
20
2

0
 I

E
E

E
/A

C
M

 S
ym

p
o

si
u

m
 o

n
 E

d
g

e 
C

o
m

p
u

ti
n

g
 (

S
E

C
) 

| 9
7

8
-1

-7
2

8
1

-5
9

4
3

-0
/2

0
/$

3
1

.0
0

 ©
2

0
2

0
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0

9
/S

E
C

5
0

0
1

2
.2

0
2

0
.0

0
0

1
0

2020 IEEE/ACM Symposium on Edge Computing (SEC)

Proactive Microservice Placement and Migration for
Mobile Edge Computing

Kaustabha Ray, Ansuman Banerjee Nanjangud C. Narendra
Advanced Computing and Microelectronics Unit 

Indian Statistical Institute 
kaustabharay@gmail.com, ansuman@isical.ac.in

Abstract—In recent times, Mobile Edge Computing (MEC) has 
emerged as a new paradigm allowing low-latency access to ser
vices deployed on edge nodes offering computation, storage and 
communication facilities. Vendors deploy their services on MEC 
servers to improve performance and mitigate network latencies 
often encountered in accessing cloud services. A service placement 
policy determines which services are deployed on which MEC 
servers. A number of mechanisms exist in literature to determine 
the optimal placement of services considering different perfor
mance metrics. However, for applications designed as microser
vice workflow architectures, service placement schemes need to 
be re-examined through a different lens owing to the inherent 
interdependencies which exist between microservices. Indeed, 
the dynamic environment, with stochastic user movement and 
service invocations, along with a large placement configuration 
space makes microservice placement in MEC a challenging task. 
Additionally, owing to user mobility, a placement scheme may 
need to be recalibrated, triggering service migrations to maintain 
the advantages offered by MEC. Existing microservice placement 
and migration schemes consider on-demand strategies. In this 
work, we take a different route and propose a Reinforcement 
Learning based proactive mechanism for microservice placement 
and migration. We use the San Francisco Taxi dataset to validate 
our approach. Experimental results show the effectiveness of our 
approach in comparison to other state-of-the-art methods.

Index Terms—Mobile Edge Computing, Service Placement, 
Service Migration, Reinforcement Learning

I. I n t r o d u c t i o n

With rapid proliferation of mobile and Internet-of-Things 
(IoT) devices, the number and sophistication of software 
services and applications in the IoT space has increased 
dramatically [1]. Such services often require high processing 
power and have stringent latency requirements. To supplement 
such scenarios, devices are typically complemented with cloud 
services to enhance the Quality-of-Service (QoS) of the user 
application [2]. However, such a mechanism does not always 
necessarily conform to QoS requirements of real-time services 
such as facial recognition, online gaming, video streaming 
and processing [1] [3]. Mobile Edge Computing (MEC) is 
a new service provisioning paradigm showing much promise 
in recent times. The central idea of MEC is to have service 
providers deploy their services on MEC servers located near 
mobile base stations. User service invocations are typically 
routed to, and served from nearby MEC servers on their route 
as they move around, with improved latency and turnaround 
times, thereby mitigating high latencies of Cloud Computing.

978-1-7281-5943-0/20/$31.00 ©2020 IEEE  
D O I 10.1109/SEC50012.2020.00010

Ericsson Research 
Bangalore, India

nanjangud.narendra@ericsson.com

A service placement policy determines which services are 
deployed on which MEC servers. Additionally, since users 
are typically mobile, a key element in service placement is 
migration where individual service instances may need to 
be shifted to a different server considering a user’s mobility 
pattern. Indeed, we have a number of possibilities for service 
placement and migration, considering the different factors (e.g. 
mobility, server load, latency) that need to be considered. In 
recent years, several placement and migration policies taking 
into consideration different scenarios and optimization metrics 
for application service provisioning in the MEC context have 
been proposed in literature [4]-[8]. However, most of these 
solutions need to be re-examined today through a different 
lens, considering the recent paradigm shift in the application 
provisioning model, from a monolithic service architecture to 
the micro-service deployment model, that is being increasingly 
adopted across the service industry by service providers like 
Amazon, Netflix [9]. In the service parlance, an application is 
considered a monolith, wherein all the services comprising the 
application are packed into a single unit. In the micro-service 
architecture, the application is split into independent inter
acting microservices with inter micro-service dependencies. 
Prior work on service placement in MEC [4]-[8], [10], [11] 
has predominantly catered to monolithic service applications, 
and thus need to be revisited to consider and account for 
the distinctive characteristics of microservices when making 
placement and migration decisions [12]. This is the main 
context in MEC that we attempt to address in this work.

Microservice based applications are represented as Directed 
Acyclic Graphs (DAGs) where vertices denote individual 
microservices and edges represent microservice interactions 
which depict the order in which the constituent microservices 
are executed. Such applications are typically containerized 
[13], with each microservice hosted in an isolated container. 
To utilize a microservice, the corresponding container has 
to be initialized on a server with a non-trivial initialization 
time. We assume stateful migration of microservices where 
relocating containers between servers incurs data movement 
latencies. The problem of service placement and migration in 
the microservice context in MEC is much more complex than 
the one for their monolithic counterparts, considering the inter
dependencies that need to be accounted for, while deploying 
a solution. Indeed, in recent literature, only a small handful of

28

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



recent proposals [12], [14], [15], to the best of our knowledge, 
have focused on the microservice model in the MEC context. 
However, these approaches neither take into consideration non
trivial latencies involved with microservice containers nor user 
mobility patterns. We consider both in this work in addition 
to the factors considered by those existing methods.

Traditional placement and migration policies focus on re
active placement, i.e., microservice placement after detecting 
service invocation. Our main proposal in this paper is to 
develop a proactive microservice placement and migration ap
proach by prefetching microservices considering the workflow 
dependency structure in the application microservice DAG 
which aids to abate service deployment latencies. Proactively 
prefetching microservices is a complex task due to: i) the 
large configuration space of the mobility of devices coupled 
with microservice interdependencies; ii) the unpredictability 
of edge servers as as an operating environment due to the 
dynamic and on demand nature; and iii) the stochasticity of 
how users initiate service requests while having a myriad of 
mobility and service invocation patterns.

In this paper, we present our approach for proactive mi
croservice placement and migration (movement) of an already 
placed microservice in the MEC setup. We focus on appli
cations whose workflows are defined by a linear sequence of 
microservices. To the best of our knowledge, this is the first 
work that exploits the microservice dependency task graph 
structure to prefetch and pre-provision microservices to better 
meet QoS requirements in MEC. We use a Markov Decision 
Process (MDP) with rewards to model proactive microservice 
placement and migration. Further, since the rewards corre
sponding to each state of the MDP are unknown, we use 
Reinforcement Learning (RL) to demonstrate how to learn the 
unknown rewards to effectively deploy and migrate services. 
In particular, to make effective use of the MDP, we use the 
Dyna-Q [16] algorithm, which is a combination of model free 
and model based RL. Additionally, to cater to different traffic 
patterns, we substantiate Dyna-Q by a heuristic to adapt to 
varying traffic loads. We further present experimental results 
of our algorithm in practical scenarios driven by real-world 
mobility traces of taxis in San Francisco [8] and timing 
characteristics obtained from the DeathStarBench microservice 
benchmark suite [9]. Our analysis reveals an average 28% 
improvement in latency obtained using our proactive approach 
over the traditional reactive one, for some state-of-the-art MEC 
microservice benchmark models.

The rest of this paper is organized as follows. Section II 
presents an example to be used in the rest of this paper. 
Section III describes the problem formulation. Section IV 
describes our RL-based approach. Section V describes our 
implementation along with experimental details. Related work 
is discussed in Section VI, and finally, Section VII concludes 
the paper with suggestions for future work.

II. M o t i v a t i n g  Ex a m p l e

In this section, we present a motivating example to explain 
the problem context addressed in this paper. Consider two

Fig. 1: Microservices Invocations by Vehicular Users

init
r

movieStreaming addRating
'  \

addReview
v____J ^ J

. i . i —r
exit /  minimize exit /  minimize exit /  minimize

Fig. 2: Movie Streaming Application Microservices

vehicles u and v following the trajectories shown in Figure 
1. The passengers of the vehicles access several applications 
using their smartphones, with each application modeled as 
an almost linear microservice workflow (with special exit / 
minimise nodes but no branching in control flow). We select 
a movie streaming application as a representative use case. A 
user can either access the microservices in the linear sequence 
or choose to exit / minimise the application. In the minimized 
state, microservice containers corresponding to the application 
are retained on the server while all containers are removed 
from the server if  a user exits an application. The workflow of 
the application, depicted in terms of its constituent interdepen
dent microservices, is shown in Figure 2. The microservices, 
hosted in containers, are deployed by service providers on 
edge servers which have service areas associated with them 
as depicted by circles around servers E i and E2 in Figure 1.

