Rim: Offloading Inference to the Edge

Yitao Hu

University of Southern California

Weiwu Pang

University of Southern California

Xiaochen Liu
University of Southern California

yitaoh@usc.edu weiwupan @usc.edu liu851 @usc.edu
Rajrup Ghosh Bongjun Ko Wei-Han Lee
University of Southern California IBM Research IBM Research
rajrupgh@usc.edu bongjun_ko@us.ibm.com wei-han.leel @ibm.com

Ramesh Govindan
University of Southern California
ramesh @usc.edu

Abstract

Video cameras are among the most ubiquitous sensors in the Internet-
of-Things. Video and audio applications, such as cross-camera ac-
tivity detection, avatar extraction or language translation will, in
the future, offload processing to an edge cluster of GPUs. Rim is
a management system for such clusters that satisfies throughput
and latency requirements of these applications, while enabling high
cluster utilization. It uses coarse-grained knowledge of application
structure to profile throughput of applications on resources, then
uses these profiles to place applications on cluster nodes to achieve
these goals. It dynamically adapts placement to load and failures.
Experiments show that on maximal workloads on a testbed, Rim can
satisfy requirements of all applications, but competing approaches
designed for low-latency GPU execution cannot.

CCS Concepts

* General and reference — Performance; « Computing method-
ologies — Neural networks; Computer vision; Natural language
processing; * Software and its engineering — Scheduling.

Keywords

edge computing, GPU scheduling, serving system, deep learning

1 Introduction

Today, with the ubiquity of camera-enabled mobile devices, applica-
tions increasingly process images in near real-time, either on device,
or in the cloud. Adding filters, identifying landmarks or people,
or even simply re-sizing images are examples of such processing.
To support this, recent research [19, 55] has explored predictable
latency image processing on a cloud cluster, using deep learning
models (DL models) executed on CPUs and GPUs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

10TDI ’21, May 18-21, 2021, Charlottesvle, VA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8354-7/21/05.

https://doi.org/10.1145/3450268.3453521

80

Near real-time processing of video and audio streams is the natu-
ral next step in the evolution of media-processing (§2), especially for
IoT. Already, video cameras are among the most widely deployed
outdoor IoT sensors. In indoor settings, virtual home assistants like
Google Home, Google’s Nest hub and Amazon’s Echo are experi-
encing significant market penetration and have microphones and,
more recently, video calling capabilities.

This will drive the development of several novel applications.
Complex activity detection [42] seeks to detect activities occurring
across multiple non-overlapping cameras. Avatar extraction [31, 45]
enables avatar-based video conferencing, where avatars represent
participants. Language translation helps participants converse in
different languages.

These applications require predictable low latency and throughput
(in frames per second, or fps). Video-based applications can generate
significant volumes of traffic. Moreover, many such applications
often use multiple DL models connected together in a DAG (directed
acyclic graph). Recognizing this, recent research in IoT systems
has explored the execution of pared-down DL models on mobile
devices [17, 30, 66]. However, the resource requirements of DL
models continue to outstrip the computational capacity of mobile
devices, so that, as the complexity of applications increases, mobile
devices may not be able to satisfy application requirements. To meet
these requirements, it will be necessary to offload computation to an
edge cluster of GPUs located topologically close to user device (e.g.,
at a cell tower, or cable head-end). This edge computing ensures low
latency to user devices, and avoids having to transmit video across
the wide-area network to remote cloud data centers.

Industry has recognized edge computing’s potential. The global
edge computing market size was valued at $3.5 billion in 2019 [3],
and is anticipated to reach $43.4 billion by 2027 [4]. Telecommu-
nication companies like Verizon and AT&T are starting to deploy
edge computing infrastructure alongside their cellular networks, in
order to provide low latency and reduce bandwidth [62]. Nvidia has
released a GPU-based edge computing platform called EGX [8].

Motivated by the confluence of these trends, this paper explores
the design and implementation of Rim, an edge GPU cluster man-
agement system for media-processing applications. Rim strives to
achieve high cluster GPU utilization, while satisfying both through-
put and latency objectives of each application session.

Contributions. Rim makes three contributions (§3).

https://doi.org/10.1145/3450268.3453521

The first is the design of an abstraction (§3.2), called an mDAG,
that exposes the DAG structure of applications, where a DAG vertex
represents either CPU execution or GPU DL model invocation, and
DAG edges represent data flow. mDAGs form a unit of execution and
resource allocation. Each application session is bound to one mDAG,
and Rim translates application throughput and latency requirements
to resources allocated to an mDAG (or sub-graph thereof).

The second is a suite of novel techniques that manage placement
of mDAGs on the cluster (§3.3). Placement relies on throughput
profiles of the entire mDAG and each vertex. Rim uses profiles to
place mDAGs either on a single node in the cluster, or splits mDAG
execution across multiple nodes. The former ensures lower latency,
but the latter helps increase utilization in the face of fragmentation.
Having determined a placement, Rim automatically loads DL models
and generates steering configurations to route media streams from
the client through cluster nodes. To ensure high GPU utilization,
Rim uses spatial multiplexing; prior work has batched inputs and
temporally multiplexed models, which works less well at the edge
because of lower statistical multiplexing.

The third is dynamic quality adaptation in which Rim dynami-
cally switches to lighter-weight mDAG implementations that trade-
off a little accuracy for significant reductions in resource usage. Mo-
tivated by quality adaptation techniques for video delivery [11, 43],
this helps Rim serve more clients than would otherwise be possible.

Evaluation Results. Using an implementation of Rim on a cluster
of 14 GPUs (§4.1), we show that Rim is able to satisfy the through-
put and latency requirements while maintaining GPU utilization of
about 52%, about 2x of the reported utilization of GPUs in cloud
clusters [2, 35, 37]. Unlike Rim which is able to handle 100% of
its offered load, recent work such as Nexus [55] and Clipper [19]
can only sustain 59.6% to 89.4% of the offered load (§4.2). An ex-
tensive ablation study (§4.3) shows that switching to lighter-weight
mDAGsS can help Rim accommodate 78.9% more sessions, that other
alternatives to profile-based placement fail to achieve performance
objectives, and that spatial multiplexing improves utilization by 8%
to 99% over an approach that does not use it.

2 Background and Motivation

The impending confluence of three trends motivates Rim: novel
near real-time media-processing applications using video and audio
generated by IoT devices, sophisticated deep learning techniques
for processing these streams, and edge computing services that make
it possible to satisfy application performance objectives.

Deep learning. Armed with large training data sets and powerful
GPU hardware, deep neural network-based learning has transformed
computer vision, speech recognition, and machine translation. Much
prior systems work on deep learning has focused on training DL
models. Less work [19, 32, 55] has explored model inference (the
use of the model to perform a task), the focus of our paper.

Deep learning has achieved fast and highly accurate object detec-
tion on images using deep learning models (henceforth, DL models)
like SSD [41] and Yolo [52]. Popular speech to text DL models like
Jasper [36], Wav2letter [16], and Deepspeech2 [13] also have high
accuracy [48].

Novel Media-Processing Applications. These DL models are build-
ing blocks for future media-processing applications. Today, although

81

Tube

tracker Processing

‘ Person Tracking

Face
Detection
DEtection Pedestrian

Detection
H Tube Re-ID |»

S) Pose
Recognition

Avatar
Generation

Object Tube
Detection Identification

Avatar .
face ’ Pre-process H | Avatar Extraction

Traffic
Summary

traffic Traffic Monitoring

S) Action
Detection
Summary

Complex Activity Detection

Object
Detection

Tube

actdet Processing

Keypoint
Detection

pose Human Pose Extraction

deo Caption

i Vi 1 -
caption Embedding Gerertion Video Captioning

Speech

) Language Translation
Synthesis

en2ge

Speech Text Neural
Recognition Processing Translation

Figure 1: Examples of media-processing applications. The circled S
denotes a stateful component.

video forms the largest proportion of Internet traffic, much of this
video is streamed to, and consumed by, user devices. User devices
are starting to generate video [63], but few applications process
video. In this paper, motivated by the success of DL, we explore
an emerging class of applications in which video and audio are (a)
generated by user devices and (b) processed in near real-time. We
call these media processing applications (Fig. 1).

Consider complex activity detection [42], in which multiple (po-
tentially non-overlapping) surveillance cameras generate streams
of video, and the task is to determine, in near real-time, complex
activities across these cameras. An example of a complex activity
is: “A person walking while talking on the phone in one camera,
and the same person talks to another person at a different camera a
short while later”. More generally, the task is to recognize partici-
pants and objects, their spatial and temporal relationships, as well
as the activities they perform, across multiple cameras. This appli-
cation’s processing pipeline uses DL models for object detection,
re-identification (the task of determining whether two images from
different cameras belong to the same person), and activity detection.
These DL models need a GPU. In addition, the pipeline uses fast
CPU-based trackers to track moving objects in the video, and inter-
mediate stages of the pipeline accumulate state (e.g., a sequence of
object detections across successive frames).

