes that

may have received the event simply discard it. For example,

consider the example depicted in Figure 2, and assume that

the chain order is hub, TV and fridge. DS3 drops all the
events it receives from the door sensor, while DS2 forwards
the received events to DS1. Since DS1 has an active logic
node, it delivers the events that it receives to TL1.
Observe that in this protocol, only one process’s sen-

sor node forwards the events being received. Consequently,

other processes can use their resources for running other

tasks. This low-overhead protocol, however, has some draw-

backs. Eventsmay not be received by the closest active sensor

node in the case of intermittent sensor-process link failures,

which could arise from radio interference in Zigbee and

Z-Wave sensors. Since Gap delivery makes no extra effort

to retrieve an event from other processes that received the

event, the event stream delivered to the application may be

incomplete (i.e., with gaps).

Figure 3 shows an example of Gap delivery in case of

sensor-process link losses. Since the node DS2 is responsible
for delivering the events emitted from the door sensor to

the logic node, link-loss failures leads to gaps in event de-

livery. Thus, the second and third events (Close and Open)

are not delivered to the active logic node. Moreover, if a

process crashes, some events may never get delivered un-

til the process failure is detected by other processes, and a

new sensor node in another process becomes responsible for

forwarding events to the logic node.

5 Fault-tolerant Execution

Rivulet uses a simple primary-secondary approach for fault-

tolerant execution of applications. To this end, it employs

a variant of the bully-based leader election algorithm [33]

for selecting the active logic node. Whenever a shadow logic

node suspects that all its successors in the chain have crashed,

it promotes itself to become the active logic node and notifies

all its predecessors in the chain. Similarly, whenever an active

logic node detects that its immediate chain successor (if any)

has recovered, it demotes itself to a shadow node, and notifies

all its predecessors in the chain [33].

Devices in a home are often connected to a single WiFi

router whose failure can lead to all processes being parti-

tioned from each other. In this case, all shadow logic nodes

will promote themselves to active and thus process any event

that they receive from their co-resident sensor nodes. The

behavior of the execution environment is determined by

whether the actuator is idempotent or not.

When actuations are idempotent, it is acceptable for multi-

ple instances of the application to run on different processes.

Some common examples are turning a light on, setting the

HVAC temperature, or locking a door which can be issued

multiple times without having an adverse effect. Most of the

actuators studied by us, e.g., bulbs, switches, sirens, ther-

mostats, and locks, fall in the idempotent category.

For non-idempotent actuations, more care is needed to

prevent unwarranted action. For instance, dispensing water

to a plant through a smart water dispenser or asking the

coffee maker to brew are non-idempotent. In these scenarios,

multiple instances of logic nodes can run concurrently on

different processes only if the actuator supports Test&Set

commands. Logic nodes can query the state of the actua-

tor before atomically setting a new state thus preventing

duplicate actuations.

Network partitions and process failures can also lead to

scenarios where events from all required sensors are not

available to an active logic node (in addition to a sensor fail-

ure scenario). In the next section, we explain how Rivulet’s

programming model addresses this issue.

6 Programming Model

Like many smart-home platforms [15, 35, 60, 64], Rivulet also

employs a dataflow programming model. In particular, our

programming model is similar to Flink [6], and provides the

following features: (i) a programmer does not need to issue

explicit read requests to read sensor events. Rivulet decides

when and how frequently to poll sensors; (ii) a program-

mer specifies an upper bound on the event staleness that

the application can tolerate, and Rivulet ensures this bound;

and (iii) a programmer specifies how events from multiple

sensors are to be aggregated along with fault-tolerant as-

sumptions, and Rivulet guarantees the aggregation as long

as the assumptions are met.

6.1 Windows and Operators

A logic node internally comprises of a set of operators that

are connected as a directed acyclic graph, and processwindows

of values; a window is a contiguous and finite portion of an

event stream, with the following properties:

1. A bounded event buffer where the bound can be spec-

ified in terms of the number of events or the time-span of

the events contained.

2. A trigger policy that defines when an operator should

be presented with the event buffer for consumption. For

instance, a programmer can request for events from all door

sensors every t seconds (i.e., time window), or whenever n
events become available (i.e., count window).