We now explain the microservice container based provi
sioning model assumed in this work. When a user invokes a 
microservice, the container corresponding to the microservice 
has to be deployed on an edge server i f  the container is 
not already present. Additionally, the corresponding service 
registry has to be updated on a container orchestration system 
to reflect the deployment state of the microservices. On the 
other hand, i f  the container corresponding to the microservice 
already exists on the edge server, a new task is spawned out of 
the existing container. The tasks of deploying containers and 
creating new tasks incur non-negligible latencies. Prefetched 
microservices, i f  not used, have no state migration cost. On the 
other hand, a state-aware migration has to be performed when 
an user actively using a microservice moves out of the service 
area of the server where it is hosted and the local computation

29

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



Time t User Action Server-Service State
0ms No Services Deployed

50ms u ^  movieStreaming initialize movieStreaming
75ms E i ^  movieStreaming
100ms v ^  movieStreaming E i ^  movieStreaming 

initialize new task for v
110ms E i ^  movieStreaming, vtask

3000ms v exits movieStreaming E i ^  movieStreaming
5000ms u ^  addRating initialize addRating
5025ms E i ^  addRating
7000ms u minimizes addRating E i ^  addRating
8000ms u ^  addReview initialize addReview
8025ms E 2 ^  addReview

TABLE I: On-demand Placement of Microservices

state has to be sent to the server from where he is served 
next. For the sake of simplicity, in the following discussion, 
we assume it takes 25ms to initialize a container, 10ms to 
create a new task in an already existing container and 30ms to 
perform a state-aware migration of a container from one server 
to another. It may be noted that the timing values used here 
are just representative ones used for illustrating our problem 
context. We work with real world microservice timings in our 
experiments (Section V). In accordance to our objective of 
proactively placing microservices, we explain in the following 
subsections how prefetching and proactive deployment can 
help mitigate some of these latencies, compared to an on- 
demand service placement scheme wherein service containers 
are provisioned only after the corresponding microservice is 
invoked and the container deployed for the first time.

A. On-Demand Microservice Placement

In an on-demand placement scheme, the microservices are 
deployed only when a user invokes the service. Microservice 
invocations are depicted by black rectangles and red circles on 
the trajectories of u and v respectively in Figure 1. At time t =  
50ms, u invokes the “movieStreaming” service. Since E i , the 
nearest server, does not yet host the “movieStreaming” service, 
the corresponding container is deployed (maybe downloaded 
from the cloud or nearby servers), initialized and the registry 
updated. We assume the process takes a total time of 25ms. 
At t =  100ms, v invokes the “movieStreaming” service. 
However, in this instance, the corresponding container being 
already deployed on Ei , only a new task is created incurring 
an assumed initialization time of 10ms. At time t =  5000ms, 
u invokes the “addRating” service and incurs an assumed 
initialization time of 25ms. At t =  7000ms, u minimizes 
the application on his mobile. Let us assume the “addRating” 
service is not utilized henceforth. At t =  8000ms, the user 
relaunches the application but instead uses the “addReview” 
service which requires an initialization latency of 25ms at E2. 
Thus, the total initialization latency incurred in an on-demand 
scheme is 25 +  25 +  25 =  75ms, which adds to the overall 
latency experience. Table I shows the sequence of events.

B. Proactive Microservice Prefetching and Migration

To mitigate the latencies incurred when deploying services, we 
propose to proactively prefetch the services, considering the

Time t User Action Server-Service State
0s No Services Deployed

50ms u ^  movieStreaming initialize movieStreaming
75ms E i ^  movieStreaming
100ms E i ^  movieStreaming, 

addRating
100ms v ^  movieStreaming E i ^  movieStreaming, addRating 

initialize new task for v
110ms E i ^  movieStreaming, 

addRating, addReview, vtask
135ms E i ^  movieStreaming, 

addRating, addReview, vtask
3000ms v exits movieStreaming E i ^  movieStreaming, 

addRating, addReview
5000ms u ^  addRating E i ^  addRating, addReview
7000ms u minimizes addRating E i ^  addRating, addReview
8000ms u ^  addReview state-aware migrate addReview
8010ms E 2 ^  addReview

TABLE II: Proactive Placement of Microservices

microservice dependency structure. Such an approach allows 
microservices which are expected to be utilized in the near 
future to be prefetched and deployed on the MEC server while 
simultaneously catering to the previously invoked service. 
To cater to mobility, proactively migrating already deployed 
services also needs to be examined as we explain later.

Proactively Prefetching Microservices

Consider the following deployment strategy. Initially, when u 
invokes the “movieStreaming” service, both “ addRating” and 
“ addReview” are prefetched to server E i . Thus, at t =  135ms, 
all three service containers have been initialized on E i . At t =  
5000ms, when u invokes the “ addRating” service, it no longer 
incurs the initialization latency of 25ms. At t =  8000ms, 
u invokes the “addReview” service, however, it is no longer 
in the coverage area of E i . Thus, “addReview” which was 
initialized at E i , needs to be migrated to E2. However, since 
“ addReview” was not used, it can be re-initialized incurring a 
total latency 25 +  25 =  50ms. Interleaving service prefetching 
and execution thus leads to a reduction in initialization laten
cies. However, the additional latency of 25ms incurred while 
re-initializing the “addReview” service was due to the mobility 
of u from E i ’s service zone to that of E2. As such, a service 
placement scheme has to be revisited owing to user mobility. 
Table II summarizes the timeline of events using prefetching.

Proactive Prefetching and Migration

Let us assume that at t =  7000ms, instead of minimizing the 
application, u continues utilizing the “addRating” service till 
t =  8000ms. Since u traverses service zones while utilizing 
a service, the service has to be re-deployed once u is in 
E2’s service area. In such scenarios, for the “addRating” 
service, a state-aware migration has to be performed from 
E i to E2 . Additionally, since the “addReview” service had 
been proactively deployed on E i , it has to be migrated as 
well. Let us assume the state-aware migration is initialized 
at t =  7500ms depicted by the light blue diamond on u's 
trajectory and is completed at t =  7555ms since it takes 
30ms each to migrate the “addRating” service and 25ms

30

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



Time t User Action Server-Service State
0s No Services Deployed

50ms u movieStreaming initialize movieStreaming
75ms E i movieStreaming
100ms E i movieStreaming, 

addRating
100ms v movieStreaming E i movieStreaming, addRating 

initialize new task for v
110ms E i movieStreaming, 

addRating, addReview, vtask
135ms E i movieStreaming, 

addRating, addReview, vtask
3000ms v exits movieStreaming E i movieStreaming, 

addRating, addReview
5000ms u addRating E i addRating, addReview
7500ms u addRating migrate addRating, addReview
7555ms u addRating E 2 addRating, addReview
8000ms u addReview E 2 addReview

TABLE III: Proactive Placement + Migration of Microservices

to re-initialize “ addReview” . The events are summarized in 
Table III. The total initialization latency experienced by u in 
this case is 25ms. However, additional interleaved migration 
latencies for “ addReview” and “ addRating” are incurred which 
is not perceived by the user. Note that, since the migration 
is performed proactively, at t =  8000ms, u did not have to 
wait to use the “addReview” microservice. The total speed-up 
obtained over the on-Demand placement scheme is thus 66%. 
For real benchmarks, depending on the sizes of the contain
ers corresponding to the microservices and their deployment 
times, container initialization times can often be in the order 
of seconds or more, unlike milliseconds as assumed here in the 
representative use case. For such cases, the speed-up achieved 
by us can significantly impact user-perceived latencies.

The example above shows the trade-off in latency overhead 
using proactive prefetching versus reactive on-demand pro
visioning with data and execution state transmission of the 
microservices. The challenge is in determining for a given 
microservice, how many successor microservices to deploy 
proactively, and more importantly, the target edge servers to 
deploy them as the user moves and accesses these enroute. An 
overtly conservative strategy may always proactively prefetch 
the containers of all successor microservices, whenever any 
microservice is deployed. However, this may at times turn out 
to be wasteful in terms of resources needlessly blocked on the 
edge server by the prefetched containers, i f  these microservices 
are actually not invoked at that location. On the other extreme, 
a fully reactive policy does not help as well since such a policy 
would lead to latency hits in each microservice invocation. 
The challenge is in being able to predict the user service 
invocation pattern as a function of his mobility, such that better 
prefetching can be carried out. Our objective here, is to learn 
and synthesize the optimal proactive prefetch, deployment and 
migration schedule, given a microservice workflow.