Fig. 1 lists other media processing applications and their con-
stituent components. We describe these later, but highlight three
important features of these applications that inform our design: (a)
media processing may include audio as well (e.g., language transla-
tion); (b) applications use a combination of CPU-based components
in addition to DL models (in Fig. 1, the latter have a darker back-
ground); (c) some components accumulate state across multiple
frames before invoking the next component.

More important, media-processing applications have two im-
portant performance requirements: throughput (e.g., for video, ex-
pressed by the frame rate), and end-to-end latency. These require-
ments determine usability (e.g., conferencing may be unusable at

low frame rate or high latency) or even correctness (e.g., activity
detection might miss some activities at low frame rates).

Where to execute media-processing applications? DL models in
Fig. 1 are heavyweight and require GPU acceleration to be able to
satisfy throughput and latency requirements of media-processing
applications. Where should these applications execute?

On the device. These applications process streams generated by
mobile devices. Mobile devices will likely soon incorporate mod-
erately powerful GPUs [46, 47]. Novel techniques like model com-
pression [28, 33] and communication compression [30] make DL
inference on the device a promising option. Unfortunately, even
with these development, model inferences on the device may not be
sufficient to support many of our applications. For example, our mea-
surements show that it takes more than 4 seconds to run language
translation on a 2-sec audio segment on the Jetson AGX Xavier (one
of the most powerful mobile GPUs available today) [47].

On the cloud. Media-processing could potentially be offloaded
to the cloud, since cloud providers have recently added support
for GPUs. However, the latency from the user to the cloud may
be too high for some applications (e.g., avatar extraction for live
teleconferencing, Fig. 1). The average response time from popular
cloud providers [12, 25, 44] ranges from 66 ms to 75 ms [57], which
accounts for one third of the latency budget for real-time streaming
applications [7, 9]. For others, the bandwidth cost of streaming video
to the cloud at large scale can be prohibitive; it is for this reason
that, today, video streaming uses front-ends of large CDN’s nearest
to users, thereby minimizing this cost.

At the edge. Motivated by media-processing applications, and by
the development of low latency high-bandwidth wireless standards
like 5G, ISPs are starting to deploy edge computing clusters (con-
taining a few racks of servers) topologically close to users (e.g., at
cell towers, cable head-ends) [62]. These edge clusters have more
powerful compute capabilities than devices because they can de-
ploy server-class hardware; e.g., on a server-class GPU, translating
a 2-second audio clip needs only 0.5 s. Moreover, edge clusters are
closer to devices than the cloud, and can respond in less than half
the time [57]. Therefore, edge computing represents a sweet spot in
the space of architectural choices for media-processing applications.

Goal and Requirements. In this paper, we explore the design and
implementation of a programming system and an associated run-
time, called Rim, for DL-based media-processing on an edge cluster
containing multiple GPUs. Rim must support the performance re-
quirements (throughput and latency) of concurrent media-processing
sessions, while maintaining high cluster utilization.

Design principles. Rim uses the following design principles to sat-
isfy these requirements.

Expose application structure and requirements. The media-
processing applications we use employ a pipeline (or, more precisely,
a directed acyclic graph or DAG [51, 55], Fig. 1) of computing
modules, where each module represents either a DL model or
computation on a CPU. For example, complex activity detection [42]
uses an object detection DL model to extract tubes (sequences
of object bounding boxes), a re-identification model to identify
tubes belonging to the same person, CPU processing to determine
spatial and temporal relationships between tubes, and an DL model

82

for activity detection [60]. Similarly, traffic monitoring [55] uses
an object detector, followed by a vehicle classifier or a human
recognition model. Exposing this coarse-grained application
structure to Rim is important to support performance requirements
while maintaining high utilization.

Moreover, unlike the cloud, edge clusters have limited elasticity,
s0, to prevent applications from overloading the cluster, each client
(typically, an end-device that requests edge cluster processing) must
explicitly specify its desired frame rate and latency requirements.

Exploit accuracy/performance trade-offs. Rim should be able to
exploit application-specified accuracy/performance tradeoffs; it can
support more clients each at a slightly lower fidelity. This leverages
a line of deep learning research that has explored resource/accuracy
tradeoffs for DL models, using, for example, model compression [15,
28, 33] techniques that reduce the resource footprint of a DL model,
while only minimally impacting model accuracy. If Rim is explicitly
aware of alternative model instances for a given model, it can reduce
resource usage for one application to accommodate others, thereby
increasing utilization and throughput.

This requires the application developer to determine if the accu-
racy degradation from leaner models is acceptable: we argue that
developers will need to benchmark their end-to-end application ac-
curacy anyway, and they have an incentive to explore leaner models
if Rim can support more clients for their applications.

Capitalize on the predictability and efficiency of DL model ex-
ecution. Prior work has observed that DL model execution is pre-
dictable [19, 32, 55], and leveraged this predictability to either ensure
high utilization [55], or achieve fairness [32]. Rim can use similar
techniques to estimate resource allocation. Rim must also pack DL
models efficiently to ensure high GPU utilization; recent work [55]
batches inputs and temporally multiplexes DL models, while other
work [65] employs spatial multiplexing for training.

3 Rim Design

In this section, we begin with an overview of Rim, followed by a
detailed description of its components.

3.1 System Overview

Basic abstractions and Rim workflow. Rim expresses processing
of video and audio streams using an abstraction we call a media DAG,
or mDAG (Fig. 1). In an mDAG, a vertex (called a module) represents
either a CPU computation, or an invocation of a DL model on a GPU.
An edge in the graph represents a data dependency. Similar data-flow
programming models exist for packet processing [38], massively
parallel processing [34], and scientific computations [54].

Clients of Rim initiate sessions by invoking the Rim master
(Fig. 2). A session requests allocation of resources to execute an
mDAG on the Rim cluster on an input stream, with a specified frame
rate and end-to-end latency. If the master admits the session, clients
send video frames or audio segments to workers, who collectively
execute various mDAG modules, while respecting data dependen-
cies, then return the results to a client. Rim allocates each worker
one or more CPU cores, and exactly one GPU.

Architecture. Rim re-uses two architectural principles commonly
seen in cluster schedulers [21, 24]. The first is a master-worker
design, in which a centralized master makes placement decisions,

A Edge Cluster

Master

Session Quality mDAG
Placement || Adaptation Library

= TR

L] L

| ' 1

Y Y
\Worker-l L__'lWorker-Z |

e 2 ,

L

- === Control Flow —> Data Flow

Figure 2: Rim overview.

and workers at each node manage local scheduling to achieve end to
end scheduling objectives (in our case, performance objectives). The
other is control-data separation, in which clients contact the master
for control decisions, while data flows directly through workers to
avoid the master becoming a bottleneck.

Design principles and challenges. This design applies the princi-
ples identified in §2 as follows. By using an mDAG (§3.2), Rim
explicitly exposes application structure, which helps it satisfy perfor-
mance objectives and meet utilization goals. Using this, together with
client-specified performance objectives, Rim can better manage clus-
ter. In Rim, each mDAG has one or more mDAG instances, where
each instance represents a different point in the performance/accu-
racy trade-off space (or a different quality). The Rim runtime can
dynamically adapt session quality based on resource availability
(§3.3). Finally, Rim leverages the predictability of DL execution by
profiling mDAG instances, and uses these profiles to make initial
placement decisions that pack DL models efficiently (§3.3).

3.2 Sessions and mDAGs

The Session API. A client running on a user device instantiates a ses-
sion using setup_session (mDAG, perfobj), where mDAG is a
unique name for the mDAG, and per£fob3j specifies the performance
objectives of the client. Currently, Rim supports two performance
objectives: a desired frame rate and a target end-to-end latency.
setup_session returns a session handle. The client can tear down
the session using teardown_session (handle). Clients send data
to Rim in application data units that are either individual video
frames, or segments of audio of a fixed duration (for convenience, we
refer to both of these as frames) using send (handle, frame), and
can receive results from Rim using receive (handle). Explicitly
exposing a session abstraction’ helps Rim achieve the performance
requirements of a given media stream, and manage overload. A client
library implements this API.

mDAGs and the mDAG library. Rim represents media-processing
using a data-flow graph called an mDAG. Each distinct media-
processing application has its own mDAG, identified by a unique
name. For instance, the complex activity detection [42], or actdet,
mDAG can detect complex activities using video streamed from
multiple surveillance cameras, while the en2ge mDAG can translate
English audio into German audio (Fig. 1).

mDAGS reside in an mDAG library and session instantiation uses
the mDAG’s unique name. A future version of Rim might permit
user-defined mDAGs; today, putting together an mDAG requires

'Recent work on inference, Nexus [55], uses a slightly different notion of a session. In
Nexus, a session is an internal (i.e., not client visible) construct that tracks processing
of requests for a given model. We elaborate on the importance of this distinction in §4.