3. An evictor policy that defines the purging of events

from the event buffer. For example, a programmer can state a

policy to remove events older than s seconds, or to only keep
the last n events in the window. In addition, she can choose
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Window

TimeWindow(Time-span, [TriggerPolicy], [EvictorPolicy]) Initializes a Time Window with the given timespan and optional

trigger and evictor policies

CountWindow(Count, [TriggerPolicy], [EvictorPolicy]) Initializes a Count Window with the given count and optional

trigger and evictor policies

Operator

Operator(Name, [Combiner]) Initializes an operator with a name and optional Combiner

addUpstreamOperator(Operator, Window) Connects the operator to the given upstream operator

addSensor(Sensor, GAP|GAPLESS, Window, [PollingPolicy]) Connects the operator to an upstream sensor with the provided

delivery guarantee and optional polling policy

addActuator(Actuator, GAP|GAPLESS) Connects the operator to a downstream actuator with the provided

delivery guarantee

handleTriggeredWindow(Window) Callback to handle a triggered window.

emitWindow(Window, Operators[], Actuators[]) Emits the outcome to downstream operators, and actuators

Table 2. Operator and Window API

1 int n=Rivulet.getSensors("door").size();

2 Operator intruder=new Operator("Intrusion", new FTCombiner(n-1));

3 for (Sensor s: Rivulet.getSensorsWithName("door"))

4 intruder.addSensor(s,GAPLESS , new CountWindow (1)); ...

Listing 1. Intrusion Detection

whether to clear the buffer upon a successful trigger or not.

Observe that the former case leads to disjoint batches while

the latter one can be used for implementing sliding windows.

Table 2 summarizes Rivulet’s operator and window API.

Different window semantics can be realized for an input

stream by combining different buffer types, triggers, and

eviction policies. For example, an HVAC-control application

computing the average temperature every 60 seconds can

use a time window of 60 seconds. Processing events from

sensors which emit bursts of events can be simplified using

a count window of size 3 for a burst size of 3, so that the

operator can easily suppress duplicate-value events. Finally,

a home-surveillance application [29] computing the median

of last N images’ pixels [54] to estimate the background,

can use the sliding count window to this end. Programmers

can then implement any arbitrary logic to handle triggered

windows through the provided callback.

Rivulet allows programmers to specify how triggered win-

dows from different input streams get combined together

before being delivered to the operator. To this end, pro-

grammers need to implement an interface called Combiner,

and pass an instance of it to an operator. Rivulet also pro-

vides a specific implementation of combiner interface called

FTCombiner that allows applications to easily specify their

fault tolerance assumptions, and remains available in case

some input streams from some sensors become unavailable.

To this end, and for every operator, a programmer only needs

to specify the number of sensor failures that it can tolerate.

The FTCombiner then delivers triggered windows as long

as failure assumptions hold true. We illustrate this further

through two example applications.

6.2 Example Applications

First, consider an intrusion detection app setting the siren on

a door open. Listing 1 shows how a programmer wires an op-

erator to sensors, and specifies its window and FTCombiner.

The intruder operator uses count windows of size 1 for its

input stream. The programmer also declares that the intruder

logic can tolerate up to n − 1 sensor failures. Therefore, as
soon as an event arrives from a door sensor, it is delivered to

the intruder operator. Observe that the programmer also con-

figures Gapless delivery for door sensors due to the needs

of intrusion detection.

Second, consider a temperature monitoring app reporting

the “average” home temperature using a number of temper-

ature sensors deployed in the home; averaging of multiple

sensor values is fairly common across a variety of apps and

hence a useful operation. Marzullo [50] introduced the fol-

lowing algorithm to compute an average of n interval values
when at most f sensors can fail: the average value is [l ,u]
where l is the smallest value in n − f of interval values,

and u is the largest value in at least n − f interval values.
Depending on the failure model, the above algorithm can

tolerate different number of failures. For instance, in order to

solely tolerate fail-stop sensors, f needs to be at most n − 1.
On the other hand, to tolerate arbitrary failures, f needs to
be at most �(n − 1)/3� [50]. Listing 2 shows the wiring of
temperature sensors for taking an average every 1 second

while tolerating arbitrary failures. Note that by simply pass-

ing n − 1 instead of �(n − 1)/3�, the averaging operator can
only tolerate fail-stop sensors. Finally, we note that to build

a complete temperature monitoring app application, one can

add the above averageTemp operator as its source.
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1 int n=Rivulet.getSensors("temperature").size();