III. Fo r m a l  M o d e l

In this section, we formally describe the proactive placement 
and migration problem and formulate an MDP model.

A. Problem Definition

The MEC system comprises a set of edge servers denoted as 
E =  {E 1,E 2 , ..., Ep }, where each E i  is associated with a 
service radius T{ . We have a set of users U =  {u 1,u 2 , ... uq }  

and a set of applications A =  { A i ,A 2 , . . . A r }. An appli
cation a £ A comprises a linear workflow of microservices 
S =  { s i, s2 , ..., sn } with special exit nodes, denoting the 
order of invocation of microservices. We use a model similar 
to [11] where we do not consider a back-end cloud, instead 
consider only a set of edge servers. A location is defined 
as the latitude and longitude coordinates of the entity under 
consideration. Servers have fixed locations while users are free 
to move and their coordinates vary over time. We consider a 
discrete time model, as in [8]. Let us consider a user u £ U 
where u(t) denote the user’s current location at time slot t. 
We denote the set of active microservices associated with u(t) 
as h(t) and the corresponding location as l(t). We assume 
that the set h(t) can only be co-located at a single l(t), i.e., 
all microservices in h(t) w ill be placed by our scheme on 
a single edge server, as discussed later. We also assume that 
all latencies for deploying containers, instantiating tasks and 
migrating containers are strictly additive. As discussed later, 
the policy agent designed by our RL approach governs the 
placement and migration of microservices on the edge servers. 
At each time-slot, it observes u(t), h(t) and l(t), and decides 
on placing/migrating the relevant services h(t + 1), so that the 
user experiences the best latency values. At the beginning of 
each time slot, our policy agent can choose from one of the 
following options:

• Proactively Placing Microservices : At any location u(t), 
when u invokes a microservice si  £ S whose successor 
microservices are {si + 1 ,si + 2 , .., sn }, the agent selects 
the nearest server E i  £ E  to deploy si  along with j  suc
cessor microservices, i.e., {si + 1 ,si + 2 , ..., si + j } , where 
0 <  j  < n — i, and updates h(t +  1) =  h(t) U si  U  

si + 1  U si + 2  U ... U si + j . It incurs a deployment cost c(r), 
where c is a non-decreasing function of r, the resource 
requirement of the microservices to be deployed. We 
relate c(r) with the MDP reward function as explained 
in Section IV.

• Microservice Migration : When u moves away from the 
service zone of the server on which h(t) was deployed, 
the agent performs a state-aware migration to re-deploy 
the microservice currently in use to the edge server 
nearest to the user’s new location. Other microservices 
which are not currently in use are re-initialized. In this 
case, h(t) =  h(t +  1), but l(t) =  l(t +  1). Performing 
such a state-aware migration for active services incurs a 
cost m(r), where m is a non-decreasing function of r  
whereas re-initialization incurs cost c(r).

For the sake of simplicity and ease of illustration, we first 
present the problem model for a single user accessing a single 
application. We relax these requirements later in Section IV 
where we build on this to cater to multiple users accessing 
multiple services simultaneously. In the following, we use an

31

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



B. State Representation of MDP

Formally we define our policy agent for proactive placement
and migration as an MDP, as follows:

Definition III.1. A MDP is a tuple (S, T, P A, Ra) where :
• S is a finite set of states
• T is the transition function from s £ S to a subset 

{s i, s2, ... sn} £ S denoting all successor states of s.
• P : S x S ^  [0,1] denotes the probability distribution on

transitions such that fo r all states s : sie S P  (s, s') =  1
• A is the set of actions, i.e, from a state s, upon an action 

a £ A(s), the successor state s' is determined by T(s)
• Ra(s, s') is the immediate reward (or expected immediate 

reward) received after transitioning from state s to state 
s' , due to action a £ A.

MDP to formally model prefetching and migration.

Fig. 3: Proactive Service Placement and Migration MDP

Each state of the MDP for a user u is represented by a 
vector [service, distance]. In each state, service represents 
h(t), while distance represents the distance between the 
location u(t) of u and the location of h(t), i.e., l(t). We 
represent the distance as an abstract measure similar to [8]. 
In the MDP, distance is a mapping from a concrete measure 
such as the Euclidean or Manhattan distance to the abstract 
measure. The server E{ corresponding to l(t) is associated

with a maximum service area demarcated by the radius r  
from its location. Hence, there is an upper bound on the 
distance representation in the MDP. The upper bound denotes 
the distance between the location of the server and a coordinate 
located on the circumference induced by the service radius r  
of the server E{. Further, since each server can have a different 
service radius, the upper bound distance is normalized in the 
range [0, k] where k is a user defined parameter. However, 
since such an interval is continuous, the interval [0, k] is 
discretized at intervals of 1. Hence, all possible values of 
distances are 0 ,1,. . . ,k.  The concrete distance from u(t) to 
l(t) is thus mapped to the discretized interval distance set 
as follows: distance between u(t) and l(t) in the continuous 
interval [0, 1) is mapped to k =  0, distance in the continuous 
interval [1, 2) is mapped to k = 1  and so forth, where [0, 1) 
denotes the continuous interval inclusive of the lower bound 
0 and exclusive of 1. As such, distance =  k denotes the 
scenarios when the distance between u(t) and l(t) exceeds 
k. The [service, distance] vector thus, uniquely identifies the 
microservices which have been proactively prefetched and the 
distance between a user u and the server E{ £ E  where 
the prefetched microservices are hosted. The MDP structure 
embodies all possibilities for prefetching discussed earlier, 
considering a given microservice workflow. In the following, 
we use our example application with 3 main constituent 
microservices to illustrate the MDP construction for user u .

Example III.1. Figure 3 depicts the MDP fo r the Movie 
Streaming Application accessed by user u in Section II which 
comprises 3 microservices “movieStreaming”, “addRating” 
and “addReview”, represented as S1, S2 and S3 respectively. 
The “movieStreaming” microservice is initialized on server 
E1 £ E  upon invocation of the application by u. We consider 
the Euclidean distance measure as an illustration. The MDP 
assumes k =  3. Let us suppose the Euclidean distance between 
the location of u and E 1 evaluates to a value between 0 
and 1. The state [S1, 0] denotes such a scenario. Thus, the 
distance identifier of a state vector abstractly represents a 
concrete distance interval. Similarly, S i, 1] is the scenario 
when the distance between u and E1 is between 1 and 2. Since 
k =  3, the state [S1, 3] denotes the scenario when u moves to a 
location when the distance between u and E 1 exceeds 3. Such 
states only correspond to a single service being deployed at 
a discrete time-point. The state [(S1,S2,S3), 0], on the other 
hand, exhibits all three microservices being deployed on a 
server at a distance between 0 and 1 from u. 

C. Proactively Prefetching Microservices

The MDP can be viewed as comprising several blocks. Each 
block corresponds to prefetching i (0 < i < n) services 
corresponding to the linear workflow, where n is the number 
of microservices in the application. The case i =  0 corre
sponds to reactive deployment, where only upon invocation, 
the respective service is initialized. The case i =  n — 1, on 
the other hand, corresponds to an over conservative strategy 
where all services comprising the workflow are deployed upon

32

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



application initialization. When the value of i ranges between 
1 and n — 1, i consecutive services are prefetched.

Example III.2. The MDP constructed in Figure 3 comprises 
3 blocks, each depicted with a dashed rectangle. The first 
block corresponds to reactive microservice deployment while 
the remaining blocks represent prefetched deployment. The 
state [(Sj., S2), 0], within the block i = 1  denotes the scenario 
where microservices S! and S2 are prefetched while the state 
[(S! ,S2,S3), 0] within the block i =  2 denotes the scenario 
where the microservices S! , S2 and S3 are prefetched. 

D. Transition Representation of MDP

Transitions from the in it  state denote the number of microser
vices to initially prefetch with one transition to each block.