83

mDAG Speech Text Neural Speech
Definition Recognition Processing Translation Synthesis
mDAG Jasper H TextProcessor | T-Big | ,{ Tacotron |
Instance [wavaletter
DeepSpeech2

Figure 3: mDAGs and mDAG instances for en2ge. Each module in
the mDAG definition can be implemented by one or multiple mod-
ule instances. During runtime, Rim can dynamically switch between
instances.

significant understanding of DL models and their performance and
accuracy properties, so, at least in the near term, we expect special-
ized mDAG developers to specify mDAG definitions.

A node (or module) in an mDAG represents either a computation
on the CPU, or a DL model invocation on a GPU. For instance, the
en2ge mDAG (Fig. 3) consists of 3 GPU modules and 1 CPU module.
The GPU modules perform speech recognition, neural translation
and speech synthesis respectively. The CPU module performs audio
decoding and assembly of translation results. A link between two
modules in the mDAG represents a data dependency between them;
for instance, the output of speech recognition is fed into a neural
translation module that converts English text to German text. In
actdet, the GPU modules invoke object detection, re-identification
and activity detection DL module, while the CPU modules apply
rules to determine spatio-temporal relationships between people and
objects in the video.

Modules in Rim can be stateful unlike prior work [55]. For exam-
ple, in actdet, one of the DL models takes as input on a sequence
of bounding boxes, called tubes, derived from a fixed sequence of
frames. A CPU module assembles a tube before invoking that DL
model by maintaining successive bounding boxes detected by an ob-
ject detector. In §4, we evaluate Rim using several mDAGs including
three stateful ones (Fig. 1).

mDAGs separate DL model invocation from CPU processing be-
cause, while CPU scheduling techniques are mature enough to be
able to multiplex computations on a CPU to achieve high utilization,
increasing GPU utilization still requires leveraging application struc-
ture. Exposing the DL model invocations and dependencies to Rim’s
runtime allows it to ensure high GPU utilization, as we show later.
This is particularly important given the high relative cost of GPUs.

mDAG instances. The DL community has invested significant effort
in model compression and acceleration techniques (e.g., [28, 33])
such as parameter pruning, low rank factorization, and knowledge
distillation [15]. These techniques can reduce memory footprint and
GPU resource requirements while marginally impacting accuracy. In
practice, applications may be able to tolerate these accuracy drops, so
Rim allows mDAG definitions to specify multiple instances for each
GPU module.” For example, the speech recognition module in Fig. 3
can use three different instances: Jasper [36], Wav2letter [16], and
Deepspeech2 [13], where Jasper has the lowest error rate [48] but
the highest GPU resource consumption (which leads to the lowest
throughput).

When each module has multiple instances, an mDAG can have
many mDAG instances, where an mDAG instance contains one

2Accuracy/resource trade-offs are also possible for CPU modules. We have left this to
future work.

instance chosen from each module (shown in Fig. 3). As we de-
scribe later, Rim (a) ranks (§3.3) mDAG instances by resource usage
which correlates with accuracy, (b) dynamically adapts (§3.3) which
mDAG instance a client session uses based on resource availability.
Internet video streaming uses similar quality adaptation [11, 43].

Many mDAGs can share a module instance. For example, both
actdet and another mDAG for traffic monitoring [55] can use the
object detector Yolo [52].

3.3 Placement and Quality Adaptation

Overview. To initiate a session, a client invokes the setup_session ()
method via RPC on the Rim Master. The master performs two
functions: initial mDAG placement, and mDAG adaptation. The
task of placement is to determine which workers should execute
the session’s mDAG instance to satisfy the session’s performance
objectives. The master may choose to place a session on an existing
mDAG instance (e.g., belonging to another session), or assign the
session to an under-utilized worker (Rim assigns each worker one or
more CPU cores, and exactly one GPU).

Placement relies on off-line profiling. Rim performs two kinds of
profiling: per-mDAG profiling, and per-module profiling. The former
allows it to place an mDAG on a single worker to reduce latency.
To improve utilization, Rim resorts to cross-worker placement, for
which it uses per-module profiling. Rim ranks mDAG instances
using mDAG profiles; this helps it adapt quality to load variations.
Once it determines a placement, Rim’s master automatically instructs
the assigned workers to load and warm-up DL models for session
execution, then generates steering configuration to route frames from
clients directly to those assigned workers (§3.4).

To batch or spatially multiplex? Rim aims to achieve high GPU
utilization. There are two general ways to do this. One is batching
input data [32, 55], but, for batching to be effective, batch sizes
have to be large (on the order of 10s of frames). Rim has fewer
opportunities than other systems to leverage batching, because: (a)
batching frames within the same session can increase end-to-end
delay significantly, (b) batching frames from different sessions works
only if there are 10s of concurrent sessions that invoke the same
DL model. Because edge clusters are likely to see lower statistical
multiplexing than cloud clusters, Rim does not rely on batching.
Moreover, as we show in §4, some models in our mDAGs can utilize
a significant fraction of the GPU even with a single frame input (i.e.,
without batching). For these reasons, Rim uses spatial multiplexing,
in which the GPU concurrently executes kernels from multiple DL
models (to maximize GPU core usage).
Profiling. Rim performs two kinds of off-line proﬁling3,
Per-mDAG instance profiling. It obtains an mDAG instance’s
resource footprint on a given worker by (off-line) profiling the max-
imum frame rate the worker can sustain for that instance. Fig. 4
illustrates the profiling procedure for two different instances of two
mDAGs. For each instance, Rim experimentally determines the high-
est frame rate beyond which the worker is unable to keep up with
the inputs; this determines the instance’s maximum frame rate. In
Fig. 4, the higher-quality traffic mDAG saturates at 16 fps, the lower
quality one can sustain up to 24 fps. In addition to profiling the

*Rim profiles each mDAG once, and not per session, so profiling does not affect client
perceived latency.

84

241 —@~ traffic-high - 28 e traffic-low
216 816
31 - 312
8 8

8 10 12 14 16 18 20 22 2
input fps

b

16 18 20 22 24 26 28 30 32
input fps

|
1

w
o

24 —¥~ tracker-high &~ tracker-low

n
820 &28 3—1

S16 S2a /I\i_ij—r_{
2 220

312 316

s €1
10 12 14 16 18 20 22 24 26
input fps

20 22 24 26 28 30 32 34 36
input fps

Figure 4: Spatial profiling for four mDAG instances.

maximum frame rate for each mDAG instance on each worker, Rim
also profiles the latency incurred by each frame across the mDAG. It
uses these profiles in single-worker placement, described below.

Per-module profiling. To enable cross-worker placement, Rim
also profiles individual modules (both CPU and GPU) on each type
of worker. Specifically, for each module, it determines the maximum
frame rate that the module can sustain on that worker. Rim profiles
the CPU module as well, since the CPU module can be a bottleneck
for some mDAGs (like avatar extraction). Existing systems [19, 55]
either ignore profiling the CPU module or have only considered
relatively lightweight CPU computation, an important reason for
their poor performance relative to Rim (§4).

mDAG instance ranking. Rim uses profiles to rank mDAG in-
stances. Instance ranking allows Rim to exploit performance/ac-
curacy trade-offs (§2). In ranking mDAG instances, it assumes that
instances with a higher overall GPU resource usage will have compa-
rable or higher accuracy. This simplifies the task of instance ranking:
while each DL model developer often documents the model’s re-
source footprint and accuracy, and an mDAG’s resource usage can
be easily determined by profiling (discussed below), Rim cannot de-
rive its end-to-end accuracy from the accuracy of the individual DL
models (because, for instance, mDAG’s can use simpler CPU-based
processing that can improve accuracy).

Rim only generates a fotal order when ranking instances. Con-
sider a two-module mDAG M7, Mo, where each module M; has
two instances m;1 and m;o, and m;1 has a larger resource require-
ment than m;s. In theory, there are four different instances of this
mDAG: m11ma1, mi11maa, miamso] and mi2moo. Rim selects
mi1meo1 and miamaoa, but only one of mi1mag and m12m214,
since, even though it may be possible to order these two instances
by resource footprint, it is unclear which one dominates in accuracy.

Rim assumes that, as long as it satisfies a session’s performance
objectives, it can use any one of the mDAG instances. This relies on
mDAG developer intuitions, in much the same way as video qual-
ity adaptation today relies on guidelines developed for acceptable
qualities for different devices [1]. An mDAG instance with a lower
maximum frame rate requires more resources and is likely to be
more accurate, so Rim ranks it as having higher quality.

The Placement Algorithm. Rim also uses profiling for session
placement. When the client invokes session_setup (), it specifies
the mDAG name, and two performance objectives: the target frame
rate, and the target end-to-end latency. Rim checks which mDAG
instances can meet the target end-to-end latency, using two pieces of

4Curremly, Rim randomly selects one of these two for simplicity.

information: round-trip time estimates from the client to master, and
the profiled latency5 (discussed above) for that instance. It filters
out mDAG instances that cannot meet the latency objective. Of the
remaining mDAG instances, Rim tries to place the highest-ranked
mDAG instance on a worker on the cluster.

