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ABSTRACT
Respiratory rate (RR) is a physiological signal that is vital for many
health and clinical applications. This paper presents RespWatch, a
wearable sensing system for robust RRmonitoring on smartwatches
with Photoplethysmography (PPG). We designed two novel RR es-
timators based on signal processing and deep learning. The signal
processing estimator achieved high accuracy and efficiency in the
presence of moderate noise. In comparison, the deep learning esti-
mator, based on a convolutional neural network (CNN), was more
robust against noise artifacts at a higher processing cost. To exploit
their complementary strengths, we further developed a hybrid esti-
mator that dynamically switches between the signal processing and
deep learning estimators based on a new Estimation Quality Index
(EQI). We evaluated and compared these approaches on a dataset
collected from 30 participants. The hybrid estimator achieved the
lowest overall mean absolute error, balancing robustness and effi-
ciency. Furthermore, we implemented RespWatch on commercial
Wear OS smartwatches. Empirical evaluation demonstrated the
feasibility and efficiency of RespWatch for RR monitoring on smart-
watch platforms.

CCS CONCEPTS
•Applied computing→Consumerhealth; •Human-centered
computing → Empirical studies in ubiquitous and mobile
computing.
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1 INTRODUCTION
Respiratory rate (RR) is an important physiological variable associ-
ated with serious health conditions such as cardiopulmonary arrest
[10]. In addition to the clinical applications, RR is important for
ascertaining driving safety [24, 54], assessing sleep quality [4], mon-
itoring stress [17] and even detecting opioid overdose [30]. However,
unobtrusive monitoring of RR outside of laboratory and hospital
settings is difficult. Traditional approaches for RR measurements
rely on the use of the specialized equipment, e.g. capnography sys-
tem and nasal/oral pressure transducers[6]. These approaches are
not suitable for "free-living" or long-term measurement outside
controlled clinical environments. Robust RR measurements with
a popular commercial device can renovate the approaches to the
real-time detection and long-term monitoring of respiration-related
health conditions.

In this paper, we address the problem of robust RR monitoring
using photoplethysmography (PPG) sensors on commercial smart-
watches. The adoption of wearable devices, and smartwatches in
particular, has increased exponentially over the past decade [5].
PPG sensors have been commonly embedded in smartwatches to
measure heart rate and detect various health conditions, such as
atrial fibrillation [46] and sleep apnea [23]. And smartwatches have
the potential to enable unobtrusive longitudinal RR monitoring
outside clinical environments with the PPG sensor.

However, RR monitoring on smartwatches with PPG faces sev-
eral challenges. First, many previous studies [22, 26, 37] focused on
PPG sensors for measuring light signals transmitted through fin-
gertips, whereas smartwatch PPG sensors measure signals reflected
from the wrist, which degrades signal quality and introduces noise
artifacts [41]. As such, it is essential to develop robust approaches
to extract RR from noisy PPG signals [42], and to investigate the fea-
sibility of reliable RR measurements on off-the-shelf smartwatches.
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Second, previous research on RR monitoring with PPG usually tar-
geted use cases with minimum or no motion (e.g., a patient wearing
a pulse oximeter in an Intensive Care Unit (ICU) bed) [22, 38, 50],
whereas we aim for RR monitoring in the presence of some user
motions and noise artifacts. It is inevitable to the motions with a
wrist-worn smartwatch in the unconstrained settings. Therefore,
smartwatch-based RR measuring system must be consistently ro-
bust for the longitudinal monitoring. Finally, smartwatches have
limited computational resources and power. For any real-time and
long-term RR monitoring system running on the smartwatch, data
processing pipelines and algorithms should be highly efficient and
capable of continuous execution on the resource-constrained plat-
form.

Towards this end, we present RespWatch, a wearable sensing
system for robust RR measurements with built-in PPG sensors on
commercial smartwatches. RespWatch provides end-to-end process-
ing pipelines from the raw PPG signals to RRmeasurements that can
maintain high accuracy in the presence of some noise and motion
artifacts. We explore and compare both signal processing and deep
learning approaches, and develop a hybrid approach to combine
their complementary strengths. Furthermore, RespWatch is capable
to run completely on commercial smartwatches which allows for
non-obtrusive RR monitoring. Specifically, the main contributions
of this research are as follows:

• A signal processing estimator with fine-grained elimination
of noise artifacts, which achieves efficiency and accuracy in
the presence of moderate noise artifacts;

• A deep learning estimator for extracting RR from noisy PPG
signals, which exhibits robustness in the presence of increas-
ing noise artifacts;

• A hybrid approach which dynamically switches between
signal processing and deep learning based on a novel Esti-
mation Quality Index (EQI), achieving both robustness and
efficiency;

• A comparative evaluation of the RR estimation approaches
on a dataset including 30 participants of various activities,
which demonstrates the complementary strengths of the sig-
nal processing and deep learning estimators and the advan-
tage of combining both approaches in the hybrid estimator;

• Implementation and experimentation of RespWatch on com-
mercial Wear OS smartwatches, which demonstrates the
feasibility and efficiency of RR monitoring on smartwatch
platforms.

2 RELATEDWORK AND BACKGROUND
2.1 Non-contact RR measurement
Recently, non-contact sensing approaches have been developed for
measuring RR. Techniques based on radio frequency (RF) detect
respiration based on changes in RF signals caused by inhalation and
exhalation motions. RR has been estimated using Frequency Mod-
ulated Carrier Waves (FMCW) [52] and Doppler radar [55]. WiFi
signals have also been adopted to estimate RR based on the received
signal strength (RSS) [35] and channel state information (CSI) [53].
Other non-contact sensing techniques for RR measurement exploit
energy spectrum density (ESD) of acoustic signals [54] and ground
movement from geophones [20]. As these non-contact approaches

rely on external devices in the environment, they are constrained to
instrumented environments and cannot provide monitoring when
users leave such environments.

2.2 IMU-based RR measurement
Smartwatches provide a portable platform with built-in sensors
that can be utilized for unobtrusive sensing. Previous research
[13, 16, 25, 49] on RR measurement with smartwatches exploited
the inertial measurement unit (IMU) to capture subtle motions
owing to respiration. However, this micro-motion is easily over-
whelmed by motion artifacts [25] during normal activities. Hence,
IMU-based RR monitoring is usually limited to constrained settings
with minimum motion. For instance, Sun et al. [49] designed a total
variation filter to extract respiratory signals from accelerometer
data captured by smartwatch during sleep. Similarly, Hao et al.
[13] developed the MindfulWatch to monitor respiratory during
meditation, using a similar filtering approach. To extend the RR
measurements in daily living activities, Liaqat et al. [25] proposed
to identify accurate sensor readings with respiration information
using a machine learning model, and extract RR only from those
accurate sensor readings. However, since the micro-motions associ-
ated with respiration could be of the same order of magnitude as
the sensor noise [13] and several orders of magnitude lower than
other body motions, the signal-to-noise ratio (SNR) can often drop
below the threshold for valid measurements.