Example III.3. The in it  state has outgoing transitions to 
S i, 0], [(S! ,S2), 0] and [(S! ,S2,S3), 0] denoting proactive 
prefetching of 0, 1 and 2 microservices respectively. �

Other transitions occur when the state of u changes and can 
be broadly classified into two types: transitions within a block 
and transitions between blocks.

Intra-Block Transitions: Transitions within a block occur only 
when a user moves from one location to another or when 
there is a transfer of control from one microservice to its 
subsequent microservice in the application workflow.

Example III.4. Let us suppose the initial Euclidean distance 
between u and E ! was between 0 and 1. Such a scenario 
is denoted in the MDP by the state [S! , 0]. Along the course 
of u ’s path, let us suppose the Euclidean distance measure 
at some time-point exceeds 1. This change in u ’s location is 
represented by the transition to [S! , 1]. Continuing along its 
trajectory, as long as the Euclidean distance between u and E ! 
lies between 0 and 1, it remains in the state [S! , 1] denoted by 
the self transition. The transition from [S! , 0] to [S2, 0] denotes 
the transfer of flow of control in the microservices workflow 
from Si  to S2 while the distance between u and the server 
where S2 is deployed remains within 1. Note that however, 
transitions denoting changes to both distance and service 
invocation trajectory can not happen. For example, there is no 
transition from [S! , 0] to [S2, 1]. This is because prefetching 
services is carried out with respect to the current relative 
locations of the server and the user. Thus, a simultaneous 
change in both is only accounted fo r by first updating the 
location followed by the service invocation. �

Inter-Block Transitions : Transitions between blocks repre
sent the possibility of proactively prefetching variable num
ber of microservices. Consider a state S of the MDP 
where the services component of the state vector comprises 
(Sm, ... ,Sn). In the event of the transfer of flow of control 
of microservices from Sm to Sm+!, outgoing transitions from 
S portray choices in the number of proactively prefetched 
microservices by transitions to all states in the MDP whose

identifier begins with Sm+!. Such transitions are represented 
in Figure 3 by red curved dashed lines.

Example III.5. The outgoing transition from state [S! , 0] to 
state [(S2, S3), 0] of block i =  1 denotes the situation when u 
experiences a flow of control transfer from S! to S2, and both 
S2 and its successor S3 are prefetched to the server. Note that 
the other choice of deploying S2 only is already covered in 
block i  =  0. Thus, the transition from S! , S2 in block i =  1 to 
S2 block i =  0 demarcates the scenario when u experiences 
the same flow of control from S! to S2, but the agent decides 
not to proactively fetch any other service. However, note that 
transitions such as those from [S! , 0] to [(S! ,S2,S3), 0] are 
not possible since the latter demarcates prefetching all three 
services upon invocation of Si  while the former denotes Si  ’s 
deployment with no other service prefetched. Also note that 
transitions such as those from [(S2,S3), 0] to [S3, 0] are not 
possible. In state [(S2,S3), 0], both S2 and S3 have already 
been prefetched. Such a transition would only depict a flow 
of control from S2 to S3 which does not necessitate a further 
prefetching decision. �

E. Migration of Microservices

Migrations occur when u moves from one service zone to an
other. In such a scenario, i f  the new service zone has only one 
server associated with it, the microservices are migrated to that 
server. Otherwise, if  multiple choices of servers are available, 
the nearest server is selected. We consider capacity constraints 
greedily as explained later in Section IV-B. When u crosses 
the boundaries of service zones, on migration of services, its 
movement is represented in the MDP by transitions from states 
whose distance vector component is k to {0 ,1 , . . . , k  — 1}. We 
assume that the MEC servers are distributed such that each 
area is in the coverage of at least one MEC server, hence a 
target server always exists.

Example III.6. Let us assume that along u ’s trajectory, at 
some time-point, the Euclidean distance between u and Ei  is 
between 2 and 3 denoted by the state [S! , 2]. When u traverses 
further away from the server, exceeding Ei  ’s service radius, 
the state of the MDP is updated to [S! , 3]. S! is then migrated 
to the nearest server say E2 . In such a scenario, the Euclidean 
distance between E 2 and u is re-calculated and the new 
corresponding abstract distance is represented in the MDP 
by blue dashed transitions to [S! , 0], [S! , 1], [S! , 2] according 
to the re-calculated distance and mapped appropriately using 
the abstract distance representation. �

Additionally, since users can exit the application at any stage, 
we add an extra state, exit to the MDP demarcating that 
the user has exited the application. From all states excluding 
the in it  state, transitions are drawn to this state signifying 
the event of an application closure. The exit state and the 
corresponding transitions are not shown in Figure 3 for brevity. 
Further, we do not require any explicit encoding to denote the 
minimized state of an application since prefetched services are 
retained on MEC servers while minimized and evicted only 
upon application exit.

33

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



The MDP built above embodies the underlying solution 
space for our problem context, accounting for all prefetch 
and deployment possibilities. While on one hand, the states 
represent the different service user deployments, the transitions 
represent the corresponding possibilities, induced by user 
movement and possible service invocations. Once the MDP 
is built, we now proceed to determine the rewards associated 
with our MDP, based on the movement and service invocation 
patterns of users. This is helpful for deciding the proactive 
prefetching strategy, i.e. for which microservice, how many 
successors to prefetch at which location and deploy on which 
edge server. We formulate this problem as a Reinforcement 
Learning (RL) problem where the agent explores interactions 
with the environment to learn the rewards for the best strategy.

IV. Re i n f o r c e m e n t  Le a r n i n g  So l u t i o n

Our RL formulation is along the lines of a standard RL 
framework [16] where an agent continuously interacts with 
the environment, receives and interprets rewards and attempts 
to synthesize the optimal strategy. We use the Dyna-Q [16] 
RL algorithm, a combination of model based and Q-Learning, 
a model free RL paradigm. The Dyna-Q Algorithm is sum
marized in Algorithm 1.

Algorithm 1: Dyna-Q

1 Initialize Q(s,a) and Model(s, a), Vs ES, Va E A(s)
2 while true do
3 s ^  observe the application state
4 a ^  e-greedy(s, q)
5 Observe the next state s' and the reward obtained
6 Update Q(s, a) using Equation 1
7 Model (s, a) ^  r, s'
8 for i =  0 . . .n  do
9 s ^  random state previously observed

10 a ^  random action previously taken in s
11 r,s ' ^  Model(s,a)
12 Update Q(s, a) using Equation 1

Q-learning essentially estimates the optimal Q-function, Q, by 
its sample averages. In this paper, we consider the simple e- 
greedy action selection method: at any decision step i , with 
probability e, Q-learning chooses a random action to improve 
its knowledge of the application, whereas, with probability 
1—e, it chooses the action greedily by exploiting its knowledge 
about the application, i.e., a = argmaxa Q(s,a). Most of the 
time, the e-greedy policy selects the best known action for a 
particular state, while it favors the exploration of sub-optimal 
actions with low probability. At the end of each time slot i , 
Q(s, a) is updated as follows :

Q(s, a) ^  Q(s,a)+a [r +  7 argmaxaQ(s',a) — Q(s,a)] ..(1)

where a is the learning rate assigned to the agent. The equation 
updates the Q-value of state s by determining the action cor
responding to the highest Q-value among all successor states 
(argmaxaQ(s',a)), which is discounted by 7 and updated

according to the reward r  observed from the environment. 
Differently from Q-learning, Dyna-Q aims to speed up the 
learning process by simulating the system interaction with the 
environment. At run-time, Dyna-Q observes the application 
state and selects an adaptation action using the estimates of 
Q(s, a), as Q-learning does. At the end of the time step i , 
DynaQ exploits a sampled model of the system, Model(s, a), 
where Model(s, a) refers to our MDP model as discussed 
in Section III-B, to simulate the interaction between the 
application and the environment (lines 8 - 12). Dyna-Q updates 
Model (s, a) at runtime, by storing the next state s' and reward 
r  for the explored state-action pair (s,a) at line 7. Dyna- 
Q updates the Q-function akin to Q-learning using (1) and 
resorting on the state-action pairs previously observed.

In our context, in a real-world scenario, multiple users 
access multiple applications simultaneously. Each application 
A i  is thus associated with its own MDP M i  as described 
in Section III-B. Each M i  has a corresponding reward r i  

whose initial value is set to 0. When a user Uj  invokes an 
application A i , the corresponding MDP M i  is assigned to the 
user. This is used with Uj  and M i  to execute the required 
prefetching / migration actions. When the agent executes 
an action, it receives rewards from the environment. Thus, 
rewards are assigned whenever there exists a transition to 
denote state change. The reward function denoted by R is 
a weighted combination of resources consumed by prefetched 
microservices actually utilized and prefetched microservices 
not invoked by the user.