Frame-rate proportionality. Rim’s mDAG instance placement
algorithm uses an experimentally derived observation, frame rate
proportionality. Consider an mDAG instance m;, whose profiled
maximum frame rate on worker j is F'. Suppose that a client wishes
to run the mDAG at a frame rate f < F, and Rim allocates worker
7 to m;. Then, frame-rate proportionality suggests that m,; uses up
% of the worker’s resources, leaving 1 — % free for other sessions
(we call this the residual capacity).

This is a lower bound on the residual capacity of the worker. To
understand why, observe that, for media-processing applications,
processing complexity is linearly proportional to the frame rate.
Consider two mDAG instances A and B, whose maximum frame
rates on the worker are 10 and 20 respectively. If the GPU (or CPU)
is a bottleneck for both these instances, it makes intuitive sense that
A and B can concurrently execute on the worker at half their rates
(5 and 10 fps respectively). In other words, when A executes at 5 fps,
the worker’s residual capacity is 50%. However, if the GPU is the
bottleneck for A and the CPU for B, then both chains can run on the
worker concurrently, which is why our residual capacity estimate is
a lower bound.

As an aside, for all the mDAGs we evaluate in this paper, the
most memory intensive mDAG instance, the highest ranked en2ge
instance, has a peak memory utilization of 2.34 GB, well below the
total memory available in modern GPUs (e.g., the Nvidia 1080Ti
has 11 GB). Thus, for Rim, GPU memory is not a bottleneck (as, for
instance, it can be in systems that use batching [19, 32]).

Single-worker placement. Rim’s placement algorithm uses this
observation to place an mDAG instance on a single worker whenever
possible. Suppose that Rim has a cluster with N workers, and each
worker is currently executing one or more mDAG instances. Let the
residual capacity of the i-th worker be c;. Now, suppose a client
invokes setup_session () for an mDAG whose highest ranked
instance (after filtering instances that don’t satisfy the latency objec-
tive) has a maximum frame rate of ', and the client’s performance
objective specifies a frame rate of f. Rim uses a best-fit strategy
to minimize fragmentation: it allocates the session to that worker

f

whose ¢; > % and ¢; — ¥ is least.

Cross-worker mDAG placement. Even with best-fit frame-rate
proportional placement, single worker placement can strand re-
sources. In this case, Rim accommodates new sessions by placing
their mDAG modules on multiple workers. For example, if an mDAG
instance has two modules x and y, and the cluster has two workers
A and B neither of which have enough residual capacity to accom-
modate the entire mDAG instance, Rim tries to allocate x to one
worker (say A) and y to another worker (say B).

To be able to do this, Rim also profiles the maximum frame rate
for each module, and makes the same frame-rate proportionality
assumption for each module in deciding the best-fit worker for

SPrior work in inference serving systems such as Clipper [19] and Nexus [55], has used
profiling of DNN models to make scheduling decisions. Profiling has also shown to
accurately predict execution times for such models [32].

85

caption Worker-1 Worker-2 actdet
Session-
2 | | &=X [session- |
() (]
17 17
face ‘_{] [7]
m _){] [R actdet
17
(} {]

Figure 5: Example of single-worker placement and cross-worker
placement, where three sessions are placed on a single worker, and
one session is placed across two workers.

the module. While profiling modules, Rim is careful to include
serialization overhead necessary for communicating the output of
one module to another worker. Moreover, when two successive
modules in an mDAG have very high serialization overhead, Rim
pins them together to ensure that those two modules are co-located
on the same worker.

Quality Adaptation. When a client requests a new session, Rim
may not have enough capacity to place the highest-ranked mDAG
instance in the cluster. Its runtime then invokes quality adaptation, a
technique that frees up resources by changing the mDAG instance
used for a given session.

In order to accommodate the new session, Rim demotes an exist-
ing session: uses a lower-ranked (or lower “quality”’) mDAG instance
for that session in order to free up resources. When a session termi-
nates, Rim attempts to promote one or more existing sessions, i.e.,
uses a higher-ranked mDAG instance for that session. In our current
implementation, Rim uses a simple promotion (demotion) policy:
promote (respectively demote) the session demoted (respectively
promoted) the furthest in the past. We have left to future work to ex-
plore other policies such as finding the session which would free up
the most resources if demoted, or use the least additional resources
if promoted. Thus, using promotion and demotion, Rim attempts to
satisfy as many clients as possible, while giving client sessions the
highest quality when possible.

3.4 Other Details

Generating steering configurations. When a client invokes
setup_session (), Rim, after determining the mDAG placement,
automatically generates steering configurations which instruct: (a)
the client how to steer frames to the worker hosting the first module
in the mDAG; (b) the client how to proportionally split frames
when session has parallel mDAG instances; (c) each module which
module (on which worker) to send its output to. These steering
configurations enable control/data separation in Rim (§3.1).

Model loading and warm-up. The placement algorithm can decide
to place a session’s mDAG instance on a worker where another ses-
sion is already using the same instance. In that case, the new session
simply reuses models from the existing instance. If the worker does
not have the mDAG instance loaded, Rim instructs the worker to
load the DL models corresponding to the mDAG instance. Rim also
warms-up the model [22] by testing it with dummy data to avoid

delays resulting from kernel just-in-time compilation [26]. Without
this, the first few frames of the client incur significant latency.
Handling stateful modules. By design, Rim dispatches requests
for a given session to the same worker, and its runtime allocates
memory to maintain state across requests for the same session, to
ensure correctness of stateful modules.

High-rate sessions. Depending on the resources in a cluster, an
mDAG’s maximum frame rate might be lower than a client session’s
target frame rate. In this case, Rim can process the session’s traffic
using two mDAGs running concurrently. To determine the frame
rate splits between these mDAGs, Rim searches for the split that best
fits the residual capacities on the workers. Rim cannot split mDAGs
with stateful modules; instead, it can attempt to migrate sessions
(see below) to free up resources, which we leave to future work.

Failure and session migration. When a worker fails, Rim must
migrate its sessions to other workers.% To do this, Rim’s master
must first find a placement for each session (potentially by demoting
the session if necessary), load and warm-up the DL models in the
mDAG instance, then generate a steering configuration for the new
placement and send it to the client. Of these steps, model loading
and warm-up can be expensive (on the order of seconds, §4).
Admission control and cloud offload. Rim can reject client ses-
sions because the cluster does not have enough residual capacity
to satisfy the target frame rate using the highest-ranked mDAG in-
stance. It strives hard to support admitted sessions. It reserves a small
amount of capacity at each worker to handle failures. However, when
a worker failure occurs, the cluster may not have enough capacity to
satisfy all the sessions. Rim finds the session with the loosest latency
target, and if the target is loose enough to accommodate a round-trip
to the cloud, Rim offloads the mDAG instance to the cloud. When
no such mDAG exists, Rim has no option but to evict the session
(for now, it uses a random drop policy).

4 Rim Evaluation

We compare Rim against two other model inferencing systems,
Nexus [55] and Clipper [19], then perform an ablation study that
illustrates the impact of Rim’s design decisions.

4.1 Methodology

Implementation. We have implemented all the features of Rim
described in §3. Each worker runs in a separate container, and uses
TF-Serving [59] to spatially multiplex DL models on the worker’s
dedicated GPU. Rim is 10,478 lines of Python code, and includes the
client library, the master, and worker implementations. The mDAG
library is an additional 13,892 lines of Python.

Testbed. We deployed Rim on a cluster containing 8 servers with
a total of 14 GPUs. We deliberately designed the testbed to be het-
erogeneous: this illustrates Rim’s ability to place and adapt mDAGs
across heterogeneous clusters. The testbed contains a range of Nvidia
GPU models: one Titan, one Titan X, one Titan Xp, two 1080s, three
1080 Tis, two 2080s and four 2080 Tis. It also includes different
Intel CPUs from the Xeon ES to the Core 19.

In theory, Rim could also migrate sessions during promotion and demotion in order to
better pack mDAG instances across the cluster; we have left this to future work.

86

[tracker” [face™ [traffic® [actdet [pose [caption [en2ge l
L2 [v [2 |2
Table 1: Number of mDAG instances for quality adaptation used in
our experiments. These mDAGs are described in Fig. 1. The starred
mDAGs are used in our comparison experiments (which do not em-
ploy quality adaptation). Our ablation study uses all mDAGs.

Comparison Alternatives. Clipper [19] provides a uniform inter-
face for model serving, but supports a variety of frameworks (Ten-
sorflow, Caffe efc.) in the backend. Each of Clipper’s models is
encapsulated in a Docker container, and a Clipper cluster can host
multiple instances of a DL model. Moreover, multiple model contain-
ers can access a GPU. Clipper batches inputs adaptively to increase
model utilization, but does not attempt to do performance-aware
model placement. It profiles model latency for different batch sizes
to support latency SLOs.

Nexus [55] also serves image requests using a cluster of GPUs
while satisfying a latency SLO. Like Clipper, it profiles model la-
tency for different batch sizes, then dynamically batches inputs and
schedules them on GPUs to ensure that it meets latency objectives
for each request (in our experiments, a request is a frame). For each
DL model, Nexus hosts multiple instances of the model, but, un-
like Clipper, manages model placement and dynamically adapts the
number of instances based on the observed workload and the latency
SLO in order to minimize GPU usage.