2.3 PPG-based RR measurement
PPG is an optical sensing technology that detects pulsatile blood
volume changes in tissues [44]. Compared to IMU, PPG sensor read-
ings are less vulnerable to motion artifacts, as PPG measures the
optical changes that are not directly impacted by the motions. As il-
lustrated in Figure 1, a PPG sensor consists of a light-emitting diode
(LED) to illuminate the tissue and a photodiode (PD) to measure the
light transmitted through or reflected by the tissue. Transmission-
mode PPG is commonly used in fingertip pulse oximeters, whereas
reflectance-mode PPG is usually used on wrist or forehead for heart
rate monitoring. The mode and placement of the PPG sensor has
impacts on its sensing accuracy and waveform shape [41].

LED PDLED

PD
Skin Tissue

Artery LED Light-emitting diode

PD Photodiode

Transmission Mode Reflectance Mode

Figure 1: Two modes of the PPG sensor [3].

RR measurement is based on the fact that the PPG waveform
is modulated by the respiration process. As illustrated in Figure
2, the PPG waveform contains three types of respiratory-induced
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variations caused by amplitude, intensity and frequencymodulation
[22, 28].

• Amplitudemodulation leads to respiratory-induced amplitude
variation (RIAV), which is related to changes in peripheral
pulse strength [22]. RIAV is reflected in the different ampli-
tudes of the peaks and corresponding valley for each pulse
in the PPG waveform, and can be extracted as a time-series
of the vertical distances from the peak to the valley for each
pulse.

• Intensity modulation leads to respiratory-induced intensity
variation (RIIV), which is related to the intrathoracic pressure
variation [22]. RIIV is reflected in a baseline wander [28] in
the PPG waveform, and can be extracted as a time-series of
the peak heights.

• Frequency modulation leads to respiratory-induced frequency
variation (RIFV), which is related to an autonomic response to
respiration. RIFV, also referred as respiratory sinus arrhyth-
mia (RSA) [22], is reflected in different inter-beat intervals,
and can be extracted as a time-series of the horizontal dis-
tances between the successive peaks in the PPG waveform.

0 4 8 12
Time (S)

PP
G
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.)

RIAV RIIV RIFV PPG

Figure 2: PPG waveform and respiratory-induced variations
[22]. RIAV: respiratory-induced amplitude variation; RIIV:
respiratory-induced intensity variation; RIFV: respiratory-
induced frequency variation.

RR can be estimated in two general steps [7]: (1) extracting the
respiratory variation signals, and (2) estimating of RR from the vari-
ation signals. Karlen et al. [22] used the Incremental-Merge Segmen-
tation method to detect artifacts and extract the three respiratory-
induced variations (RIIV, RIAV, RIFV). RR can then be obtained from
the variations by Fast Fourier Transform (FFT) with smart fusion.
Pimentel et al. [38] improved the reliability of RR measurements
with multiple autoregressive (AR) models for determining the dom-
inant respiratory frequency in the three variations. Compared to
the fusion method from [22], the AR models can retain more data
windows. The aforementioned studies on PPG-based RR measure-
ments [7, 22, 26, 38] focused on fingertip sensors in clinical settings
or during sleep with limited motion. Since the signal admission
control in those studies discards entire sampling windows affected
by noise artifacts, the approaches may lead to low data yield in the
presence of user activities. How to robustly distill respiratory in-
formation from the raw PPG signal remains challenging especially
in the presence of noise.

Video-based PPG has also been explored to measure RR with
smartphone cameras[45]. Due to its reliance on video taken by cam-
eras, this approach is not suitable for long-term and non-obtrusive
RR monitoring during daily activities.

Recent studies [19, 27, 50] applied similar signal processing ap-
proaches to measure RR with reflective PPG sensors. Jarchi et al.
[19] and Longmore et al. [27] explored measuring RR at different
body positions (including wrist) with reflective PPG sensors. They
found that upper-body positions (e.g., head and neck) produced
the best respiration signals. Trimpop et al. [50] demonstrated a sys-
tem on commercial smartwatches for RR monitoring during sleep
and evaluated it on four users, but without revealing the details
of the methodology. As those studies [19, 27, 50] adopted similar
signal processing approaches to those developed for fingertip PPG,
they did not address the more significant noise artifacts with user
activities and the reflectance mode of PPG sensor. In contrast, we
present novel signal processing techniques specifically designed to
robustly estimate RR in the presence of noise artifacts and user ac-
tivities. Moreover, we explore deep learning to further enhance the
robustness of RR measurements against noise and motion artifacts,
and integrate both approaches to balance robustness and efficiency
of RR monitoring on commercial smartwatches.

2.4 Deep learning on smartwatch
Deep learning with wearable data has drawn great attentions in
activity recognition [2, 40], Parkinson Disease monitoring [12, 51],
atrial fibrillation detection [36, 46] and other mobile health appli-
cations [25, 54]. Ravichandran et al. [43] had proposed a dilated
residual inception model to regress the respiration waveform from
the PPG waveform. But their study was limited to the fingertip PPG
signals collected in the intensive care unit (ICU), and cannot esti-
mate the respiratory rate directly. Those application-driven studies
have demonstrated that deep learning is capable to handle some
sophisticated problems with the wearable data. However, further
empirical evaluations of the deep learning models are required to
test their capability of running on the wearable devices in real life.

3 DESIGN OF RESPWATCH
Towards RR measurements outside the clinic settings, our RR mon-
itoring system shoots the following goals:

• Accuracy. The system should produce accurate RR measure-
ments.

• Robustness. The system should maintain accuracy and data
yield in the presence of noise artifacts.

• Efficiency. The system should have light-weight and effi-
cient processing pipeline on smartwatches.

We exploited both signal processing and deep learning approaches
to the RR estimations. In this section, we first design a signal process-
ing estimator that achieves efficiency and accuracy in the presence
of moderate noise artifacts. We then build a deep learning estimator
that is more robust against increasing noise artifacts while incur-
ring higher processing cost. Finally, we develop a hybrid estimator
that balances robustness and efficiency by dynamically switching
between the signal processing and deep learning estimators.