R — ^   ̂ [P * c( r̂esources)] ^   ̂ [P * c(R resources!
u s e d  u n u s e d

(2)
fj.used and /iunused are sets of indicator variables representing 
the set of prefetched services which have been invoked and 
not invoked respectively while c(/iresources) represents the 
resource costs of microservice n according to cost function 
c(r). This reward is calculated whenever the user invokes 
a microservice in the application workflow following which 
the Q-values are updated. Additionally, the Dyna-Q algorithm 
simulates interactions (Lines 8-12) to represent real-world 
interactions. A positive reward is assigned for services which 
are prefetched and utilized by the user while a negative 
reward is assigned to unused services. Such a reward function 
embodies migration decisions as well. Negative rewards signal 
the agent to lean towards prefetching a lower number of 
services thereby reducing migration costs while advocating a 
reduction in number of unnecessary migrations. As such, for 
rewards corresponding to migrations, the same reward function 
is used, with the migration cost function m(r) instead of c(r).

Although the formulation allows us to characterize user 
service invocation pattern as a function of mobility using a 
distance based MDP which serves to be space efficient, it nei
ther effectively quantifies the prefetch policy influenced by the 
network load characteristics nor cater to capacity constraints 
of servers. To characterize traffic load distribution and capacity 
constraints, we propose a heuristic in the following discussion.

34

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



Input : low, medium, l, servers
1 Initialize K-D Tree with servers
2 foreach timepoint t do

Algorithm 2: Proactive Prefetching and Migration

3 foreach user u do
4 curr oc — updated location of u
5 server i — location of server assigned to u
6 d — distance between serverl and currloc
7 if  d > serveri.coverage then
8 newserver — query K-D tree for location

of nearest server to u
9 serveri — newserver

10 nd — distance between newserver and u
11 update MDP state according to nd and

migrate microservices greedily
12 else
13 nd — new distance between serverl and u
14 update MDP state according to nd
15 if  current application/service status is different

from previous time-slot then
16 if  u has invoked Ai then
17 ld — load in l-hop neighbourhood of u
18 if  ld < low then
19 u.M  — M low
20 else i f  ld < med then
21 u.M  — M med
22 else
23 u.M  — Mhigh
24 a — action selected with Dyna-Q for u
25 if  a exceeds server capacities then
26 si , s j , . . .  sn — services corresponding

to a
27 foreach s £ si ,sj , . . . s n in order do
28 allocate s
29 if  allocate s is N U LL  then
30 si ,sj ,. ..sk — services

allocated successfully
31 set MDP to state corresponding to

si , sj  , . . sk successfully allocated
32 update Q with reward for action a using

Equation 2 in MDP corresponding to u
33 upon application exit update corresponding

MDP for Ai  with highest rewards

A. Catering to traffic variation

The number of users invoking different applications may 
actually vary over time. In such a scenario, the number of 
users can play a crucial role in determining how the RL 
agent is trained. This is because, if  an agent receives a high 
reward for an action in a low traffic load environment, i.e., 
when the number of application users is low, it may end up 
receiving a low reward for the same action in a high traffic 
environment since a single application proactively prefetching 
multiple microservices can lead to clogging of resources for

other users depending on the stochastic arrival of microservice 
invocations. Such variance in rewards can confuse the RL 
agent [17]. To overcome this difficulty, instead of assigning 
a single MDP M i to Ai , we associate three MDPs M ilow, 
Mmed and M hi9h to each Ai denoting low, medium and high 
traffic loads respectively. When Uj invokes Ai , depending on 
the current load distribution in the fc-hop neighbourhood of Uj, 
the corresponding MDP is assigned to Uj. Such a mechanism 
described in Algorithm 2 allows us to separately characterize 
traffic workloads and allows the RL agents to effectively use 
the exploitation phases to learn traffic-aware policies. Note that 
the MDP and DynaQ-Tabulation can be stored on disk of the 
orchestrating entity and instantiated upon the invocation of an 
application corresponding to a user.

B. Catering to Capacity Constraints

The MDP discussed in Section III-B, only comprises informa
tion pertaining to the location of users and services currently in 
operation. We do not encode information pertaining to capacity 
of servers or request-server bindings in the MDP. In a realistic 
setting, MEC servers do not possess infinite elasticity bounds, 
and therefore, capacity constraints need to be adhered to. 
We address such capacity constraints heuristically without the 
requirement of having to encode any additional information 
in the MDP states. When the MDP agent selects an action 
corresponding to deploying si ,s2, . . . sn microservices proac
tively, i f  all such services can be deployed without violating 
capacity constraints, the agent proceeds to deploying all such 
prefetched microservices. On the other hand, with capacity 
constraints not withholding, the algorithm greedily deploys 
the containers pertaining to the prefetched services in order 
of the application microservices workflow until the capacity 
constraints are exhausted. It then updates the MDP state 
corresponding to the services deployed greedily. Allocation 
upon migration is carried out in a similar manner.

Algorithm 2 initializes a K-D Tree [18] with the location 
of the MEC servers (Line 1). This allows efficient queries 
to locate the nearest server for users. It proceeds to update 
the locations of the users in the current slot (Line 4) and 
identifies users which have moved out of the service zones of 
the servers to which they were assigned. For users which have 
indeed moved out, the nearest server in the current location is 
identified by querying into the K-D tree (Line 8). Accordingly, 
the MDP is updated to the value of the normalized distance 
from the currently assigned server and the updated location 
of the user (Lines 7-14). It proceeds to check the service 
usage status of the users in the current time slot (Line 15) 
and calls the Dyna-Q algorithm. Depending on the action 
selected by the Dyna-Q algorithm and the subsequent greedy 
placement (Lines 25-30), the state of the MDP and the Q- 
values are updated with the generated rewards (Line 31-32). 
In the scenarios that the prefetched microservices can not be 
accommodated on the server, the algorithm greedily selects 
the set of microservices in the workflow sequence of the 
application which can be allocated, as explained above. Once 
it exhausts the server capacities (Line 29), it proceeds to set

35

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



the MDP state to reflect the microservices which have been 
successfully allocated greedily (Line 31). Once a user exits 
the application, the MDP is updated accordingly (Line 32).

V. Ex p e r i m e n t a l  Ev a l u a t i o n

We perform extensive experiments to show the efficacy of 
our approach, and compare its performance against a) on- 
demand placement, and b) MCAPP-IM [12], an algorithm for 
placement of applications with multiple components. In the 
following, we describe our experimental setup and the results.

A. Experimental Setup

To the best of our knowledge, there are no real-world MEC 
implementation workload traces that are publicly available and 
sufficiently representative of our problem context. Therefore, 
for our experiments, we generate synthetic workloads using 
some real-world taxi traces and microservices from a public 
domain microservice benchmark suite. In the following, we 
describe how we generate the problem instances for our 
simulation experiments and describe the experimental setup.

1) MEC Server Locations and User Trajectories: We con
sider a discrete time slotted system in which the locations of 
users in the network may change from one time slot to another. 
We perform simulation with real-world mobility traces of 
taxis in San Francisco [8], available publicly, collected over 
different time points during the day where different numbers 
of taxis operate at different times of the day. We model each 
taxi as a user invoking service requests along its trajectory. 
For MEC server location, we use the ’Existing Commercial 
Wireless Telecommunication Services Facilities in the San 
Francisco’ dataset [19], which is also available publicly, as 
MEC server locations. The coverage area of each MEC server 
is randomly generated (while ensuring full coverage of the city 
area under study) as in [1], [20]. We assume k as 3 for our 
experiments as well unless specified otherwise. The generated 
coverage areas of all servers are normalized in [0, 3] when 
translated to the MDP representation. However, this dataset 
only comprises locations of towers confined mostly to a large 
segment of the San Francisco area. The San Francisco taxi 
dataset, however, comprises taxi trajectories distributed over 
the entire city of San Francisco. From the dataset, we extract 
for each taxi, the coordinates confined to the region of MEC 
server locations. As a result of such filtering, some of the taxi 
trajectories include abrupt changes in coordinates when such 
taxis in the original dataset move out of the region considered 
in the MEC server dataset. We treat such scenarios as users 
exiting application usage when we assign service invocations 
to users. As a result, such abrupt changes do not impact the 
flow of microservices in the workflow in the generated dataset. 
In Figure 4, we use red circles to depict MEC server locations 
and blue circles to show the trajectory of a sample taxi.