Comparison methodology. For our comparisons, we disable sev-
eral features of Rim, because these alternatives do not support these
features: multiple mDAG instances (we only use the highest-ranked
instances), admission control, and all quality adaptation (we evaluate
these in our ablation study, §4.3). Moreover, neither of these systems
provides Rim’s session abstraction, so for them we send each frame
as an independent request.

Metrics. For all three systems, we focus on three metrics: (1) The
average finish rate of each session in a cluster, which is defined as
the ratio between the output frame rate and the target frame rate of
the session. The ideal finish rate is 1 (or 100%), but if a system is
either overloaded or has design flaws, it may not be able to sustain a
high finish rate. (2) The average SLO-compliance of each session,
which is the percentage of frames whose end-to-end latency satisfied
the latency SLO. (3) The average gpu utilization across the cluster,
using the Nvidia system management interface [6]. The first two
metrics guarantee correctness and usability for media-processing
applications (§2), while the third measures efficacy of resource
management.

Workloads. Tbl. 1 lists the mDAGs used in our experiments.
The actdet mDAG performs complex activity detection [42]
using Yolo [52] or SSD [41] for object detection, and [64] for
re-identification. We use a trimmed version of this mDAG, tracker,
for our comparison experiments; actdet includes a stateful module
(§3.2) for activity recognition (which maintains state across several
frames), but Nexus and Clipper do not support such modules. The

face mDAG extracts facial keypoints used for avatar generation

from each frame, using a face detector model and [23] for extracting
keypoints. The traffic mDAG is taken from [55] and uses SSD [41]
to detect objects, and two other models to recognize pedestrian and
vehicle makes. The pose mDAG from [5], which recognizes human

tracker face traffic
W-1 | 8(6) 10(6) 10(6)
W-2 | 6(6) 8(6) 12(6) & 2(9)
W-3 | 10(10) & 3(5) 4(6) 8(5)

Table 2: Number of sessions of each mDAG in each workload. Each
entry shows the number of sessions, and the target frame rate for
each session. Thus, an entry 8(6) means the corresponding workload
had 8 sessions each with a 6 fps requirement. Some workloads con-
tain mDAGs with different frame rate (e.g., tracker in W-3).

 Rim Clipper WM Nexus Clipper WM Nexus

N
S

100.0 100.0

._.

o

S
S
=

231 321

Finish Rate (%)

GPU Utilization (%)

o

Workload-1

W-2 Workload-1 W-2

Figure 6: The average finish rate and GPU utilization for Rim, Clip-
per and Nexus under three maximal workloads.

poses in video by analyzing features extracted by Openpose [14]
in individual frames. The caption mDAG from [61] uses S2VT to
generate captions describing events in video by feeding the output
of the fully-connected layer from VGG16 [56] or AlexNet [39] to
S2VT’s LSTM unit. The en2ge mDAG is described in §3.2.

Tbl. 1 lists the number of instances of each mDAG for quality
adaptation used in §4.3; our comparison (§4.2) uses only the highest
ranked instance. Moreover, our comparisons only use three of these
mDAGs (tracker, face and traffic). We do not use pose, caption and
actdet since Nexus and Clipper do not support stateful chains, and
eng2e because Nexus’ current implementation does not support au-
dio streams. Each experiment’s workload contains multiple sessions
of each mDAG, as described below.

4.2 Comparison

Methodology. Can Nexus and Clipper plausibly support media-
processing applications even though they were not explicitly de-
signed for it? To address this question, we first generate three max-
imal workloads in Rim (labeled W-1, W-2 and W-3, Tbl. 2): a
maximal workload in Rim is a collection of sessions, such that
Rim rejects a new session request. In W-1, the total resource re-
quirements are roughly equally divided between the 3 mDAGs. The
GPU-intensive traffic dominates (requires most resources in) W-2,
while tracker dominates ¥/'-3. We then run these sessions on Nexus
and Clipper and evaluate the frame rate they achieve for each session.

Rim carefully places mDAG instances on the cluster. Clipper
and Nexus perform resource allocation decisions at the granularity
of individual DL models and they allocate different containers (in
Clipper) or backends (in Nexus) to different models. Nexus handles
model placement and provisioning as well as steering requests to
model replicas, so we simply profile all our DL models in Nexus, and
allow Nexus to manage model placement. Clipper, on the other hand,
does not reason about model placement, so for Clipper we: (a) allo-
cate as many model instances as Rim does, (b) ensure that all model
containers for an mDAG are co-located with the client/front-end.

87

m Clipper

n o~ AANMST N O~
VAV FEFFRF
Sessionld

Figure 7: For W — 1, the observed finish rate for each session for
Clipper and Nexus. K denotes tracker sessions, F denotes face and T
denotes traffic.

Finish Rate (%)
5 2 & 5

o
N

3

o
=)

N O~
LW

K3
Ka
T8

— o
M M

FlO
T10

However, because Clipper does not do frame-rate aware placement,
we randomly assign mDAG instances to GPUs.

Target frame-rate. Clipper has 34%-40% and Nexus has 10%-
28% lower aggregate finish rate than Rim (Fig. 6) under all three
maximal workloads. Under the first workload (-1 in Tbl. 2), both
Clipper and Nexus have more than 28% lower finish rate. To under-
stand why, Fig. 7 shows the achieved finish rate for each alternative,
for each session, under W-1.

Clipper. Clipper is nearly able to match the frame-rate require-
ment for 8 of the 28 sessions (e.g., 5 of the tracker sessions), but it
fails in two ways. First, because Clipper does not do resource-aware
placement, our random placement places models of two relatively
heavyweight mDAGs (e.g., face and traffic) on the same GPU (e.g.,
it co-located F5 and 79 on the same GPU). The resulting contention
reduces the frame rate. Second, some sessions exceed the GPU mem-
ory usage (e.g., F9 and 77); model containers independently allocate
and hoard memory resources, so memory often becomes a bottle-
neck. By contrast, Rim’s worker carefully de-allocates memory after
use, so Rim never encounters memory limits.

In part, Clipper performs as well as it does because we have
been generous to Clipper in two ways. Clipper does not profile CPU
modules, but our random placement gives it sufficient resources
to handle CPU-intensive mDAGs, like face (by contrast, Nexus
is significantly impacted by CPU-intensive mDAGs, see below).
Moreover, Clipper does not have techniques to automatically split
the latency SLO across different modules (since it does not support
DAG structured applications); we manually assign generous per-
module latency SLOs that result in higher finish rates. Without these,
we expect Clipper to perform worse than it does.

Nexus. Nexus is also unable to satisfy the target frame rate for
any face or traffic sessions, for three different reasons. First, Nexus
is focused on GPU-intensive applications, and only profiles GPU
modules. However, many practical mDAGs involve CPU-intensive
computations (e.g., face) which should be profiled to assess resource
needs and inform scheduling and placement. In our experiments,
Nexus co-located all face sessions’ CPU modules on the same ma-
chine, so all face sessions had a finish rate (FI to F10 in Fig. 7)
lower than 50%. To confirm this hypothesis, we manually doubled
the number of machines that serve face nDAG’s CPU module, and
observed an increase in face finish rates from 49.43% to 76.76%.
Because Rim profiles all modules and is aware of the resource re-
quirements of CPU modules, its placement allocated five machines
to run face sessions, and achieved a perfect finish rate.

Second, in the experiment where we doubled the number of ma-
chines serving face, the increase in finish rate for face sessions
adversely impacted the finish rate for other sessions. This interfer-
ence arises because Nexus’ temporal sharing (where it time-slices
the GPU across multiple DL models) with batching is not effective
for our workloads (and for edge clusters in general). When batch
sizes are large, as in a cloud setting, temporal sharing can achieve
good throughput. But for an edge workload, with lower statistical
multiplexing, it is hard to form a large batch without increasing
latency (§3.3). The resulting small batch sizes increase the relative
overhead of temporal sharing, so Nexus can support fewer GPU
computations than Rim for the same amount of resources. Thus, in
Nexus, the rest of sessions have to compete against face sessions on
a over-subscribed GPU, resulting in interference.

Third, Nexus uses a latency splitting algorithm [55] to derive each
GPU module’s latency SLO, but this algorithm assumes homoge-
neous GPUs in a cluster. But our cluster contains a range of GPUs
(from Nvidia 1080 to Nvidia 2080 Ti). We deliberately designed our
testbed this way to mimic hardware heterogeneity resulting from in-
cremental upgrades [10]. In our experiment, we used as input to the
latency splitting algorithm the average latency proﬁle7 for a given
batch size across all GPUs. Because this doesn’t accurately reflect
the latency on some GPUs, Nexus could not consistently satisfy the
latency SLO for some chains on some GPUs. To validate this, we
manually increased the latency SLO of each module for Nexus and
observed an increase in traffic finish rate from 70.79% to 88.04%.