3.1 Signal Processing Estimator
The signal processing estimator employs digital signal processing
techniques, which are training-free and allow for efficient process-
ing on a commercial smartwatch. We designed a signal processing
pipeline comprising three stages (see Figure 3).
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1) In the preprocessing stage, we use a bandpass filter to eliminate
noise outside the cardiac and respiratory bands from the raw signals,
and then divide the signal waveform into 60-second windows.

2) In the artifact elimination and pulse peak finding stage, we
employ a fine-grained technique to remove data points corrupted
by noise artifacts within the cardiac and respiratory bands. We
then use a novel PPG pattern detector to find the pulse peaks in
the remaining data points. To facilitate finding the pulse peak, the
PPG pattern detector employs a novel forward-backward highpass
filter to remove respiratory band information while preserving the
time-domain features. This allows the identified pulse peaks to be
mapped to the original waveform with the respiratory information.

3) Finally, we extract the respiratory-induced variation signals,
using the pulse peak positions found by the PPG pattern detector.
Then, we mapped the variation signals to the RR estimations with
an adaptive peak finding method. In addition, we introduce a novel
estimation quality index (EQI) to assess the accuracy of our RR
measurements, which enables the hybrid estimator to dynamically
switch between signal processing and deep learning estimators,
maintaining high accuracy and efficiency.

In the following we detail the design of each stage.

3.1.1 Preprocessing. The sampling rates of the PPG sensors vary
across smartwatches and are usually higher than 100 Hz. In order
to minimize the effect of the differences of sampling rates, we re-
sample the collected PPG data at a fixed rate of 50 Hz based on
data timestamps. The raw PPG waveform contains many noisy
frequency components. A sixth-order Butterworth bandpass filter
is first applied to remove the unwanted noisy components with
cut-off frequency of 0.14Hz and 3Hz, only keeping the information
from respiratory band to cardiac band [31]. The preprocessing does
not remove noise artifacts within the ranges of respiratory and
cardiac bands, which is handled in the next stage. The signal is then
re-scaled to the range from -1 to 1. We divide the PPG data into
60-second windows for RR estimation in following stages. There is
no overlap between the adjacent windows. The 60-second length
has been used for RR studies in previous literature [22, 38].

3.1.2 Artifact Elimination and Pulse Peak finding. Noise artifacts
are inevitable on smartwatches due to the wrist movement and poor
contact between the sensor and skin. Previous research [7, 22, 26,
38] has often discarded any data window containing noise artifacts.
Although this approach can help in avoiding noise artifacts, it leads
to significant drop in RR measurement yield, especially during user
activities. To support long-term RR monitoring in the presence of
noise artifacts and improve data yield, we introduce a sliding sub-
window technique to discard noise artifacts at a finer granularity
while preserving the valid data samples in the same 60-second data
window. The sliding sub-window has a size of 10 seconds and a step
size of 2 seconds. Each 10-second sub-window from the 60-second
window is passed through the PPG pattern detector to evaluate
whether it is free from noise artifacts, and to identify valid pulse
peaks simultaneously. The entire procedures for artifact elimination
and pulse peak finding are summarized in Algorithm 1.

In the PPG pattern detector, we first filter out the respiratory
band information in the sub-window, as the respiratory band can
impact the accuracy of finding the pulse peaks. A novel design of

Raw PPG from smartwatches

…
Ar�fact Elimina�on & Pulse Peak Finding

Preprocessing

sub-windowsub-window

PPG pattern detector

Sliding
sub-windows

Discard

Valid sequences

Respiratory -Induced Varia�ons Extrac�on &
Adap�ve Peak Finding

RR and EQI calculation

Artifacts

Merge the valid sub-windows and peaks

…

Figure 3: Architecture of the signal processing estimator in
RespWatch

the PPG pattern detector is the adoption of a second-order forward-
backward highpass Butterworth filter with cut-off frequency of
0.6 Hz. The forward-backward filter is a zero-phase filter in which
the phase response slope is zero at all frequencies. It achieves the
zero-phase response by filtering the input data twice, first in the
forward direction and then in the reverse direction. Hence, the
order of the filter is doubled, and the filter is non-causal due to
the reverse filtering [48]. Since the processing of sub-windows is
performed once we have the 60-second large window, there is no
requirement of the causality of the filter.

The forward-backward filter is a key component of the PPG
pattern detector. A significant benefit of the zero-phase filter is that
it is able to preserve important time-domain features in the filtered
signal. Specifically, the pulse peaks in the filtered waveform appear
at the same positions as the pulse peaks in the unfiltered waveform
in the time domain [8]. This allows us to directly map the pulse
peaks found in the filtered waveform back to the unfiltered wave-
form. Consequently, we can find the pulse peaks in the unfiltered
waveform in the 60-second window when iterating through the
sub-windows containing the filtered signals. The pulse peaks in the
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Algorithm 1: Artifact Elimination & Pulse Peak Finding
Data: 60-second preprocessed PPG waveform

1 Sliding sub-windows with size of 10s and step of 2s;
2 for each sub-window do

/* begin of PPG pattern detector */

3 2nd-order highpass forward-backward filtering;
4 Re-scale the waveform with range of [-1,1];
5 Find the peaks higher than 0;
6 Calculate heart rate, peak intervals, peak-to-valley

distances;
// PPG pattern matching

7 if heart rate ≤ 180 and heart rate ≥ 40
STD(peak intervals)<0.4s and
STD(peak-to-valley distances)<0.4 then

8 mark the sub-window as valid ;
9 end

10 end
11 Merge the consecutive valid sub-windows into valid

sequences;
12 Merge the peaks from the valid sequences into peak lists;

Result: Valid sequences and corresponding peak lists

0 2 4 6 8 10
Time (S)

Unfiltered PPG waveform

After traditional filter

After forward-backward filter

Figure 4: Comparison of preprocessed PPG waveform with
traditional Filter and forward-backward filter.

unfiltered waveform will be used to extract the respiratory-induced
variation time-series in the next stage.

Figure 4 shows the advantage of the forward-backward filter
with the real PPG data collected as part of our study. The blue curve
shows the unfiltered waveform containing the respiratory band
components. It has a large respiratory-induced baseline wander.
Additionally, the pulses are not clearly distinguishable, making it
difficult to find pulse peaks using standard peak finding methods[21,
47]. The green curve shows the waveform after it is processed using
our forward-backward filter. Clearly, the peaks are distinguishable
making it easier to check whether the waveform contains valid PPG
patterns with a pattern matching method, and identify each peak
by detecting local maxima above a certain threshold. It is important
to note that these pulse peaks can be mapped back to the unfiltered
curve (see the vertical dashed lines in Figure 4). In contrast, the
orange curve is the filtered waveform after being processed by a
traditional fourth-order Butterworth filter with the same cut-off
frequency. We can observe variable time shifts in the peak positions

after the traditional filter, making it impossible to map the pulse
peaks back to the blue curve. As a result, the forward-backward
filter not only removes the respiratory band to facilitate PPG pattern
matching and peak finding, but also allows the mapping of pulse
peaks back to the unfiltered PPG waveform containing the raw
respiratory information.