2 Operator averageTemp=new
3 Operator("Averaging", new FTCombiner(Math.floor ((n-1) /3)));

4 for (Sensor s: Rivulet.getSensorsWithName("temperature"))

5 averageTemp.addSensor(s,GAP , new TimeWindow (1000)); ...

Listing 2. Temperature Sensor Averaging

7 Implementation

Our Rivulet prototype is implemented in Java, as a cross-

platform service that can be deployed on Linux, Windows,

and Android, with around 8k SLOC. On Android, Rivulet

runs as a user-application using a single background ser-

vice task. Rivulet uses the Netty library [16] to manage TCP

connections between processes, along with custom serializa-

tion for events and other messages. Similar to HomeOS [30]

and Beam [60], adapters in Rivulet encapsulate communi-

cation specific logic. Rivulet currently implements adapters

for Z-Wave, Zigbee, IP cameras [10], and smartphone-based

sensors such as microphone, accelerometer, and GPS (on

Android). Adapters deliver received events to local active

sensor nodes. They also receive actuation commands from lo-

cal actuator nodes, and translate them to technology-specific

network frames, depending upon the type of the adapter.

At initialization, Rivulet instantiates the adapters depending

upon the communication capabilities of the local process.

The Z-Wave adapter uses a version of theOpenZWave [13],

modified by us to enable concurrent receipt of events from

multiple sensors and to enable concurrent polling of multiple

sensors from a single process. The Zigbee adapter uses the

EmberZNet library [8], whereas the IP camera adapter and

the smartphone adapters leverage the REST-interface and

Android Sensor Manager interface respectively.

The current implementation uses a simple deterministic

function to order and select processes for deploying active

logic nodes which seeks to deploy a logic node on a process

that has the largest number of active sensors and actuators

required by the logic node; this allows Rivulet to minimize

delay incurred during event delivery.

8 Evaluation

In this section, we answer the following key questions: (i)What

is the overhead of Gap and Gapless delivery guarantees, in

failure free scenarios? (ii) How effective is Rivulet in han-

dling sensor-process link losses and process failures? and

(iii) What is the benefit of coordinated polling mechanism?

8.1 Setup

We evaluated Rivulet in a sample home scenario. We chose

Raspberry Pi (Model 3), each with a 1.2 GHz 32-bit quad-

core ARM Cortex-A53 processor, 1 GB RAM and Broadcom

BCM43438 WiFi card, as Rivulet hosts. Such hardware con-

figuration is representative of the computational capabil-

ities of in-home compute devices which are increasingly

Type Event Size Examples

Small 4 - 8 B Temperature, humidity, motion, moisture,

door-window open/close, UV level, energy,

vibration sensors [3, 13, 20]

Large 1-20 KB IP camera [5, 10], microphone [42]

Table 3. Classification of off-the-shelf sensors.

equipped with modest computing/memory resources capa-

ble of running multiple applications, e.g., smart TVs [14],

smart fridges [9], and SmartThing’s hubs [15].

In order to emulate a typical home (with a TV, fridge,

washing machine, hub, and personal assistant), we spread

the hosts across a sample home, and connected them us-

ing a single 2.4 GHz IEEE 802.11 a/b/g/n WiFi router. Each

experiment run spanned 200 seconds. Reported results are

averaged across at least 10 runs.

To study different variations across home scenarios, we im-

plemented an IP-based software sensor. This allowed us to: (i)

control which processes can or cannot receive events from a

given sensor, e.g., due to the communication capabilities and

physical topologies, (ii) control the levels of sensor-process

link losses, and (iii) remove any clock-skew between sensors

and the active logic node.