GPU Utilization. Furthermore, both Clipper and Nexus have lower
GPU utilization under all three maximal workloads as shown in
Fig. 6. There are two reasons for this. First, because they sustain
lower frame rates, they fundamentally do less work. More impor-
tant, both systems rely on batching to increase utilization. In our
experiments, most models achieve batch sizes in Nexus of less than
a handful of frames under all three workloads (Fig. 8). In our work-
load, frame rates are on the order of 6-10 fps, so inter-frame arrival
times are on the order of 100-166 ms. If a model’s latency SLO
is 500 ms, it can probably afford to batch just 3-5 frames before
invoking the DL model. To achieve high utilization, some models
require a high degree of batching; for instance, Inception [58] re-
quires a batch size of 32. Media-processing workloads at the edge
are unlikely to achieve such high degrees of batching, which is why
Rim uses spatial multiplexing instead (§4.4).

4.3 Ablation Study

Quality Adaptation. To evaluate the benefit of quality adaptation,
we compare Rim against: (1) Rim-high, which always uses the
highest-ranked mDAG and does not perform admission control and
(2) Rim-low, which always uses the lowest-ranked mDAG.
Workload. This experiment uses the complete testbed (§4.1) with
14 GPUs. We evaluated all three alternatives (Rim, Rim-high and
Rim-low) by adding a new session every 10 seconds until we reach
the full capacity of the edge cluster (when Rim rejects new sessions).
Then we maintain the workload for 30 seconds, and remove a session

"We use the average latency profile only for latency splitting. Nexus still uses the
per-GPU profile for its scheduling decisions.

88

[0} 10 mm SSD Inception == FaceD
N
N Yolo Resnet . PRNet
¥2]
c 8
O
©
o 6
S 4
@©
—
v 2
>
< 0
Workload-1 Workload-2 Workload-3
Figure 8: The average batch size for Nexus.
. 100 Ay

& s .
‘%5 50 i ~ am

25 -~ Rim-high

36 = demotion
§u ;j _ N =W promotion
818 - = - - -
@ 12 - - -

6 T - _
280 — Rim - Rim-low
o560
@E 40 e
g8
2 g 20

300 400 0

Time (sec)

Figure 9: The finish rate and GPU utilization for Rim for quality
adaptation.

every 10 seconds in the reverse order in which they have been added.
Each session randomly chooses an mDAG from Tbl. 1.

Results: Finish rate. Fig. 9 shows how Rim dynamically adapts
to workload changes during a 700 s window. The top panel shows
the finish rate for Rim and Rim-high (Rim-low’s finish rate is always
as high as Rim’s so we omit it). The middle panel shows when each
session is started, as well as when quality adaptation decisions are
made by Rim. The bottom panel shows the average GPU utilization.

Until the workload saturates the cluster (¢ < 200), both Rim
and Rim-high have comparable finish rate. At 200 s, a total of 19
sessions run on the cluster. When the 20th session starts, Rim detects
that it is running at the full capacity, and starts demoting mDAGs
to release resources for new session. In the current implementation,
Rim demotes the session that hasn’t been demoted for the longest
time (§3.3), if demoting it can release enough resources for the
new session. For example, at ¢ = 200, Rim demotes session to
accommodate sessiongg (Fig. 9, middle panel). At ¢ = 220, instead
of demoting sessions which doesn’t release enough resources, Rim
demotes sessiony to accommodate sessiongg. One interesting case
is sessiong, an en2ge session, which has 3 instances (Tbl. 1). Rim
demotes this session twice (once at ¢ = 230 and again at ¢ = 330).
Even as it demotes sessions, Rim is able to achieve a nearly perfect
finish rate. On the other hand, Rim-high’s finish rate drops beyond
the 19th session because the cluster is at capacity. This illustrates
the importance of profiling and admission control in Rim. At around
t = 340, all mDAGs have been demoted to their lowest ranked
instance, and Rim rejects subsequent sessions.

Beyond t = 370, Rim starts removing sessions; when a session is
removed, an ongoing session is promoted if possible. In our current

implementation, Rim promotes the session that hasn’t been promoted
for the longest time (§3.3), if the released resources from the recently
removed session is enough for its promotion. For example, at ¢ =
370, sesstonzq has ended, therefore, Rim promotes sessioni to
utilize the released resources. At ¢ = 380, sessitonss has ended, but
Rim demotes sessions instead of sessiong because the released
resources are not enough to promote sessiong. In this way, Rim
tries to support each session at its highest ranked mDAG instance
when possible.

Results: Utilization. Rim achieves an average GPU utilization
of 52.36% across the 14 GPUs at ¢ = 200 (Fig. 9, bottom), while
Rim-low only achieves 28.73%.

Results: Number of sessions. Rim is able to maintain high finish
rate for 34 concurrent sessions in our edge cluster, while Rim-high
can only maintain high finish rate for 19 concurrent sessions. Be-
sides, Rim achieves much higher GPU utilization than Rim-low
by promoting sessions when resources are available. Overall, Rim
supports 78.9% more sessions than Rim-high, and utilizes resources
more efficiently than Rim-low.

Results: SLO-compliance. We now quantify the SLO-
compliance (the fraction of frames that satisfied the chain’s SLO)
in this experiment (figure omitted for brevity). Four mDAGs have
a perfect SLO-compliance, while three mDAGs have an average
SLO-compliance of over 97%. Moreover, for those frames that
violated the latency SLO from these three mDAGs, their actual
latencies were only up to 11.3%, 14.9% and 4.8% beyond the
latency SLO for mDAG actdet, caption and en2ge respectively. To
stress test our system, for these three chains, we assigned much
tighter SLO requirements (close to their end-to-end latencies) than
for other chains. Our current placement algorithm is aggressive,
placing a chain on servers whose latency may be close to the
chain SLO; small latency variations for a few chains trigger these
violations. A more conservative placement would leave more
headroom, at the risk of lower utilization; we left it to future work to
explore this tradeoff.

Placement. In this experiment, we compare Rim’s placement
against: (1) Rim-RR, which places a new session on one of the
GPUs in a round robin fashion; (2) Rim-memory, which places a
new session on the worker with largest remaining GPU memory
available; and (3) Rim-utilization, which places the new session on
the GPU with lowest GPU utilization. We compare these on the full
testbed, on the maximal workload that we used in Fig. 9.

Results. Fig. 10a shows the finish rate for Rim’s maximum frame
rate based placement and the three other placement algorithms. Rim
achieves nearly perfect finish rate (frames that violate latency SLO
are counted as unfinished), but Rim-RR achieves poor finish rate
because it ignores GPU and workload heterogeneity. Rim-memory
does better, but because memory is not the bottleneck in Rim (§3.3),
it cannot match Rim. Rim-utilization comes closest, but the GPU
is not the only bottleneck for streaming applications. For example,
face has a relatively low GPU utilization, but a high CPU utilization
on average. Rim-utilization places three face sessions on the same
worker, which overloads the CPU, leading to lower finish rate.

The need for cross-worker placement. We compare Rim with two
other alternatives: (1) Rim-NC, which does not include cross-worker

89

placement, but places the mDAG on the worker with highest re-
maining resources available when overloaded; and (2) Rim-NCdrop,
which also does not include cross-worker placement, but rejects
the session instead. The workload for this experiment consists of
twenty-nine sessions on the entire testbed. This workload is max-
imal for Rim (no additional sessions can be accommodated), but
is a different maximal workload than the ones used in the previous
experiments, and is designed to maximize the likelihood of resource
fragmentation to coerce Rim to invoke cross-worker placement.

Results. Rim-NCdrop can only accommodate twenty-four ses-

sions out of twenty-nine, since the remaining five sessions cannot
find a GPU for single-worker placement, while Rim is able to accom-
modate all twenty-nine sessions by placing those five sessions across
ten GPUs. Rim-NC can accommodate all twenty-nine sessions, but
has a low average finish rate of 79.3%; Rim’s finish rate is 99.14%
for this workload.
Spatial multiplexing. We compare Rim against Rim-temporal in
which each DL model has exclusive access to the GPU during its
execution (i.e., temporal multiplexing). Let spatial gain be the ratio
between the highest maximum frame rate with spatial multiplexing
over that with temporal multiplexing.

Results. Fig. 10b shows the spatial gain for different mDAG
instances from Tbl. 1. Spatial multiplexing increases the supported
frame rate across these mDAG instances by 8% to 99%. In this
experiment, the gains come from spatially multiplexing models
of the same mDAG on the GPU. Even actdet, an mDAG with a
heavyweight ACAM [60] module (Fig. 10c) gains 36% to 40%.

4.4 Justifications

No batching. Other image-based inference systems like Nexus and
Clipper batch aggressively. For media-processing, DL models are of-
ten based on deeper and more complex neural network architectures
than those used for images, so some of the DL models in our mDAG
can incur high gpu utilization even on a single frame. In Fig. 10c,
Jasper [36] utilizes 63% of a 1080 Ti, and the activity detection
model ACAM [60] utilizes 72%, so Rim does not use batching.
Admission control. Fig. 4 shows that if we over-commit resources,
instead of using admission control, by running mDAG at higher
frame rates than the maximum the GPU can sustain, the actual
number of frames processed drops with increasing offered load
and the standard deviation also increases dramatically, leading to
poor predictability. For this reason, Rim’s placement algorithm with
frame-rate proportionality does not over-commit resources.