After forward-backward filtering, we re-scale the signal to a
range of [−1, 1], and identify all the peaks whose amplitude are
higher than 0. Then, we implement our PPG pattern matching
method derived from [32] to detect whether the PPG signal is valid
using three rules: (1) extracted heart rate based on the peaks should
be within 40 and 180 bpm; (2) the standard deviation of the peak
intervals should be less than 0.4s; (3) the standard deviation of the
peak-to-valley distances should be less than 0.4, where the peak-to-
valley distance is the vertical distance from the peak to its previous
valley. We find the valleys via the local minimum between two
adjacent peaks. Only those sub-windows satisfying all three rules
are marked as valid.

0 2 4 6 8 10
Time (S)

1−

0

1

0 2 4 6 8 10
Time(S )

1−

0

1
(a) A valid sub-window

(b) An invalid sub-window with artifacts. (e standard
deviation of peak-to-valley distances is larger than 0.4.)

Time (S)

Figure 5: Examples of PPG pattern matching.

Figure 5 shows real examples of a valid sub-window and an
invalid sub-window with artifacts identified by the PPG pattern
detector. The valid sub-window contains pulses satisfying the afore-
mentioned rules, whereas the invalid sub-window has the standard
deviation of the peak-to-valley distances larger than 0.4, not satis-
fying the third rule.

Once we have iterated through all the sub-windows with the
PPG pattern detector, consecutive valid sub-windows are merged
into larger valid sequences, and the peaks in the valid sub-windows
are also merged into longer lists of peaks (see Figure 3). Here, the
valid sequences mark the start and end points of a preprocessed
PPG waveform free of noise artifacts, and the peak lists contain
timestamps of the pulse peaks in the corresponding valid sequences.
A 60-second preprocessed PPG waveform can have multiple valid
sequences and valid peaks lists, if the invalid sub-windows appear
in the middle of the 60-second period.

3.1.3 Respiratory-induced Variations Extraction and Adaptive Peak
Finding. As described in Section 2.3, the respiratory-induced am-
plitude variation (RIAV) is the time-series of the vertical distances
from the peak to the valley for each pulse. The respiratory-induced
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intensity variation (RIIV) is the time-series of the height of each
pulse peak. The respiratory-induced frequency variation (RIFV) is
the time-series of the horizontal distances between successive pulse
peaks in the time domain. All the three variation time-series are
closely related to pulse peaks that need to be extracted from the
preprocessed PPG waveform containing the respiratory band in-
formation. We directly adopt the peak lists from the last stage, and
map the pulse peaks from the filtered waveform to the preprocessed
PPG waveform. The valleys in the preprocessed waveform are then
obtained by finding the local minimum between two adjacent peaks.
The adoption of peak lists from the second stage improves the accu-
racy of extracting the three time series, because we avoid directly
finding pulse peaks in the preprocessed PPG waveform in which
the respiratory band information can degrade the accuracy of pulse
peak finding. And it also saves us from the pulse peak finding twice
for the PPG pattern matching and respiration signal extraction,
making the system more energy-efficient.

The time-series of RIAV, RIIV and RIFV are not equally sampled
in time domain, so we re-sample the three at 𝑓𝑠 = 5𝐻𝑧 with linear
interpolation. We also employ a bandpass filter to keep only the
respiratory band (0.14-0.9Hz) information. To robustly detect all the
respiratory peaks in the RIAV, RIIV and RIFV, we apply an adaptive
peak finding method derived from [21]. The method starts with
initial thresholds for the distance between two adjacent peaks. We
find all the peaks whose amplitude are higher than 0, and calculate
the horizontal distance from the current peak to the last peak. If
the distance is below the lower threshold, the current peak will
be discarded and the lower threshold decreases. If the distance is
beyond the higher threshold, a virtual "peak" will be inserted in
the middle of the current peak and the last peak, and the higher
threshold increases. The initial thresholds and the adjusting rates
are set based on [31]. Adaptive peak finding method can handle the
cases in which the artifacts cause a spurious peak or obliterate a
possible peak in the signals, based on the assumption that the RR
is constant within a short period of time.

After we get the respiratory peaks in the three variations, the
respiratory rate (RR) is calculated for each valid sequence:

𝑅𝑅𝑅𝐼𝑋𝑉 ,𝑖 =
60

𝑀𝐸𝐴𝑁 (𝑝𝑒𝑎𝑘_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 (𝑖) )/𝑓𝑠
(1)

where 𝑅𝐼𝑋𝑉 is one of the three respiratory-induced variations,
𝑀𝐸𝐴𝑁 (·) is the average value of ·, 𝑓𝑠 is the sampling rate, 𝑖 is the
index of the valid sequences, and 𝑝𝑒𝑎𝑘_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 (𝑖) is the respira-
tory peak intervals detected by the adaptive peak findingmethod for
the 𝑖𝑡ℎ valid sequence. The final RR measurement 𝑅𝑒𝑠𝑝𝑊𝑎𝑡𝑐ℎ𝑅𝐼𝑋𝑉

is the length-weighted average of 𝑅𝑅𝑅𝐼𝑋𝑉 ,𝑖 :

𝑅𝑒𝑠𝑝𝑊𝑎𝑡𝑐ℎ𝑅𝐼𝑋𝑉 =

∑
𝑖 𝑅𝑅𝑅𝐼𝑋𝑉 ,𝑖 · 𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ (𝑖)∑

𝑖 𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ (𝑖)
(2)

3.1.4 EstimationQuality Index (EQI). Furthermore, we introduce
an estimation quality index (EQI) as a novel metric to estimate how
accurate our RR measurement is. EQI is based on the two intuitions:
(1) the respiration is rhythmic, so the standard deviation of the
respiration peak intervals should be small, and (2) RR measurement
is more accurate on the longer sequence. Specifically, the EQI of

each valid sequence is formulated as:

𝐸𝑄𝐼𝑅𝐼𝑋𝑉 ,𝑖 = 𝛼 ·
𝑆𝑇𝐷 (𝑝𝑒𝑎𝑘_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 (𝑖) )

𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ (𝑖)
(3)

where 𝛼 is a fixed scaling factor, 𝑆𝑇𝐷 (·) is the standard deviation
of ·, 𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ (𝑖) is the length of the 𝑖𝑡ℎ valid sequence. The final
𝐸𝑄𝐼𝑅𝐼𝑋𝑉 is the sum of 𝐸𝑄𝐼𝑅𝐼𝑋𝑉 ,𝑖 for each valid sequence:

𝐸𝑄𝐼𝑅𝐼𝑋𝑉 =
∑
𝑖

𝐸𝑄𝐼𝑅𝐼𝑋𝑉 ,𝑖 (4)

EQI offers several important advantages. First, most prior studies
only focus on the RR estimation without providing an accuracy
estimation. Lack of confidence of the measurement could lead to
wrong decision in some practical cases. For example, the inaccurate
high RR measure could give a false alarm of respiration conditions.
Second, although past studies focused on motion as the main factor
influencing PPG-based sensing accuracy [42, 46], other factors (e.g.,
light conditions and sweat) may also affect accuracy. EQI therefore
captures noise artifact in a more comprehensive manner than mo-
tion artifacts alone. Finally, as EQI utilizes only the characteristics
of the RR estimation process itself, it does not require external
inputs (e.g., motion intensity, light, and sweat).

To assess our assumption that the accuracy of RR measurement
improves with larger data windows, Figure 6 shows the mean ab-
solute error (MAE) of RR measurements with different window
sizes. From data collected from our user study (see Section 4), we
randomly sampled 100 data windows at each window size, and all
the sampled data windows were free from artifacts. We can observe
that the MAE decreases with larger window size, which supports
our assumption.
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Figure 6: MAE vs. window sizes. All the data windows are
free from artifacts

3.2 Deep Learning Estimator
This section presents the deep learning estimator for RR measure-
ment. Our work was inspired by recent success of deep learning in
processing smartwatch data [25, 46]. Particularly, Shen et al. [46]
showed that a convolutional neural network (CNN) model with
residuals was robust in the presence of motion artifacts for detect-
ing atrial fibrillation with the smartwatch PPG. Building upon this,
we designed the deep learning estimator with a CNN model. After
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some basic preprocessing steps, our CNN model can directly output
the estimation of RR using the PPG waveform. To the best of our
knowledge, our deep learning estimator is the first deep neural
network to estimate RR with wrist PPG on smartwatches. The high-
level architecture of the deep learning estimator is illustrated in
Figure 7.

Raw PPG from smartwatches

Preprocessing

Input (1x3000)

1D Conv (64)
Kernel size=100

Stride=5

Batch Norm
ReLU

1D Max Pooling
Kernel size=3

Stride=2

1D Conv
Kernel size=3

Stride=1

Batch Norm
ReLU

1D Conv
Kernel size=3

Stride=1

Batch Norm

ReLU

Residual

⊕

1D Average Pooling

FC

X16

Figure 7: Architecture of the deep learning estimator in Re-
spWatch

3.2.1 Preprocessing. Although the CNN model can directly learn
from raw signals, preprocessing is still needed to account for issues
associated with the PPG signals. Specifically, raw PPG signals ex-
hibit different ranges and amplitudes under different conditions,
and the noise outside the respiratory and cardiac bands can lead
to the overfitting of the CNN model. To standardize data and re-
duce noise, we re-sampled the PPG signal at 50Hz, applied the
same bandpass filter used in the signal preprocessing estimator,
and normalized the signals to a zero mean and a unit variance.

3.2.2 CNN Model. As shown in Figure 7, we developed our deep
learning approach based on the residual neural network. Unlike
previous classification tasks with PPG [46], our aim is to output the
RR estimation with continuous values. As the PPG sensor on smart-
watches contains only one channel, we adopted 1D convolutional
layers across the network.

An initial 1D convolutional layer with kernel size of 100 is
adopted to down-sample the input and reduce the computation
complexity. Then, 16 basic blocks sharing the same topology with
residuals bypass and 1D convolutions are applied. Each basic block
contains 2 convolutions and a shortcut connection. The shortcut
connections can optimize the training by allowing information to
propagate in deep neural networks [15] and make the optimiza-
tion process tractable. Batch normalization (Batch Norm) and a
rectified linear unit (ReLU) activation layer are also employed after
each convolutional layer. The 16 basic blocks are grouped into 4
stages consisting of 3, 4, 6 and 3 blocks, and the number of output
channels for each stage is 64, 128, 256 and 512, respectively. The
spatial map of the signal is down-sampled while the channels are
incremented stage by stage. After the last stage of the basic blocks,
we append a 1D average pooling layer and a fully connected layer.
The fully connected layer performs the regression tasks of the fi-
nal RR estimation. We employed the mean squared loss and the
stochastic gradient descent optimizer with the momentum. During
training, we ensured there is no overlap between the training and
testing signal. All the convolutional layers were initialized with He
initialization [14], and batch normalization layers were initialized
with weight of 1, bias of 0.

3.3 Hybrid Estimator
A key finding in our experimental results (see Sections 5 and 6)
is that the signal processing and deep learning estimators have
complementary strengths in efficiency and robustness, respectively.
Specifically, the signal processing estimator achieves higher ac-
curacy in the presence of moderate noise artifact. It also incurs
lower processing cost on smartwatch platforms. In contrast, the
deep learning estimator exhibits more robustness against increas-
ing noise artifact. To maintain accuracy, robustness, and efficiency
under varying noise artifact, we developed the hybrid estimator
to combine the strengths of both the signal processing and deep
learning estimators. Under increasing noise artifact, the hybrid
estimator automatically switches from signal processing to deep
learning to take advantage of its higher level of robustness. Con-
versely, the hybrid estimator switches back to signal processing
when noise artifact diminishes to benefit from its higher efficiency
and accuracy.

The key to the design hybrid estimator is to identify the metric
used to make the switching decision. We explored motion intensity
and EQI as two alternative metrics used to choose between the two
estimators. Motion intensity is defined as the standard deviation of
the magnitude of the tri-axial acceleration in a 60-second window
[46]. It can be obtained from the IMU sensor in smartwatches. In
comparison, as defined in Section 3.1.3, EQI characterizes the esti-
mation quality that may be influenced by noise artifact in general,
which may include both motion and other sources of noise (e.g.,
poor sensor contact).

For either motion intensity or EQI, we applied a grid search to
find the best switch threshold that leads to the lowest mean absolute
error (MAE) in RR measurements. We found experimentally (see
evaluation in Section 5) that EQI outperforms motion intensity in
accuracy and efficiency. In addition, EQI is derived from the PPG
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signal itself, which does not rely on external sensors such as the
IMU.

