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Abstract
Advances in nanosatellite technology and a declining cost
of access to space have fostered an emergence of large con-
stellations of sensor-equipped satellites in low-Earth orbit.
Many of these satellite systems operate under a “bent-pipe”
architecture, in which ground stations send commands to
orbit and satellites reply with raw data. In this work, we
observe that a bent-pipe architecture for Earth-observing
satellites breaks down as constellation population increases.
Communication is limited by the physical configuration and
constraints of the system over time, such as ground station
location, nanosatellite antenna size, and energy harvested on
orbit. We show quantitatively that nanosatellite constellation
capabilities are determined by physical system constraints.
We propose an Orbital Edge Computing (OEC) architec-

ture to address the limitations of a bent-pipe architecture.
OEC supports edge computing at each camera-equipped
nanosatellite so that sensed data may be processed locally
when downlinking is not possible. In order to address edge
processing latencies, OEC systems organize satellite constel-
lations into computational pipelines. These pipelines par-
allelize both data collection and data processing based on
geographic location and without the need for cross-link co-
ordination. OEC satellites explicitly model constraints of the
physical environment via a runtime service. This service
uses orbit parameters, physical models, and ground station
positions to trigger data collection, predict energy availabil-
ity, and prepare for communication. We show that an OEC
architecture can reduce ground infrastructure over 24× com-
pared to a bent-pipe architecture, and we show that pipelines
can reduce system edge processing latency over 617×.
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1 Introduction
A resurgence in the space industry [13, 23, 67, 98], concur-
rent with standardization of nanosatellite form factors [69]
and a declining cost of access to space [31], has stimulated an
exponential growth in nanosatellite launches over the past
two decades [85]. The largest commercial satellite constella-
tions today consist of hundreds of Earth-observing, camera-
equipped nanosatellites [12, 59], eachmeasuring centimeters,
massing a few kilograms, and costing only thousands of USD.
These emerging systems are a stark contrast to the extremely
expensive, monolithic space vehicles of the past. For example,
the $192,000,000, 500 kg Earth Observing-1 (EO-1) is a “one-
of-a-kind” [70] satellite operating for 16 years under a NASA
ground control team. This single-satellite remote sensingmis-
sion depended on NASA’s extensive ground infrastructure
to support its communication model: operators manually
schedule communication on ground stations shared among
all other space missions. The EO-1 mission terminated when
its ground support was de-funded, leaving no one to sched-
ule communication and data management operations. As
nanosatellites proliferate, the viability of building and oper-
ating a manual, bent-pipe system architecture diminishes.
The scale of this challenge is increasing; several commercial
ventures have announced plans to deploy satellite constel-
lations consisting of thousands of devices over the next ten
years [34, 40–42, 76, 77, 86–88].

A trend toward massive constellations of low Earth orbit
(LEO) nanosatellites demands a new architecture for space
systems. As with large, expensive space vehicles of the past,
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nanosatellite constellations today still rely on a communi-
cation model that sends remote control commands to orbit
and delivers sensed data to Earth [20]; this design is referred
to as a “bent pipe” by space system architects [58]. Momen-
tum towards large constellations of nanosatellites requires a
reimagining of space systems as distributed, edge-sensing
and edge-computing systems. As work on warehouse scale
computing [6] did for datacenters-as-computers, we aim to
raise awareness of system-level research questions for orbital
edge computer systems equipped with high-datarate cameras
and sensors. This work characterizes and addresses com-
puter hardware and software design challenges for orbital
edge computer systems, many of which stem from physical
deployment constraints and limitations inherent to ground
infrastructure.
Addressing the challenges of the orbital edge is a timely

and important problem due to the recent proliferation of na-
nosatellite systems. Space system architects are eschewing
large, costly (e.g. $650,000,000 [28]), “exquisite” [89] satel-
lites for constellations of small, inexpensive (e.g. $65,000 ea.)
“CubeSats” [69]. Commercial efforts [12, 59] use this 10,000×
lower per-device cost to deploy large, sensor-equipped nano-
satellite constellations to LEO and observe the planet with
high temporal resolution. Such systems create new capabili-
ties for precision agriculture, environmental and infrastruc-
ture monitoring, humanitarian assistance and disaster relief,
security, climate, and other commercial uses.