2) Service Invocations: We use microservices from the 
‘Media Microservices’ application of the ‘DeathStarBench’ 
benchmark suite [9]. This suite presents microservice based 
applications in domains such as social media, e-commerce, 
banking, movies and drone swarms and has been used in a

37.71 37.72 37.73 37.74 37.75 37.76 37.77 37.78 37.79
Latitude

Fig. 4: Extracted MEC Server Locations and Taxi Trajectory

range of studies such as hardware and networking implica
tions of microservices and performance debugging of cloud 
microservices [21]. We use the size of the container of each 
microservice as its representative resource requirement. We 
fetch the corresponding containers from Docker Hub [22] 
initially. We then note the starting times of each containerized 
microservice by invoking a fresh docker container start after 
stopping all running containers. We use these times as the 
deployment time of containers on MEC servers. Further, 
we generate running times in the range (1/3 x starting
time ±  A) to simulate representative times of creating tasks 
from already existing containers. We use these values as 
representative times since the DeathStarBench benchmark uses 
a composition driven approach where multiple microservices 
are used to execute a task and as such, each task comprises 
a composite worflow unlike our model where we assume a 
single container being associated with a task. 1/3 is chosen 
since creation of tasks involves lower computation times as 
compared to deploying dedicated containers and A is assigned 
a random value between 0 and 0.05 to simulate random 
runtime deviations. To simulate migration times, we add these 
task creation times to the container deployment time. These 
values are used as c(r) and m(r) for the reward function. To 
each taxi trajectory obtained from the dataset, we assign such 
service invocations randomly at different discrete time slots. 
We assign the invocations considering the distance between the 
location of the taxi in the previous time slot and the current 
time slot. I f  the distance exceeds a threshold value, we treat 
such a slot as a fresh invocation of an application, since we 
assume that the applications exit when the user leaves the area 
or closes the application. Additionally, while extracting the 
trajectories from the original taxi dataset, since we only use a 
portion of the San Francisco area, there are several time slots, 
where the location of the taxis in the subsequent discrete time 
slot goes outside the considered San Francisco area and are 
thus not a part of the extracted dataset. We treat such change 
in coordinates also as fresh invocations of an application. In 
the event that the distance does not exceed this threshold city

36

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



Number Of Iterations Number Of Iterations Number Of Iterations

(a) Number of Users = 50 (b) Number of Users = 100 (c) Number of Users = 150

(d) Number of Users = 200 (e) Number of Users = 250 (f) Number of Users = 300

Fig. 5: Average Reward Accumulation with Variable Number of Users

Number Of Users Number Of Users Number Of Users

(a) n = 4 (b) n = 8 (c) n =12

Fig. 6: Average User Latency for Variable Number of Application Microservices

area, we randomly generate invocation/minimization decisions 
along the linear workflow structure of the application. Upon 
invocation of the last microservice in the workflow, a fresh 
invocation of a random application is considered.

B. Results and Discussion

We compare the performance of our approach with that of 
On-Demand service provisioning to demonstrate the impact of 
proactively prefetching services on user experienced latency. 
Additionally, we compare with the MCAPP-IM algorithm 
[12]. The MCAPP-IM algorithm formulates the problem as

an online bipartite matching problem supplemented with a 
greedy local search technique between application components 
and edge servers. However, they do not consider proactively 
deploying any of the application components. MCAPP-IM 
runs at each time-slot and the result of the matching thus 
obtained is the service-server binding. The MCAPP-IM algo
rithm does not consider coverage area zones of MEC servers. 
A ll experiments are performed in Python 3.7 with the K-D 
tree implementation of the SciPy library on a machine with 
an Intel Core i5 8250U processor and 16 GB of RAM. We set 
the value of the exploration parameter e of Dyna-Q to 0.2.

37

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



(a) Server Resources = 130% (b) Server Resources = 100% (c) Server Resources = 65%

Fig. 7: Average User latencies for Variable Traffic Distributions

(a) Varying k for n = 4 (b) Varying k for n = 8 (c) Memory Usage for Varying k

Fig. 8: Effect of Varying k on Latency and Memory Usage

We vary the total number of users from 50 to 300 at an 
interval of 50. For each scenario, we additionally vary the 
learning rate a as {0.1, 0.2, 0.3, 0.4}. In Figure 5, we plot 
the average reward of the policy agent against the number 
of iterations where each iteration refers to one discrete time
slot where the average reward value is normalized between 0 
and 1. As can be inferred from the figure, different learning 
rates produce a variation in the rewards accumulated by our 
agent. With a higher learning rate, a wider variation in reward 
accumulation is observed in general, since a higher learning 
rate corresponds to a greater weightage in Q-value updation 
in each iteration. It is however interesting to note that for a 
high number of users, specifically in Figure 5f, the deviations 
obtained are rather minor as compared to others. This is due 
to the fact that in a high traffic environment, the MEC servers 
are resource constrained and hence lean towards more reactive 
deployments, justifying our design objective.

In Figure 6, we plot the average user latencies as we 
vary the number of microservices in the application work
flows. We consider representative applications involving 4, 8 
and 12 microservices (denoted as n in the figure), from 
the ’DeathStarBench’ benchmark suite [9]. We measure the 
performance of the algorithms as we vary applications with the 
aforementioned number of microservices. There is no definite

increase/decrease pattern with latencies as the number of users 
are increased. This is expected since with adequate availability 
of server resources, a higher number of users does not lead to 
greater contention. Proactively deploying microservices leads 
to an overall benefit of the latency perceived by the user 
in all scenarios as observed. Since MCAPP-IM does not 
involve server coverage areas, it incurs a lower latency as 
compared to the On-Demand scheme. However, our RL based 
algorithm being specifically catered to proactive deployment, 
is able to outperform MCAPP-IM in terms of average latency 
experienced by users.

We next analyze the effect of the traffic load on the perfor
mance of the various algorithms. We vary the number of avail
able MEC servers while keeping the number of users fixed to 
simulate availability of server resources. We consider scenarios 
where we fix the total server resources at 130%, 100% and 
65% of the requisite total resource consumption of the users. 
A server resource percentage of 100% denotes the scenario 
in which the resource availability of the server can cater to 
exactly the number of users fixed. In Figure 7, we plot the 
average latencies of the three algorithms in each scenario. With 
high availability of server resources, our algorithm obtains 
lower average user latencies as compared to MCAPP-IM. 
The average improvement over MCAPP-IM is around 44%.

38

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



However, as the resource availability of servers is decreased, 
with high traffic loads, the benefits of proactive deployment 
are far lower, at an average of 11%, as observed in Figures 
7a, 7b and 7c. This is because in such a resource constrained 
environment, the agent favors lesser proactive prefetching 
of microservices. Such a scenario, for an application which 
comprises 3 microservices, as in the example in Section II, 
would correspond to the MDP in Section III-B executing most 
of the transitions in Block i =  0 prefetching a small number 
of microservices. This supports our intuition and justifies our 
design objectives as well.

We now analyze the effect of k on the performance of our 
RL approach. k is a user defined parameter which specifies 
the normalization constant for coverage areas of each server. 
We experiment with values of k =  {3, 6, 9}. As the value of 
k is increased, the size of the MDP increases. As a result, the 
memory consumption increases which is validated in Figure 
8c. Additionally, we vary k in the same range for another 
application which comprises 8 microservices instead of 4. 
Figure 8b depicts that there is no definite increase/decrease 
pattern with respect to varying n and the number of users 
as observed previously when we studied the impact of n on 
latencies. It is however interesting to note that, as the value of 
k is increased, there is an improvement in latency for several 
scenarios in Figures 8a and 8b. Increasing the value of k, 
allows us to represent the discretized coverage areas of servers 
more precisely and hence, the agent can make decisions more 
accurately. Thus, since k acts as a parameter which controls the 
degree of representation of coverage areas of servers, varying k 
can have an impact on the overall latency incurred. However, 
larger values of k incur a greater cost of representation in 
memory thus presenting a trade-off. Further, in Figure 8a, only 
a marginal improvement is observed when k is varied for the 
scenario when the number of users is 200. Such scenarios can 
indeed happen if  the dataset does not incorporate scenarios 
spanning the entire action space of the agent thereby rendering 
some actions unexplored.