Signal 
processing
estimator

Raw PPG signals EQI<res. ?
Yes Output

RespWatch_RIIV

No

Deep 
learning
estimator

Output
RespWatch_DL

Figure 8: Architecture of hybrid estimator. RespWatch_RIIV
is the output from signal processing estimator with RIIV;
RespWatch_DL is the output from deep learning estimator.

The EQI-based hybrid estimator is illustrated in Figure 8. The
EQI is first generated from the signal processing estimator. Since
the signal processing method is highly efficient, the execution of the
signal processing estimator incurs minor overhead for the whole
system. After we get the RR measurement and EQI from signal
processing estimator, if the EQI is below the switching threshold,
the hybrid estimator directly output RR measurement from sig-
nal processing estimator. Otherwise, it invokes the deep learning
estimator to produce the RR measurement.

4 USER STUDY
We collected PPG data through a user study involving 32 healthy
volunteers. The data collected in this study was primarily used to
evaluate the accuracy of the RR estimations (see Section 5). The
run-time efficiency of the estimators was empirically evaluated on
smartwatches in Section 6.

Fossil Gen4 Explorist

o PPG at 200Hz

o IMU at 50Hz

Duration (minutes)

A.

B. C.

20 4 4 5 54 4 1.5

Video

Speech
Prep. Speech Math1 & 2 Cold1 &2

Res�ng

20

Res�ng

1.5

Video

Vernier Respiration Belt as ground truth

Res�ng

Figure 9: (A). Sequence of activities of the collecting proce-
dure. (B). Fossil Gen4 Explorist smartwatch instrumented
for this study. (C). Vernier Respiratory Go Direct Respira-
tion Belt as ground truth.

4.1 Devices
We instrumented mainstream smartwatches, Fossil Gen4 Explorist,
to collect raw PPG signals used to evaluate the RR estimations from
RespWatch. The ground truth was obtained with Vernier Respira-
tory Go Direct Respiration Belt, which was used in the previous
respiration studies [9, 29]. We also collected acceleration data from
the IMU on the watch to measure motion intensity during the study.
During data collection, each participant was asked to wear the belt
over their chest and the smartwatch on their non-dominant hand. A

custom application was installed on the smartwatches to record the
data from the PPG sensor at 200Hz and IMU at 50Hz. The data were
initially stored locally on the smartwatches, and then uploaded to
a secure server.

4.2 Study Protocol
32 healthy volunteers were recruited through flyers posted across
the campus at Washington University in St. Louis. All the partici-
pants met the inclusion criteria (between 18 and 69 years of age,
with no heart disease, not pregnant at the time of recruitment, and
not having an implanted pacemaker). At the end of the study, a
compensation of a $25 was provided. The institutional review board
(IRB) of Washington University in St. Louis approved this study,
and written consents were obtained from all participants (IRB#2019-
04150). The data was collected in various scenarios, including (1)
watching a video, (2) preparing and delivering a speech, (3) doing
mathematical tasks on computers, and (4) holding a cold object for
an extended period. All the activities involved motions to same de-
gree. The timeline of the data collecting procedure and the devices
is shown in Figure 9.

Two participants’ data were lost due to issues during data up-
load. As a consequence, only 30 participants’ data were used in the
analysis and evaluation. Additionally, we exclude the data when
the ground truth is not available, i.e., the Respiration Belt failed to
acquire valid RR measurements. This occurred during some seg-
ments when participants were delivering the speech, as speaking
caused unreliable RR measurements [17].

4.3 Impacts of Activities
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Figure 10: RR measurements, motion intensity, and EQI of
one user participating in the study.

To show the impacts of noise or activity on RR measurements,
we plot the RR time series produced by the RespWatch estimators
for one user over the entire session, as shown in Figure 10 (exclud-
ing the speech activity as mentioned in the last subsection). The top
graph shows the motion intensity and EQI overtime. We observed
that both motion intensity and EQI have larger variations during
math and free time periods. However, the correlation between the
EQI and motion intensity was only around 0.17 (Pearson Correla-
tion, 𝑝 < 0.5), which suggests that motion might not be the only
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source of noise artifact for the PPG sensor. The solid red vertical
lines mark the timestamp when the signal processing estimator
failed to produce RR measurements when a data window contains
no valid sequence after the artifact elimination. In the bottom graph
of Figure 10, we show the ground truth and the output from the sig-
nal processing and deep learning estimators. Since estimations from
RIIV outperforms those from RIAV and RIFV (see Section 5), we
only displayed the output with RIIV here. During the video period,
we had fewer motions with lower EQI, and the signal processing
outputs (RespWatch_RIIV) were closer to the ground truth than
the deep learning outputs (RespWatch_DL). This shows that the
signal processing estimator achieved high accuracy in the presence
of moderate noise artifact (as indicated by the low motion intensity
and EQI). However, when the motion or EQI increased, e.g., during
math or free time periods, the signal processing estimator produced
larger errors than the deep learning estimator. This demonstrates
that deep learning estimator is more robust against higher level of
noise, and highlights the advantages of our hybrid approach that
utilizes the signal processing for high accuracy when EQI is low,
and deep learning for robustness when EQI is high.

5 EVALUATION OF RESPWATCH
This section presents an evaluation of the three estimators sup-
ported by RespWatch. The accuracy of RR measurements was as-
sessed using the mean absolute error (MAE) in breaths per minute
(bpm), defined as:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑦𝑟𝑒 𝑓 ,𝑖 | (5)

where n is the number of data windows, 𝑦𝑖 is the estimated RR and
𝑦𝑟𝑒 𝑓 ,𝑖 is the reference RR from ground truth. Moreover, we analyze
the trade-off between accuracy and yield of RR measurements.

5.1 Signal Processing Estimator
We compared the performance of our signal processing estimator to
existing methods for measuring RR based on PPG. We implemented
three state-of-the-art methods from [22, 38] as the baselines for
performance evaluation. Those methods were previously evaluated
on large data sets, and have been adapted to work with wrist-worn
PPG [27]. The first two baseline methods were the simple fusion and
smart fusion methods from [22], which utilized Fourier transform
and fusion techniques. The third baseline method [38] utilized au-
toregressive (AR) models. All the three baseline methods have the
data admission controls, which discard an entire data window that
are found to contain noise artifacts. Table 1 shows the performance
of the baseline methods on our dataset. We observed that a large
portion of data windows were discarded due to the admission con-
trol. Unlike the baseline methods, our signal processing estimator
employs fine-grained artifact elimination and can estimate RR even
with some artifacts in a data window. We only discarded 13.86% of
the data windows that contained no valid sequence after the arti-
fact elimination. Hence, our signal processing estimator achieved a
significant higher yield of 86.14% than the baseline methods.