Model loading and warmup. During initial placement and migra-
tion, Rim waits for DL models to load and warm up (§3.3). These
steps take between 1.37 to 4.50 sec for our mDAGs (Tbl. 1), of
which 0.48 to 2.82 sec is the model loading latency.

Serialization overhead. Rim co-locates two modules that exchange
high-volume data with one another; in the absence of this, data seri-
alization overhead can significantly impact latency. To demonstrate
this, we ran two instances of actdet. One instance ran on a single
worker. In the other, actdet was split across two workers where the

5100 g200
o 80 £150
T 60 5
& 9100
5 40 S
c ®© 50
£ 20 2

o

Rim-RR

Rim-Memory Rim-Utilization

S oe® o et
S g
£ @8
W@

(a)

o oot
X X
SR
R g

(b)

o o
S

GPU Utilization (%)

&

P

&
o
&

9 ° d® P o A PO & O 9O
P 8% Ve P g o R P O (B
& L \0&"‘%&&‘@4‘ & & B

<

@ o
&5 8

(©)

Figure 10: (a) The finish rate for various placements. (b) Spatial gain for different mDAG instances. (c) GPU utilization for DL models.

Feature Edge vs. Cloud Support DAGs Frame-rate requirement Quality adaption Resource demands Stateful models
Rim edge yes yes yes CPU and GPU yes
Nexus [55] cloud yes no no GPU no
Clipper [19] cloud no no no GPU no
Triton [49] cloud yes no no GPU yes
000 [35] cloud no no no GPU no
INFaaS [53] cloud no no yes CPU and GPU no
InferLine [18] cloud yes no no CPU and GPU no

Table 3: Comparison of Inference Systems

two modules that exchanged high-volume data were placed on dif-
ferent workers. The former instance had an end-to-end latency of
0.85 sec, but the latter incurred a latency of 7.60 sec.

GPU utilization. In our comparison experiments (§4.2), Rim
achieved an average GPU utilization from 32.1% to 37.9% under
maximal workloads (Fig. 6), while in the ablation study, Rim
achieved an average GPU utilization of 52.36% (Fig. 9). This
difference comes from the difference in the corresponding workload;
the ablation study uses several GPU-intensive mDAGs that the
comparison experiments do not. For example, en2ge mDAG
achieves an average GPU utilization of 73.55% at its maximum
frame rate, and the caption mDAG 92.61%. To put these numbers
in context, AWS reports an average GPU utilization between 10%
to 30% [2, 35], and Google reports an average utilization of 28%
for its Tensor Processing Unit (TPU) [37]. Rim’s average GPU
utilization is almost 2x of these values.

5 Related Work

Cluster Management for Inference. Much prior work has consid-
ered DL model inference in cloud clusters; Tbl. 3 summarizes the
differences between Rim and this body of work. Rim explores a
unique part of the design space, focusing on supporting frame rate
requirements for DAG-structured media-processing applications at
the edge with quality adaptation.

Of these, we have discussed Nexus [55] and Clipper [19] in §4 and
explained how they differ from Rim. Nvidia Triton [49] uses CUDA
streams to spatially multiplex models together on the same GPU,
but it requires the system operator to manually specify the degree
of parallelism, unlike Rim which determines this using profiling.
000 [35] uses a combination of temporal and spatial multiplexing
to increase GPU utilization by merging small kernels into super-
kernels, and reordering them to satisfy the latency constraints, but
these merging techniques can only be applied to models using the
same architecture; in contrast, Rim is able to share the GPU across
heterogeneous models.

90

INFaaS [53] abstracts resource management and model selection
for image inference. While it supports quality adaptation and profiles
both CPU and GPU components, it is not designed to support frame-
rate requirements of complex DAG-structured media-processing
applications. InferLine [18] schedules machine learning pipelines
to satisfy the end-to-end latency constraints. For a given pipeline,
it selects the hardware accelerator and batch size using the offline
profiling. Unlike Rim, it does not target frame-requirements, and
uses temporal multiplexing which is likely to perform less well in
an edge setting (§4.2).

TensorFlow-Serving [59] can group individual requests into
batches to increase throughput, deploy multiple versions of the same
model without need changes to client code, and minimize inference
overhead. Rim uses TensorFlow-Serving on each worker, but adds
profiling, cross-cluster placement and adaptation. GRNN [27]
accelerates RNN execution by minimizing synchronization overhead
and balancing on-chip resource usage. Rim supports RNNs as well
as other neural network architectures, as well as data dependencies
between models. Other work has explored specific optimizations to
reduce resource usage that can be useful for inference in general,
and Rim in particular: PRETZEL [40] explores operator and
parameter sharing in model inference, and Focus [29] explores a
cascade classifier for processing video.

Cluster Management for Training. Less relevant to Rim, Gan-
diva [65] uses spatial GPU multiplexing for training; Optimus [50]
uses an online resource-performance model to estimate the train-
ing speed, given the amount of allocated resources, then dynami-
cally allocate resources to each training job to minimize overall job
completion time; GeePS [20] uses GPU-specific optimizations like
background GPU/CPU data movement and data-parallel execution
to achieve good efficiency and scalability.

Pushing DL Models to the Edge. DL models are commonly de-
ployed on powerful computers equipped with GPUs. Recent work
has explored been pushing DL model execution closer to the input
source. FastAcc [30] uses auto-encoder to compress the data vol-
ume for communication, so as to run DL models on mobile GPUs.

Besides, novel DL model architectures [28, 33] further reduce the
model size. Rim can take advantage of these developments, by parti-
tioning the mDAG across devices and the edge cluster. Prior work
on complex activity detection [42] has already demonstrated the
benefits of this approach; we have left it to future work to extend
Rim’s mDAG orchestration to permit on-device execution.

6 Conclusions

Rim supports deep-learning based processing of audio and video
streams on edge clusters. Applications for processing these streams
often employ multiple DL models, and have an application structure
well represented as a DAG. They also have target frame-rate and
latency requirements, often for usability reasons. Given a client ses-
sion’s performance objectives, Rim uses an mDAG’s performance
profiles to derive placements that ensure that the session’s frame-rate
and latency objectives are met. It also leverages performance/accu-
racy tradeoffs to increase utilization and admit more sessions than
otherwise possible. Experiments show that competing approaches
designed to satisfy latency SLOs are not able to satisfy session target
frame rates while Rim can. Future work includes exploring more ap-
plications in Rim, understanding Rim performance across multi-rack
clusters, and exploring admission control techniques that permit over
committing resources in order to increase utilization even higher.

Acknowledgments
This work was supported in part by the CONIX Research Center,

one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.
References

[1]
[2]

[3]

Apple: Apple’s HTTP Live Streaming. https://developer.apple.com/streaming/.
AWS re:Invent 2018 Keynote. https://www.youtube.com/watch?v=
ZOIkOnW640A&ab_channel=AmazonWebServices.

Edge Computing Market Size, Share and Trends Analysis.
grandviewresearch.com/industry-analysis/edge-computing-market.
Edge Computing Market Worth $43.4 Billion By 2027. https://www.
grandviewresearch.com/press-release/global-edge-computing- market.
Multi-person Real-time Action Recognition Based-on Human Skeleton. https:
//github.com/felixchenfy/Realtime- Action-Recognition.

NVIDIA System Management Interface. https://developer.nvidia.com/nvidia-
system-management-interface.

The Low Latency Live Streaming Landscape in 2019. https://mux.com/blog/the-
low-latency-live-streaming-landscape-in-2019/.

The NVIDIA EGX Platform for Edge Computing. https://www.nvidia.com/en-
us/data-center/products/egx-edge-computing/.

Video Conferencing Network Requirements. https://www.videonations.
co.uk/resources/video-conferencing-news/video-conferencing-network-
requirements/.

Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN Vijaykumar.
Tarazu: Optimizing mapreduce on heterogeneous clusters. ACM SIGARCH Com-
puter Architecture News, 40(1):61-74, 2012.

Zahaib Akhtar, Yun S. Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen, Ethan
Katz-Bassett, Bruno M. Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: Auto-Tuning
Video ABR Algorithms to Network Conditions. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, SIGCOMM 18,
2018.

https://aws.amazon.com/, 2020.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric
Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang
Chen, et al. Deep speech 2: End-to-end speech recognition in english and mandarin.
In International conference on machine learning, pages 173-182, 2016.

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Real-
time multi-person 2d pose estimation using part affinity fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression
and acceleration for deep neural networks. CoRR, abs/1710.09282, 2017.

https://www.
[4]
[5]

[6

[7]

[8

[9]

[10]

(1]

[12]
[13]

[14]

[15]

91

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. Wav2letter: an end-to-
end convnet-based speech recognition system. arXiv preprint arXiv:1609.03193,
2016.