Challenges faced by existing systems under a bent-pipe ar-
chitecture stem from fundamental physical constraints. The
time-varying relationship between the geographic location
of ground stations and the orbital position of nanosatellites
imposes limitations on link availability and can lead to high
downlink latencies. Intermittently available downlinks incur
high latency between data collection and data processing
in existing systems that simply downlink raw observations.
Downlinks can be unreliable; one nanosatellite mission re-
ports 88% packet loss [72]. Commercial ventures require
complex, custom downlink solutions [20]. Shared “last mile”
infrastructures [2, 99] aid availability but do not address the
terrestrial centralization bottleneck. Limits on downlink bi-
trate prevent bent pipes from scaling to accommodate the
extreme data volumes of large constellations and create a
need for a new system architecture less reliant on communi-
cation.

On Earth, sensor systems increasingly leverage edge com-
puting by performing sensor-local data processing in lieu
of communication to a cloud datacenter [83]. While access
to the cloud from the edge can accelerate computing [8],
any benefits depend on backhaul network availability. High-
datarate sensors deployed across large geographic environ-
ments face a network bottleneck from the sensor to the dat-
acenter as datarate exceeds bandwidth [44, 83]. Processing
data at the edge avoids high-bitrate infrastructure at each
sensor and supports a larger population of deployed devices.

Existing Systems
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Figure 1. A comparison between a monolithic satellite and
a nanosatellite. We propose augmenting existing systems by
incorporating onboard visual processing components.

Edge processing avoids the privacy and security risks of
multi-tenant infrastructures in shared datacenters [26, 56,
60].

Applying these terrestrial edge computing techniques di-
rectly to space systems is appealing, but nanosatellite con-
stellations are subject to a unique set of operating constraints
that typically do not affect terrestrial edge systems. In space,
unlike on Earth, all energy for computation and communica-
tion must be harvested from the environment — plugging
into a power grid is not an option. The small size of a na-
nosatellite, which is dictated by the cubesat standard, limits
solar panel surface area and thus limits power. Unlike on
Earth, the quality of visual data in space is fundamentally
limited not only by onboard sensors, but also by chassis size
(which limits focal length) and orbit altitude (which limits
optical resolution). Communication bitrate, which is affected
by orbit parameters, ground station capability, and ground
station location, dictates the amount of data satellites buffer
between downlinks. Any viable orbital edge computer sys-
tem must directly address these unique physical constraints.

We propose Orbital Edge Computing (OEC) as an alterna-
tive to existing nanosatellite constellation bent-pipe architec-
tures. OEC colocates processing hardwarewith high-datarate
spectral sensors in small, low-cost satellites. We character-
ize the physically-constrained design space of a computa-
tional nanosatellite, revealing fundamental limitations on
data quality and computation inherent to state-of-the-art
designs. Based on this design space study, we introduce com-
putational nanosatellite pipelines (CNPs) as an organizational
principle for OEC constellations. A CNP distributes sens-
ing, processing, and communication across a constellation
in order to remain within latency and energy envelopes.
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We then develop cote1, the first orbital edge computing
simulator (cote-sim) and runtime service (cote-lib). cote
physically models orbital mechanics and Earth rotation to
track ground station and satellite positions over time. cote
models data collection along each satellite ground track, as
well as the energy and latency of sensing, computing, and
communication for an entire constellation. cote is useful for
mission design and simulation (cote-sim) and as an online
runtime service for each nanosatellite and ground station
(cote-lib).

We use cote-sim to quantitatively demonstrate the limi-
tations of bent pipes, the advantages of OEC, and the benefits
of nanosatellite pipelines. cote-lib runs on each device and
provides continuous access to a physics-based model of the
constellation and ground infrastructure in order to enable au-
tonomy. By directly modeling the physics of the system, each
satellite determines at runtime when to downlink, when to
process locally, and how to distribute responsibilities across
a pipeline without the need for online coordination or cross-
link communication. cote-lib enables OEC by eliminating
the reliance on remote control through a bent pipe.

In summary, this paper makes the following contributions:
• We demonstrate the limitations of bent pipes using a
novel, physics-based simulator that includes orbital dy-
namics, communication, energy harvesting, and data
collection; an OEC architecture can reduce ground sta-
tion infrastructure over 24× compared to a bent-pipe
architecture.