We surveyed a range of off-the-shelf sensors compatible

with various smart-home platforms (e.g., Smartthings [15]

and Wink [18]), and found that they can be classified into

two broad categories called small type and large type sen-

sors, based on the size of the events they emit, as shown in

Table 3. Most sensors measuring physical phenomena such

as temperature, humidity, and motion, use a small event size

of 4 to 8 bytes, and have a maximum event frequency in

the 1 to 10 events per second range. The home IP cameras

have small resolutions and used compressed image formats

(e.g., JPEG) causing image event sizes in the 10 to 20 KB

range with a frame rate of up to 10 frames per second. Our

Rivulet prototype supports video streams by discretization

into image event streams.

Microphone samples typically use 2 to 3 bytes per sample.

However, microphone applications usually consume large

batches of samples as a single event. For example, 512 sam-

ples per frame (sampled at 8 kHz) for an activity tracking

application [42] leads to an event size of 1 KB.

8.2 Gap vs. Gapless Under No Failures

To quantify and compare the overhead of Rivulet’s Gap and

Gapless guarantees, we measure two key metrics: (i) delay:

the difference between the time an event is emitted by a
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(a)Worst topology. (b) Best topology.

Figure 4. Delay incurred with increasing number of processes, for different event sizes.

sensor and the time it is received by an active logic node,

and (ii) network overhead: the amount of data transferred

over the home network for delivering an event. Ideally, any

middleware such as Rivulet should incur minimal delay for

allowing home applications to respond to changes in the

physical phenomenon in a timely manner. Similarly, the

network overhead should also be minimal because home

networks are typically shared by a range of user applications,

and should be least impacted.

Delay. To study Rivulet’s event delay, we consider a sam-

ple scenario with one sensor and configure it such that

only a single process is able to receive its events. We then

increase the total number of Rivulet processes, and vary

the placement of the event-receiving process relative to the

application-bearing process (i.e., the process where the active

logic node is placed). The sensor’s event rate is fixed at 10

events per second. We measured the delay for the two differ-

ent delivery guarantees and different event sizes (Table 3).

Figure 4a shows the delay incurred with increasing num-

ber of processes, when the process receiving the events is

placed farthest from the application-bearing process. We ob-

serve that, in case of Gap, for a given event size, the incurred

delay increases slightly with increasing number of processes,

due to increasing keep-alive message exchange.

In case of Gapless, the delay incurred remains largely un-

changed betwen 2 to 3 processes, and increases linearly from

3 to 5 processes. This is because Gapless delivery uses a ring

topology to forward the event to all processes, whereas a Gap

delivery simply forwards it from the receiving process to the

application-bearing process. However, with small number

of processes, Gapless delivery incurs only a small additional

delay as compared to Gap: 8-10 ms at 2-3 processes for 4B

and 8B event sizes, which in our experience constitute a

majority of home deployments in operation today.

Lastly, observe that for a given a number of processes, the

delay increases directly with increasing event size. This is

attributed to increased network transfer and serialization/de-

serialization for larger events.

Figure 5. Network overhead normalized against Gap, with

increasing number of even sizes and receiving processes.

Figure 4b shows the delay incurred with increasing num-

ber of processes, when the application-bearing process is

able to directly receive events from the given sensor. In this

case, the delay incurred is relatively low and is approximately

in the 1 to 2 ms range.

Network Overhead. Figure 5 shows the network over-

head in case of Gapless, normalized against that of Gap (dot-

ted line). The total number of processes is fixed to five and

the number of event-receiving processes is varied from one

to five. Figure 5 also shows the normalized network overhead

of a simple broadcast approach in which a process broadcasts

an event to other processes upon receiving the event from

the sensor, unless it has previously received the event from

another process (as explained in Section 4.1).

We observe that our Gapless delivery protocol incurs a

constant network overhead (albeit higher than Gap), regard-

less of the number of event-receiving processes. In contrast,

a broadcast-based approach incurs a 23% higher overhead

in case of 2 event-receiving processes. This overhead in-

creases further to 2× higher with 3 processes, and 3× higher
with 5 event-receiving processes (for event size of 4 bytes).