We analyzed the trade-off between accuracy and yield of RR mea-
surements. Figure 11 shows the MAE-yield curves for the signal
processing estimator. As motions are previously used as a metric

Table 1: Baseline methods on our dataset

Method Yield MAE (bpm)

Karlen (2013) (Simple Fusion) 14.95% 1.876
Karlen (2013) (Smart Fusion) 11.87% 1.603
Pimentel(2017) (AR models) 14.29% 1.704
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Figure 11: MAE vs. Yield. Different colors represent the es-
timations from RIAV, RIIV and RIFV, respectively. The line
styles indicate different sorting criterion (Motion, EQI). The
baselines are illustrated as dots with different shapes and
colors.

to reject the PPG measurements [33] and the proposed EQI is also
capable for the same propose, we rank the data windows based
on the corresponding motion intensity and EQI, respectively, to
investigate the accuracy at different yields. For motion intensity,
we computed the motion intensity for each PPG data window, and
sorted the data windows by ascending motion intensity. Then, we
calculated the MAE of RR measurements with motion intensity in
the lowest 𝛼-𝑡ℎ percentile, ranging from 5% to 100%. Similarly, we
also calculated the MAE for different yields using EQI as the metric
for sorting the data windows. In Figure 11, Different colors distin-
guish the estimations from different respiratory-induced variation
signals (RIAV, RIIV, RIFV), and different line styles distinguish the
different ranking criterion (Motion intensity or EQI). For example,
the dashed lines with square markers are the MAE curves with
increasing motion intensity. Each point (𝛼, 𝑒) on the dashed lines
indicates the MAE of 𝑒 on the subset of data windows whose mo-
tion intensities are in the lowest 𝛼-𝑡ℎ percentile, corresponding to
the yield of 𝛼%. The max yield of the signal processing estimator
is 86.14% because we discarded 13.86% of the data windows that
contain no valid sequence. In contrast, as the baseline methods
have fixed data yield due to their data admission control policies,
the results of the baseline methods are displayed as three discrete
data points in the figure.
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Figure 12: MAE vs. Yield based on EQI ranking.
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Figure 13: MAE vs. Yield based on Motion ranking.

Observing the dashed lines with square marks in Figure 11, we
found that all the three outputs from the signal processing estimator,
RIAV(motion sorted), RIFV(motion sorted) and RIIV(motion sorted),
had an increasing trend, suggesting that the motions indeed have
a negative influence on the estimation accuracy. In practice, we
may select the motion intensity threshold to achieve the desired
trade-off between accuracy and yield of RR measurements based
on Figure 11. RIIV(motion sorted) outperforms all the baselines
when at the same yield level. And RIIV(motion sorted) has the
lowest MAE at any yield level among the three outputs from the
signal processing estimator. This suggests that the RIIV is the most
suitable respiratory-induced variation signal to estimate RR from
the smartwatch PPG signals.

Next, we investigate the relations between the EQI and the accu-
racy of RR measurements. We note that RIIV(EQI sorted) signifi-
cantly outperformed the three baseline methods, achieving around
3-fold decrease in MAE for the same yield, and also around 3-fold
increase in yield for the same MAE. The solid curves in Figure 11
shows that the MAE also increases with EQI. However, the three
solid lines are below the corresponding dashed lines with same
color, especially for the RIIV and the RIAV. This indicates that when
targeting the same yield, using EQI to reject PPG data can have
lower MAE than using motion intensity. In another viewpoint,
when targeting at the same accuracy, using EQI as the criterion
to reject data can have a higher yield. Therefore, EQI is a more
accurate indicator of measurement quality than motion intensity,
as noise artifacts may be caused by sources other than motion.

The above evaluations demonstrated that our signal processing
estimators can provide the flexibility to balance accuracy and yield
according to the application requirements. Since the RIIV shows
the best result, we focused on the signal processing estimator with
RIIV for the following evaluations.

5.2 Deep Learning Estimator
In this subsection, we compared the deep learning estimator and the
signal processing estimator. The deep learning estimator directly

learns from the waveform and does not rely on any admission con-
trol or artifact elimination, so it produced estimations for all data
windows, achieving 100% yield. We employed a 5-fold sample-based
cross validation (CV) scheme to train and test our deep learning
estimator. We ensured there is no PPG waveform overlap between
the training and testing set. The out-of-sample error is reported in
the evaluation. Figure 12 and 13 plot the MAE-yield curves of the
different estimators when the RRmeasurements are sorted based on
EQI and motion intensity, respectively. The EQI is from the signal
processing estimator with RIIV. For those 13.86% of data windows
that signal processing estimator cannot estimate RR, we assigned
an EQI of infinity. We observe that the signal processing estima-
tor (RIIV) achieved lower MAE than the deep learning estimator
when the EQI or motion intensity are lower. However, as EQI or
motion intensity increases, the deep learning estimator becomes
more accurate, suggesting a higher level of robustness against noise
artifacts. The MAE dynamic range of deep learning is also not as
large as it of signal processing, indicating deep learning is less sen-
sitive with varying noise artifacts. The crossing point of the signal
processing and deep learning curves in Figure 12 is at yield of 63%,
while it is only at yield of 37% in Figure 13. And the deep learning
curve in Figure 12 is relatively smooth compared to it in Figure 13.
These once again show that the EQI can indicate the accuracy for
RR measurements more accurately and smoothly than the motion
intensity even for deep learning estimations.

5.3 Hybrid Estimator
For the evaluation of our hybrid estimator, we report the outputs
dynamically chosen from signal processing and deep learning based
on the best switching point. The best switching point of either EQI
or motion intensity was obtained offline via the grid search. For
real use, the hybrid estimator automatically switches between the
signal processing and deep learning according to the best switching
point without human efforts.

We first evaluated the EQI as the switching criterion. The green
curve in Figure 12 shows the results of the hybrid estimatorwith EQI
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Figure 14: MAE in different yield bins with the EQI sorting
criterion.