VI. Re l a t e d  Wo r k

Service placement and migration have received a lot of atten
tion recently in context of monolithic services [4], [6]. Our 
approach is related to prior research, however in the context 
of microservice architectures [9] in an MEC environment. We 
discuss below related approaches and our novelty.

• Computation Offloading: Offloading in Mobile Cloud 
Computing [23]-[25] and Mobile Edge Computing [3], 
[26]-[30] have both been studied extensively concerning 
what/when/how to offload workloads from handheld de
vices to the cloud or edge [31]. Wang et al. [32] deal with 
minimizing each MEC server’s energy consumption while 
satisfying QoS requirements. The authors [33] consider 
scenarios where migrations are allowed between edge 
servers while keeping the objective the same as in [32]. 
However, offloading decisions concern moving workloads 
irrespective of whether the requisite services are available 
on the servers or not [31]. Service Placement, on the

other hand, concerns decisions of deploying services on 
servers which is crucial in MEC due to stringent latency 
requirements and limited server capacities [31].

• Service Placement: Service Placement has received atten
tion in a myriad of formulations including the static [4], 
[34] and dynamic [6], [7], [35]-[37] service context. In 
[4], the authors derive an approximation by incorporating 
rewards which are awarded when user requirements are 
honoured. In [7], the authors formulate a time-slotted 
model and develop a polynomial approximation by jointly 
optimizing service placement and request scheduling, i.e., 
which user requests are to be routed to deployed services. 
The works in [5] [31] additionally consider data transfer 
and availability for making placement decisions. In [38] 
and [39], the authors also consider base-stations collabo
rating with each other. In [36], the authors consider multi
network scenarios as well and optimize service placement 
by incorporating network communication costs. The au
thors in [37], consider a Virtual-Reality based application 
and study service placement strategies optimizing for 
the same. The authors in [37], consider placement of 
a Virtual-Reality application demonstrating gains in an 
application specific scenario. Similarly, [35] considers 
service placement in Software Defined Networks. All 
of the above works however, explore monolithic service 
structures. In contrast, we consider a microservice archi
tecture with dependencies.

• Service Migration: While service placement embodies 
determining servers to deploy services, MEC complicates 
the dynamics with user mobility. Owing to mobility, static 
service placements may no longer yield QoS benefits as 
users move between locations. Service migration dynam
ically moves services to cater to user mobility [40]. The 
authors in [8] formulate service placement and migration 
using an MDP model. They develop heuristics for multi
user and multi-service model. However, they assume 
a monolithic service being used throughout the entire 
duration of the users’ invocation which is not necessarily 
true for microservices architecture. In [20], a mobility- 
aware monolithic service migration strategy is proposed 
taking a direction vector approach. In [10], [41] and [42] 
the authors propose deep reinforcement learning methods 
for service migration but only consider migrations for a 
single user. In [43] a microservice reinforcement learning 
based approach is considered. However, none of these ap
proaches consider the microservice dependency structure 
while migrating services, that is akin to our work.

• Service Allocation/Routing: While service placement 
concerns decisions of deploying services on servers, ser
vice allocation / routing [44], [45], [45], [46] deals with 
determining the assignment of service requests from users 
to already deployed services on MEC servers. Thus, a 
service allocation policy assumes an initial service place
ment strategy which determines the services to deploy 
on MEC servers upon which it proceeds to route service 
requests to such services. Allocation policies typically

39

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



consider metrics such as QoE / QoS, energy, etc. A num
ber of allocation policies have been proposed in recent 
literature considering various metrics such as number 
of users allocated, QoE/QoS maximization, energy opti
mization, optimizing the number of re-allocations as users 
move about and so on. Authors in [46] propose optimal 
and approximate approaches for the network resource 
allocation problem in MEC. In [45], a game theoretic 
approach is formulated for the user allocation problem. In 
[44], the authors present an Integer Linear Programming 
based approach for maximizing the average number of 
users allocated to MEC servers while minimizing the 
number of MEC servers on which a service provider 
would have to deploy the applications. They formulate the 
problem as a variable bin packing problem. In [1], instead 
of static QoS values, the authors consider dynamic QoS 
parameters. Pasteris et al. [34] propose Linear Program
ming approaches and also provide a fast approximation 
for solving the service placement problem. However these 
approaches consider static service allocation scenarios. 
In [20], the authors consider dynamic scenarios where 
edge devices are mobile and reallocations are possible be
tween MEC servers. In [47], the authors demonstrate the 
inter-relationship between service placement and service 
allocation and propose a joint optimization approach to 
tackle the same. They demonstrate the benefits of jointly 
optimizing service placement and allocation through de
signing approximation algorithms. However, all these 
approaches consider monolithic applications ignoring the 
recent adoption of the microservices architecture.

• Microservice Placement and Migration: While the above 
works consider monolithic services, with the adoption 
of microservice architecture, service placement and mi
gration needs to be reconsidered through a different 
lens owing to the dependencies which exist between 
microservices [9]. Recently, microservice placement has 
received attention in [12] [14] [15]. While the authors in 
[14] and [15] consider placing such applications in an 
edge computing environment, we consider MEC systems 
where user dynamics complicate placement options [12]. 
Existing work neither considers proactively deploying 
microservices nor user mobility patterns to determine 
microservice placement. The authors in [12] deliberate 
placement and migration strategies for MEC with multi 
component applications but do not consider the microser
vice dependency graph.

• Service Placement with Prediction: In [48], the au
thors consider placement decisions while considering 
future predicted costs. The authors in [49] consider geo
distributed application deployment in a Fog Computing 
setup by incrementally deploying services. They consider 
proactively migrating services. The authors in [50] pro
pose a Deep Learning based approach to predict resource 
utilization of Virtual Network Functions and propose 
approaches to incorporate Service Function Chains. They 
deliberate how service chains can effectively represent

an indicator for resource utilization. Taking the machine 
learning route, in [51], a reinforcement learning based 
migration approach is proposed. However, none of these 
proactively prefetch and migrate services together.

Most of the work related to microservice-server binding is 
centered around determination of which microservices to al
locate to available MEC servers. Our work on the other hand, 
deals with determining for a given microservice, how many 
successor microservices to deploy proactively, by learning the 
users’ service invocation patterns in the presence of variable 
traffic workloads and more importantly, the target edge servers 
to deploy them. We thus aim to effectively learn user microser
vice invocation patterns as an enabler to determine which 
microservices to prefetch as opposed to prior work which 
delve into on-demand provisioning of service requests.

V II. Co n c l u s i o n  a n d  Fu t u r e  D i r e c t io n s

In this paper, we propose a learning based mechanism to 
proactively deploy microservices on edge servers consider
ing microservice graph application structures. For the sake 
of simplicity, we consider a linear workflow microservice, 
examples of which are abundant in practice. Even for such 
simple workflow structures, the proactive placement strategy 
and its benefits have not been addressed in literature, to the 
best of our knowledge. The linear structure helps us contain 
the possibilities we need to examine in the solution space, and 
helps us build the foundation of our learning based solution 
framework. Experimental results on real datasets are encour
aging, and demonstrate the amount of latency improvements 
that our scheme leads to. We believe that our findings will 
lead to more avenues of future research in the MEC context, 
that can be combined for further enriching experiences for the 
end user for more general workflows.

In particular, for future work, we will be investigating 
encoding of capacity constraints in our MDP formulation 
which caters to applications whose microservice dependency 
structure is represented by a DAG. In addition, we will also be 
considering incorporating constraints such as CPu, bandwidth 
and I/o  processing. Also, in this paper, we have modeled 
our cost functions as fixed mappings to resources. A possible 
future direction is to incorporate cost functions which consider 
runtime usage of resources to aid the agent make better deci
sions considering the heterogeneous system implications of the 
Edge Computing environment. Another possible direction is to 
consider the backpressure that could arise from situations in
volving aggressive prefetching of microservices. Additionally, 
a proactive placement strategy incorporating multi-hop service 
placement provides further future avenues.

Re f e r e n c e s

[1] P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. G. Hosking, 
J. C. Grundy, and Y. Yang, “Edge user allocation with dynamic quality 
of service,” in ICSOC 2019, pp. 86-101.

[2] Y. Cai, F. R. Yu, and S. Bu, “Cloud computing meets mobile wireless 
communications in next generation cellular networks,” IEEE Network, 
vol. 28, no. 6, pp. 54-59, 2014.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision 
and challenges,” IEEE IoT journal, vol. 3, no. 5, pp. 637-646, 2016.