However, due to the metadata transferred by the Gapless

delivery protocol (sets S and V ), it has a higher overhead at
1 event-receiving process. Also observe that the normalized
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Figure 6. Percentage of events delivered with increasing

number of event-receiving processes.

network overhead is lower at large event size than at small

event sizes. This is because large event sizes amortize the

network overhead of any metadata, e.g., message headers,

that is transferred by a protocol in addition to the event.

8.3 Sensor-process Link Loss

To study the benefit of Rivulet’s Gapless delivery in the pres-

ence of link loss, we consider a sample scenario with one

sensor. We increase the number of processes that are able

to receive events from this sensor. In addition, we induce

loss of events on each sensor-process link at different link

loss rates. The total number of processes is fixed at five, and

the event-receiving processes are placed farthest from the

application-bearing process.

Figure 6 shows the percentage of events received by an

application in this scenario, with increasing link loss rate and

increasing number of event-receiving processes. The event

size is 4 bytes and the event rate is 10 events per second.

We observe that at low link loss rates, Gap delivers approxi-

mately the same number of events as Gapless regardless of

the number of event-receiving processes. However, as the

link loss increases, Gapless delivery is able to retrieve events

across multiple processes and delivers them to the active

logic node. For instance, at 10% link loss and with 2 event-

receiving processes, Gap delivers 90% of the emitted events

because it forwards events from a single receiving process.

In contrast, Gapless delivers 99% of emitted events, i.e., the

percentage of events received in at least one process

At 50% link loss, Gap delivers only 50% of the emitted

events, whereas Gapless delivers approximately 75%, 87%,

and 95% with two, four, and five receiving processes respec-

tively. We observe a similar trend for other event rates and

sizes, thus we omit their analysis due to space limitations.

8.4 Process Failure

To illustrate Rivulet’s tolerance of process failures, we induce

a process failure in a sample scenario with one sensor gen-

erating 10 events per second. The total number of processes

and the number of event-receiving is set to five.

Figure 7. Number of events received by an active logic node.

Induced process failure at t = 24 seconds.

Figure 8. Normalized polling overhead for sensors.

Figure 7 shows the number of events received at the ap-

plication over time, during a single such experiment run.

We crash the initial application-bearing process after 24 sec-

onds. Rivulet then detects the failure, selects a new process

as primary, and promotes the shadow logic node on it to

an active logic node. In case of Gapless delivery, the logic

node receives the events that were emitted (or were in-flight)

while handling the failure. However, in case of Gap, the logic

node simply receives the next available event. The failure-

detection time threshold in Rivulet is set to two seconds,

thus leading to a gap of approximately 20 events in case of

Gap delivery. In case of Gapless, this causes a spike in the

number of received events at t = 27 seconds, due to the 20
additional events.

8.5 Coordinated Polling

To illustrate the benefit of Gapless delivery service for poll-

based sensors, we consider a sample scenario with three

processes, and four poll-based sensors. We use Z-Wave tem-

perature, luminance, relative humidity, and ultraviolet (UV)

radiation sensors [19], which have a polling period of 600 ms,

600 ms, 4 seconds, and 5 seconds respectively. Our sample

application requests epochs of length 1800 ms, 1800 ms, 12

seconds, and 15 seconds respectively for these sensors.

Figure 8 shows the number of poll requests issued to a

sensor (in coordinated and uncoordinated way) normalized

against the number of polls required in the optimal case, i.e.,
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once per epoch (shown as a dotted line). In the uncoordi-

nated case, each process issues one poll request uniformly

randomly within each epoch. The coordinated approach, on

the other hand, uses the simple mechanism introduced in

Section 4.1.

Our coordinated polling mechanism incurs 4 to 13% ad-

ditional requests as compared to the optimal case. This is

due to (i) delays during ring propagation of an event that

causes redundant polling for the same epoch, and (ii) failed

poll requests requiring re-polling. In contrast, uncoordinated

polling causes significantly higher poll requests than opti-

mal, ranging from 1.5× to 2.5× higher. This approach there-
fore can lead to 1.5 to 2.5 × lower sensor battery life, while
Gapless delivery with coordinated approach incurs a 4 to

13% decrease. Observe that Gap delivery incurs the optimal

polling overhead but may fail to generate an event for every

epoch in case of failures.