(Auto_switch_EQI ). It achieves the best MAE (2.017 bpm) compared
to both deep learning and signal processing. The best switching
point based on the grid search is around 𝐸𝑄𝐼 = 2.3, corresponding
yield of 53%, which means that the hybrid estimator automati-
cally chooses signal processing when 𝐸𝑄𝐼 ≤ 2.3, and chooses deep
learning when 𝐸𝑄𝐼 > 2.3. We further investigated the relationship
between MAE and EQI for the signal processing and deep learn-
ing estimators, as shown in Figure 14. The data windows were
still sorted with the increasing EQI. Each bin contains the data
windows with EQI from 𝛼-𝑡ℎ to (𝛼 + 10)-𝑡ℎ percentiles. We ob-
serve that the MAE of RespWatch_RIIV becomes significant higher
than RespWatch_DL from the sixth bin, corresponding EQI of range
[2.01, 2.45]. The grid search was in a finer granularity, so we found
the best switch point of EQI at round 2.3.

Besides, we explored the hybrid estimator switching with motion
intensity, using the same grid search approach to find the best
switching point of motion intensity. The green curve in Figure 13
shows the results. The hybrid estimator switching with motion
intensity demonstrates slightly higher MAE (2.076 bpm vs. 2.017
bpm) than switching with EQI. And it jumped to deep learning
earlier at the yield of 13%, which utilizes significantly more times
of deep learning outputs. This makes the hybrid estimator with the
motion intensity less efficient. As a result, EQI is a better switching
criterion in terms of both the accuracy and efficiency. So, in real
implementation of RespWatch, we developed our hybrid estimator
with the 𝐸𝑄𝐼 = 2.3 as the switching threshold.

6 SYSTEM EXPERIMENTATION
6.1 Implementation on Smartwatches
We have implemented RespWatch onWear OS in mainstream smart-
watches. Wear OS [11] is a version of Android operating system
tailored for smartwatches and other wearables. For the CNN model
in the deep learning estimator, we first trained the model on the

1https://www.qualcomm.com/products/snapdragon-processors-wear-2100
2https://www.pixart.com/products-detail/27/PAH8011ES-IN
3https://www.qualcomm.com/products/snapdragon-wear-3100-platform

Table 2: Information of the testing smartwatches

Device Platform RAM System PPG Sensor

Fossil Gen4 Wear 21001 512MB H PAH80112(200Hz)
Fossil Sport Wear 31003 512MB H PAH8011 (100Hz)

server in PyTorch [34] framework, and then transcripted the model
into mobile version[39] on Wear OS. For the hybrid estimator, we
chose the switching scheme of 𝐸𝑄𝐼 = 2.3 based on our results in
Section 5.3.

6.2 Empirical Evaluation
Two smartwatches were used in our empirical evaluation, shown in
Table 2. Each experiment was repeated 500 times, and the average
of running time and resource usage are reported in Table 3 and 4.

The signal processing estimator was highly efficient with a to-
tal running time less than 50 ms (see Table 3), whereas the deep
learning estimator had a total running time higher than 6000 ms (as
shown in Table 4). The average energy consumption and average
CPU utilization were acquired through the Android Profiler [1].
The signal processing estimator consumes less energy with lower
CPU utilization. For the deep learning estimator, the CNN model
consumed about 98% of the total time, suggesting the need for opti-
mization in the future. For the hybrid estimator based on the best
switching threshold on our dataset, the expected running time of
switching with EQI was significantly lower than switching with
Motion Intensity.

Our results established the feasibility to run RespWatch locally
on smartwatches for RR monitoring. Even though the deep learning
estimator takes about more than 6 seconds to run per RR measure-
ment, it only needs to be executed every 1 minute for a RR sampling
rate of once per minute. The results also highlight our hybrid ap-
proach, which only invokes the deep learning estimator in the
presence of significant noise artifacts with high EQI. The hybrid
method drastically lowers the running time and saves energy while
maintaining high accuracy.

7 DISCUSSION
We have demonstrated our RespWatch in this study, which outper-
forms the state-of-the-art baseline methods. The empirical evalua-
tions also quantitatively reveal the execution efficiency and capa-
bility of running on the commercial smartwatches. Nevertheless,
there are still some room for future improvement.
RRmeasurementwith excessivemotions. Our RespWatch sys-
tem has been tested in various activity scenarios involving motions,
but it did not cover all scenarios in our daily life. The evaluations
in this paper shows the feasibility and high accuracy of RespWatch
in situations, like working in front of computer, resting and others
activities with motions to some degree. The applicability of Resp-
Watch, especially in scenarios with excessive motions (e.g. running)
still needs to be evaluated.
Inter-individual Difference. For both the signal processing esti-
mator and deep learning estimator, we applied the same parameters
for all the subjects. The differences between individuals (e.g., skin
tone and wearing habits) may have impacts on PPG signals. Earlier
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Table 3: Profile of Signal Processing Estimator

Devices Preprocessing Art. Elim.* &
Pulse Peak Finding

RIXV* Extraction &
Adaptive Peak Finding Total Time Ave. CPU( %) Ave. Energy Consumption

Fossil Gen4 (H) 5.836ms 19.139ms 19.919ms 44.895ms 53.53% Light to Medium
Fossil sport (H) 5.385ms 16.058ms 16.621ms 38.064ms 50.25% Light to Medium
*Art. Elim.: Artifact Elimination
*RIXV: Respiratory-Induced Variations (RIAV, RIIV, RIFV).

Table 4: Profile of Deep Learning and Hybrid Estimator

Devices Preprocessing CNN model Deep learning
Total Time Ave. CPU (%) Ave. Energy Hybrid with

EQI*
Hybrid with
Motion Intensity*

Fossil Gen4 (H) 8.856ms 6504.262ms 6592.828ms 85.34% Above Medium 2879.811ms 5780.655ms
Fossil sport (H) 8.472ms 7934.962ms 7943.434ms 70.23% Around Medium 3453.740ms 6948.851ms

*The running time of hybrid estimator is the expected running time based on our dataset with the corresponding best switching threshold.

studies [18] show the personalized models may mitigate the impact.
A potential research direction is to leverage personalized models
while minimizing the burden of the personalizing process.
Detection of Potential Respiratory Diseases. Currently, our
evaluation is limited to healthy volunteers. Further studies are
needed to test the feasibility of wearable RR monitoring for patients
and exploit the technology to detect respiratory conditions.

8 CONCLUSION
RespWatch is a wearable sensing system for robust RR monitoring
on smartwatches with PPG. We explored signal processing, deep
learning and hybrid approaches tomeasure RR based on PPG signals.
We collected a large dataset from 30 participants who performed
multiple activities with the smartwatches. The signal processing
estimator achieved higher accuracy in the presence of moderate
noise artifacts, while the deep learning estimator wasmore robust to
significant noise artifacts. Given the complementary strengths, we
developed a novel hybrid estimator that can automatically switch
between the signal processing and deep learning based on the EQI.
The hybrid estimator not only achieved the best accuracy but also
leveraged the high efficiency.
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