40

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 



[4] M. Herbster, S. Pasteris, W. Shiqiang, and T. He, “Service placement 
with provable guarantees in heterogeneous edge computing systems,” in 
IEEE INFOCOM, vol. 2019, IEEE, 2019.

[5] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, 
“Joint service placement and request routing in multi-cell mobile edge 
computing networks,” in IEEE INFOCOM, pp. 10-18, IEEE, 2019.

[6] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user- 
managed service placement for mobile edge computing: An online 
learning approach,” in IEEE INFOCOM, pp. 1468-1476, IEEE, 2019.

[7] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush, S. Wang, 
and K. S. Chan, “Service placement and request scheduling for data- 
intensive applications in edge clouds,” in IEEE INFOCOM, pp. 1279
1287, IEEE, 2019.

[8] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, 
“Dynamic service migration in mobile edge computing based on markov 
decision process,” IEEE/ACM ToN, vol. 27, pp. 1272-1288, June 2019.

[9] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, 
J. Hu, B. Ritchken, B. Jackson, et al., “An open-source benchmark suite 
for microservices and their hardware-software implications for cloud &  
edge systems,” in ASPLOS, pp. 3-18, 2019.

[10] C. Zhang and Z. Zheng, “Task migration for mobile edge computing 
using deep reinforcement learning,” FGCS, vol. 96, pp. 111-118, 2019.

[11] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware appli
cation placement in mobile edge computing: A  stochastic optimization 
approach,” IEEE TPDS, vol. 31, no. 4, pp. 909-922, 2020.

[12] T. Bahreini and D. Grosu, “Efficient placement of multi-component 
applications in edge computing systems,” in Proceedings of the Second 
ACM/IEEE SEC, pp. 1-11, 2017.

[13] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” 
IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

[14] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi
component applications in edge computing environments,” IEEE Access, 
vol. 5, pp. 2514-2533, 2017.

[15] G. Tato, M. Bertier, E. Riviere, and C. Tedeschi, “Split and migrate: 
Resource-driven placement and discovery of microservices at the edge,” 
in OPODIS, vol. 153, pp. 9:1-9:16, 2019.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. 
The M IT Press, 2018.

[17] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh, 
“Variance reduction for reinforcement learning in input-driven environ
ments,” in ICLR, 2019.

[18] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf, “Com
putational geometry,” in Computational geometry, pp. 1-17, Springer, 
1997.

[19] “Existing commercial wireless telecommunication services facilities in 
san francisco: Datasf: City and county of san francisco,” May 2020.

[20] Q. Peng, Y. Xia, Z. Feng, J. Lee, C. Wu, X. Luo, W. Zheng, H. Liu, 
Y. Qin, and P. Chen, “Mobility-aware and migration-enabled online edge 
user allocation in mobile edge computing,” in IEEE ICWS, pp. 91-98, 
IEEE, 2019.

[21] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. De- 
limitrou, “Seer: Leveraging big data to navigate the complexity of 
performance debugging in cloud microservices,” in Proceedings of the 
Twenty-Fourth International Conference on Architectural Support fo r 
Programming Languages and Operating Systems, pp. 19-33, 2019.

[22] “Docker hub : https://hub.docker.com/.”
[23] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud 

computing and emerging it platforms: Vision, hype, and reality for 
delivering computing as the 5th utility,” FGCS, vol. 25, no. 6, pp. 599
616, 2009.

[24] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” FGCS, vol. 29, no. 1, pp. 84-106, 2013.

[25] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, “Heterogeneous cloudlet 
deployment and user-cloudlet association toward cost effective fog 
computing,” Concurrency and Computation: Practice and Experience, 
vol. 29, no. 16, p. e3975, 2017.

[26] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on 
mobile edge computing: The communication perspective,” 2017.

[27] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation 
offloading in green mobile edge cloud computing,” IEEE TSC, vol. 12, 
no. 5, pp. 726-738, 2019.

[28] Z. Chen, Z. Chen, and Y. Jia, “Integrated task caching, computation 
offloading and resource allocation for mobile edge computing,” in 
GLOBECOM, pp. 1-6, 2019.

[29] C. Ding, J. Wang, M. Cheng, C. Chang, J. Wang, and M. Lin, “Joint 
beamforming and computation offloading for multi-user mobile-edge 
computing,” in GLOBECOM, pp. 1-6, 2019.

[30] Z. Hao, Y. Sun, Q. Li, and Y. Zhang, “Delay - energy efficient compu
tation offloading and resources allocation in heterogeneous network,” in 
GLOBECOM, pp. 1-6, 2019.

[31] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading 
for mobile edge computing in dense networks,” in IEEE INFOCOM, 
pp. 207-215, IEEE, 2018.

[32] F. Wang, J. Xu, X . Wang, and S. Cui, “Joint offloading and computing 
optimization in wireless powered mobile-edge computing systems,” 
IEEE TWC, vol. 17, no. 3, pp. 1784-1797, 2017.

[33] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy- 
constrained mobile edge computing in small-cell networks,” IEEE/ACM 
ToN, vol. 26, no. 4, pp. 1619-1632, 2018.

[34] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with 
provable guarantees in heterogeneous edge computing systems,” in IEEE 
INFOCOM, pp. 514-522, IEEE, 2019.

[35] A. Tomassilli, F. Giroire, N. Huin, and S. Perennes, “Provably efficient 
algorithms for placement of service function chains with ordering 
constraints,” in INFOCOM 2018, pp. 774-782, 2018.

[36] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint 
network selection and service placement for mobile edge computing,” 
in INFOCOM 2019,, pp. 1459-1467, 2019.

[37] L. Wang, L. Jiao, T. He, J. Li, and M. Muhlhauser, “Service entity 
placement for social virtual reality applications in edge computing,” in 
INFOCOM 2018,, pp. 468-476, 2018.

[38] N. Yu, Q. Xie, Q. Wang, H. Du, H. Huang, and X. Jia, “Collaborative 
service placement for mobile edge computing applications,” in IEEE 
GLOBECOM, pp. 1-6, IEEE, 2018.

[39] L. Chen, C. Shen, P. Zhou, and J. Xu, “Collaborative service placement 
for edge computing in dense small cell networks,” IEEE TMC, pp. 1-1, 
2019.

[40] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud: When 
cloud services follow mobile users,” IEEE TCC, vol. 7, pp. 369-382, 
April 2019.

[41] S. Cao, Y. Wang, and C. Xu, “Service migrations in the cloud for mobile 
accesses: A reinforcement learning approach,” in IEEE NAS, pp. 1-10, 
IEEE, 2017.

[42] Z. Gao, Q. Jiao, K. Xiao, Q. Wang, Z. Mo, and Y. Yang, “Deep reinforce
ment learning based service migration strategy for edge computing,” in
IEEE SOSE, pp. 116-1165, 2019.

[43] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen, 
“Delay-aware microservice coordination in mobile edge computing: A 
reinforcement learning approach,” IEEE TMC, pp. 1-1, 2019.

[44] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and 
Y. Yang, “Optimal edge user allocation in edge computing with variable 
sized vector bin packing,” in ICSOC 2018, pp. 230-245.

[45] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation 
offloading for mobile-edge cloud computing,” IEEE/ACM ToN, vol. 24, 
no. 5, pp. 2795-2808, 2015.

[46] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource 
allocation for mobile-edge computation offloading,” IEEE TWC, vol. 16, 
no. 3, pp. 1397-1411, 2016.

[47] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, 
“Service placement and request routing in mec networks with storage, 
computation, and communication constraints,” IEEE/ACM Transactions 
on Networking, vol. 28, no. 3, pp. 1047-1060, 2020.

[48] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung, 
“Dynamic service placement for mobile micro-clouds with predicted 
future costs,” IEEE TPDS, vol. 28, no. 4, pp. 1002-1016, 2016.

[49] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwalder, 
“Incremental deployment and migration of geo-distributed situation 
awareness applications in the fog,” in ACM DEBS, pp. 258-269, 2016.

[50] H. Kim, S. Jeong, D. Lee, H. Choi, J. Yoo, and J. W. Hong, “A 
deep learning approach to vnf resource prediction using correlation 
between vnfs,” in IEEE Conference on Network Softwarization (NetSoft), 
pp. 444-449, 2019.

[51] F. e. a. Brandherm, “A learning-based framework for optimizing service 
migration in mobile edge clouds,” in EdgeSys, pp. 12-17, 2019.

41

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:17:47 UTC from IEEE Xplore.  Restrictions apply. 