9 Related Work

Platforms for Smart Homes. Semantic Streams [70] and

Task Cruncher [67] are frameworks that allow applications

to compose sensor streams into a DAG. However, their model

with a central server has a single point of failure. Beam [60]

and HomeOS [30] are frameworks to ease smart-home ap-

plication development, similar to Rivulet. Beam partitions

applications across devices to optimize the utilization of

one or more resources including CPU, memory, network

bandwidth, or battery. Similarly, Rover [41] provides a pro-

gramming framework that eases developed by providing

abstractions to partition mobile applications. MagnetOS [47]

partitions a set of communicating Java objects in a sensor

network while addressing energy efficiency. This body of

work does not address tolerating failures that occur regu-

larly in home environments such as process failures, network

partitions, sensor-process link losses. However, Rivulet can

benefit from their optimization techniques, for instance, to

perform dynamic placement of nodes on processes.

Stream processing frameworks. There exists a large

body of work on fault-tolerant stream processing frame-

works [21, 22, 25, 26, 40, 45, 49, 59, 69], which introduces

a variety of fault-tolerance mechanisms ranging from up-

stream backups, checkpointing, tentative tuples, to active

replication for tolerating process and network failures. How-

ever, one central assumption made in this body of work is

that ingress data is always available at all processes. As de-

scribed in Section 4 and Section 4.1, stabilization of ingress

data in a home, due to sensor-process link losses, poses an

additional challenge. As we demonstrate, given the wimpy

nature of in-home compute devices, a simple active-passive

replication can suffice.

Hwang et al. [40] introduced three recovery types for

stream processing systems – precise that the output of an ex-

ecution with failures is identical to a failure-free execution,

recovery ensures no information loss, and gap may cause

information loss – of which, recovery and gap are conceptu-

ally similar to Rivulet’s Gap and Gapless. However, Rivulet

specializes these guarantees for smart-home scenarios com-

prising sensors and processes, and provides novel low-cost

mechanisms for implementation.

Martin et al. [49] present a comprehensive fault-tolerant

processing system that uses a combination of techniques,

including passive and active replications, to tolerate failures.

Although Rivulet’s active-passive approach suffices for most

current applications, other approaches introduced by Martin

et al. [49] can be leveraged for reducing recovery times.

Sensor failure tolerance. Recent work [44, 52] has fo-

cused on detecting and tolerating sensor failures by correlat-

ing events from different sensors, e.g., tolerating a failed door-

sensor using co-located motion sensors. Other work [28, 31,

50, 53] has proposed generalized techniques to tolerate arbi-

trary sensor failures. As described in Section 6, these algo-

rithms are complimentary to Rivulet, can be programmed

in Rivulet as nodes, and motivated Rivulet’s programming

abstractions.

Wireless SensorNetworks (WSN).Rivulet was substan-

tively inspired by work inWSNs [37, 38, 48, 55, 65] but differs

from them in the following ways. First, existing work focuses

primarily on sensor data collection and data routing, whereas

Rivulet is a platform for building and executing smart-home

applications operating on sensor events. Second, existing

work on reliable WSNs focuses on experimental sensor de-

ployments using a single network technology (e.g., Zigbee),

whereas Rivulet supports multiple networks. Third, existing

WSNs mainly operate at the network layer while Rivulet

acts as a middleware between the network layer and applica-

tions, abstracting the complexities in building fault-tolerant

smart-home applications.

10 Conclusion

Rivulet is a distributed “smart-home” platform that provides

fault-tolerant delivery of sensor events and actuation com-

mands to enable a new class of robust smart-home applica-

tions. Rivulet is designed to be pragmatic about the failures

and recovery options available in a home in contrast to a

managed environment such as a data center. Rivulet does not

rely on a majority of non-faulty nodes, and operates with a

diverse set of low-power wireless networks. Our evaluation

shows that Rivulet meets the needs of common smart-home

applications and provides low-overhead fault tolerance.
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