Vittorio Cozzolino, Jorg Ott, Aaron Yi Ding, and Richard Mortier. Ecco: Edge-
cloud chaining and orchestration framework for road context assessment. In
2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and
Implementation (loTDI), pages 223-230. IEEE, 2020.

Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo, Joseph E Gonzalez,
Ion Stoica, and Alexey Tumanov. Inferline: Ml inference pipeline composition
framework. arXiv preprint arXiv:1812.01776, 2018.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. Clipper: A low-latency online prediction serving system.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 613-627, Boston, MA, March 2017. USENIX Association.
Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P
Xing. Geeps: Scalable deep learning on distributed gpus with a gpu-specialized
parameter server. In Proceedings of the Eleventh EuroSys Conference, page 4.
ACM, 2016.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107-113, January 2008.

TensorFlow Documentation. Savedmodel warmup. https://www.tensorflow.org/
tfx/serving/saved_model_warmup.

Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. Joint 3d face
reconstruction and dense alignment with position map regression network. CoRR,
abs/1803.07835, 2018.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-
tem. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP *03, pages 2943, New York, NY, USA, 2003. ACM.
https://cloud.google.com/, 2020.

Mark Harris. CUDA Pro Tip: Understand Fat Binaries and JIT Caching. https:
//devblogs.nvidia.com/cuda-pro- tip-understand- fat-binaries-jit-caching/, 2013.
Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan, and Bo Wu. Grnn:
Low-latency and scalable rnn inference on gpus. In Proceedings of the Fourteenth
EuroSys Conference, page 41. ACM, 2019.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Ef-
ficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. Focus:
Querying large video datasets with low latency and low cost. In /3th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages
269-286, Carlsbad, CA, October 2018. USENIX Association.

Diyi Hu and Bhaskar Krishnamachari. Fast and accurate streaming cnn inference
via communication compression on the edge. In 2020 IEEE/ACM Fifth Inter-
national Conference on Internet-of-Things Design and Implementation (loTDI),
pages 157-163. IEEE, 2020.

Liwen Hu, Shunsuke Saito, Lingyu Wei, Koki Nagano, Jaewoo Seo, Jens Fursund,
Iman Sadeghi, Carrie Sun, Yen-Chun Chen, and Hao Li. Avatar digitization from
a single image for real-time rendering. ACM Trans. Graph., 36(6):195:1-195:14,
November 2017.

Yitao Hu, Swati Rallapalli, Bongjun Ko, and Ramesh Govindan. Olympian: Sched-
uling gpu usage in a deep neural network model serving system. In Proceedings
of the 19th International Middleware Conference, pages 53-65. ACM, 2018.
Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <Ilmb model size. CoRR, abs/1602.07360, 2016.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. Quincy: Fair scheduling for distributed computing clusters.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP *09, pages 261-276, New York, NY, USA, 2009. ACM.

Paras Jain, Xiangxi Mo, Ajay Jain, Alexey Tumanov, Joseph E Gonzalez, and
Ion Stoica. The ooo vliw jit compiler for gpu inference. arXiv preprint
arXiv:1901.10008, 2019.
https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/jasper.html, 2019.
Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture, pages 1-12,
2017.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Trans. Comput. Syst., 18(3):263-297, August
2000.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambro-
gio, Markus Weimer, and Matteo Interlandi. PRETZEL: Opening the black box

https://developer.apple.com/streaming/.
https://www.youtube.com/watch?v=ZOIkOnW640A&ab_channel=AmazonWebServices
https://www.youtube.com/watch?v=ZOIkOnW640A&ab_channel=AmazonWebServices
https://www.grandviewresearch.com/industry-analysis/edge-computing-market
https://www.grandviewresearch.com/industry-analysis/edge-computing-market
https://www.grandviewresearch.com/press-release/global-edge-computing-market
https://www.grandviewresearch.com/press-release/global-edge-computing-market
https://github.com/felixchenfy/Realtime-Action-Recognition
https://github.com/felixchenfy/Realtime-Action-Recognition
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://mux.com/blog/the-low-latency-live-streaming-landscape-in-2019/
https://mux.com/blog/the-low-latency-live-streaming-landscape-in-2019/
https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/
https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/
https://www.videonations.co.uk/resources/video-conferencing-news/video-conferencing-network-requirements/
https://www.videonations.co.uk/resources/video-conferencing-news/video-conferencing-network-requirements/
https://www.videonations.co.uk/resources/video-conferencing-news/video-conferencing-network-requirements/
https://aws.amazon.com/
https://www.tensorflow.org/tfx/serving/saved_model_warmup
https://www.tensorflow.org/tfx/serving/saved_model_warmup
https://cloud.google.com/
https://devblogs.nvidia.com/cuda-pro-tip-understand-fat-binaries-jit-caching/
https://devblogs.nvidia.com/cuda-pro-tip-understand-fat-binaries-jit-caching/
https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/jasper.html

[41]

[42]

[43]

[44]
[45]

[46]
(471
(48]
[49]
[50]

[51]

[52]

[53

[54]

of machine learning prediction serving systems. In /3th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages 611-626,
Carlsbad, CA, October 2018. USENIX Association.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21-37. Springer, 2016.

X. Liu, P. Ghosh, O. Ulutan, K. Chan, B. S.Manjunath, and R. Govindan. Caesar:
Cross-Camera Complex Activity Detection. In Proc. ACM Sensys, 2019.

Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive Video
Streaming with Pensieve. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication, SIGCOMM, 2017.
https://azure.microsoft.com/en-us/, 2020.

Koki Nagano, Jaewoo Seo, Jun Xing, Lingyu Wei, Zimo Li, Shunsuke Saito, Aviral
Agarwal, Jens Fursund, and Hao Li. pagan: Real-time avatars using dynamic
textures. ACM Trans. Graph., 37(6):258:1-258:12, December 2018.
https://developer.nvidia.com/embedded/jetson-tx2, 2019.
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-agx-xavier/, 2020.
https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition.html#models,
2019.

https://developer.nvidia.com/tensorrt, 2019.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo.
Optimus: an efficient dynamic resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference, page 3. ACM, 2018.
Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai, David Wether-
all, and Ramesh Govindan. Odessa: Enabling interactive perception applications
on mobile devices. In Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’11, pages 43-56, New York, NY,
USA, 2011. ACM.

Joseph Redmon and Ali Farhadi. Yolov3: an incremental improvement. arXiv,
2018.

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. Infaas:
Managed & model-less inference serving. arXiv preprint arXiv:1905.13348, 2019.
Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman,
Ton Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. Numpywren: Serverless
linear algebra. CoRR, abs/1810.09679, 2018.

92

[55]

[56]
[57]
[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus: A gpu cluster
engine for accelerating dnn-based video analysis. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP *19, page 322-337, New
York, NY, USA, 2019. Association for Computing Machinery.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
https://www.stackpath.com/products/edge-computing/, 2020.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.
https://github.com/tensorflow/serving, 2019.

Oytun Ulutan, Swati Rallapalli, Carlos Torres, Mudhakar Srivatsa, and BS Manju-
nath. Actor conditioned attention maps for video action detection. arXiv preprint
arXiv:1812.11631, 2018.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. Sequence to sequence - video to text. In
Proceedings of the IEEE international conference on computer vision, pages
4534-4542, 2015.
https://enterprise.verizon.com/business/learn/edge-computing/5G-and-edge-
computing/, 2020.

Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng, and Ben Y. Zhao. Anatomy
of a personalized livestreaming system. In Proceedings of the 2016 Internet
Measurement Conference, IMC ’16, pages 485-498, New York, NY, USA, 2016.
ACM.

Nicolai Wojke and Alex Bewley. Deep Cosine Metric Learning for Person Re-
identification. CoRR, abs/1812.00442, 2018.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. Gandiva: Introspective cluster scheduling
for deep learning. In /3th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 595-610, Carlsbad, CA, October 2018.
USENIX Association.

Daniel Zhang, Tahmid Rashid, Xukun Li, Nathan Vance, and Dong Wang. Het-
eroedge: Taming the heterogeneity of edge computing system in social sensing.
In Proceedings of the International Conference on Internet of Things Design and
Implementation, pages 37-48, 2019.

https://azure.microsoft.com/en-us/
https://developer.nvidia.com/embedded/jetson-tx2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition.html#models
https://developer.nvidia.com/tensorrt
https://www.stackpath.com/products/edge-computing/
https://github.com/tensorflow/serving
https://enterprise.verizon.com/business/learn/edge-computing/5G-and-edge-computing/
https://enterprise.verizon.com/business/learn/edge-computing/5G-and-edge-computing/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Rim Design
	3.1 System Overview
	3.2 Sessions and mDAGs
	3.3 Placement and Quality Adaptation
	3.4 Other Details

	4 Rim Evaluation
	4.1 Methodology
	4.2 Comparison
	4.3 Ablation Study
	4.4 Justifications

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