• We characterize the physical design space of an OEC
device and identify key limitations that drive constel-
lation design.

• We propose and evaluate computational nanosatellite
pipelines, an organizational principle for OEC constel-
lations that distributes work across devices; CNPs can
reduce system edge processing latency over 617×.

• We present a runtime service deployed to each nano-
satellite and ground station that models the constella-
tion, ground infrastructure, and energy environment
in order to autonomously schedule sensing, communi-
cation, and computing without the need for cross-link
coordination.

2 Background on Nanosatellite
Constellations

Momentum away from exquisite [89], monolithic satellites
towards small, cheap nanosatellites reduces the cost of re-
mote sensing in space by orders of magnitude. A nanosatellite
has a mass between 1 kg and 10 kg, often adhering to the
“CubeSat” standard [69] to enable use of commercial, off-the-
shelf (COTS) components and avoid custom deployers [75].
A cubesat is physically constrained to 10 cm×10 cm×10 cm
(“1U”) volumes, with mass limited to 1.33 kg per 1U. This
1Computing on the edge. A cote is a shelter for carrier pigeons.

volume must house all sensors, actuators, and communi-
cation subsystems. Computers onboard existing nanosatel-
lites are simple, low-performance systems for command and
data handling (C&DH), guidance navigation and control
(GNC), buffering sensor data, and communication. Virtually
all nanosatellites today rely on a ground control segment to
manage data.
A nanosatellite electrical power system (EPS) collects,

stores, and distributes energy. Many low-cost cubesats avoid
higher-risk, deployable solar arrays and instead rely on surface-
mounted solar panels. As a result, the small size of the satel-
lite constrains collected power to a few watts. Batteries must
be small due to limited cubesat volume and mass. To prevent
damage, batteries are heated in the cold of space (e.g. -40°C),
incurring a power cost overhead [27]. Supercapacitor stor-
age is less energy-dense, but has less mass, less volume, and
avoids thermal issues; we focus on supercapacitor energy
storage.
Figure 1 illustrates the magnitude of the shift from large,

monolithic satellites to nanosatellites. Monolithic satellites
are meters in size, thousands of kilograms in mass, collect
kilowatts of power, and can cost over half a billion USD [21].
A nanosatellite is four orders of magnitude smaller (cubic
centimeters), has three orders of magnitude less mass (a few
kilograms), collects three orders of magnitude less power (a
few watts), and has four orders of magnitude lower cost.

A nanosatellite constellation is a collection of nanosatellites
that share a purpose. Existing nanosatellite constellations
are coordinated from the ground, often to accomplish a re-
mote sensing task (e.g. imaging the Earth). Today, commer-
cial ventures leverage the relatively low per-device cost of
nanosatellites to operate large constellations [12, 59]. In the
future, public and private organizations expect to launch con-
stellations of thousands of devices, each with high-datarate
sensors and the capacity for more capable onboard comput-
ers.
A constellation consists of a ground segment and a space

segment. In bent-pipe architectures, the ground segment
consists of geographically-distributed, manually-controlled
transceivers, and the space segment consists of remote--con-
trolled satellites in one or more orbits. As we show quantita-
tively in Section 3.3 and Section 7.1, bent pipes break down
as the amount of edge-sensed data increases. Further, limited
link availability and bitrate bottlenecks can cause reconfigu-
ration of a constellation to take days, weeks, or months [22].
These growing limitations of bent-pipe architectures moti-
vate the OEC techniques presented in this work.

3 Challenges of Computational
Nanosatellites

Computational nanosatellite architects face three key chal-
lenges. First, physical constraints on nanosatellite design (e.g.
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Figure 2. A 3U cubesat camera design space, assuming the
smallest commercially available pixel sensor size (1.1 um)

orbit altitude or volume limitations imposed by the cube-
sat standard) bound the achievable fidelity of visual data.
Second, orbit characteristics determine data collection rate
because satellite position and velocity dictate when and how
often to capture data. Third, the relationship between orbit
characteristics, Earth rotation, and ground station locations
determines downlink availability, duration, and bitrate.

3.1 Data Quality is Physically Constrained
The physical design of a nanosatellite limits visual sensor
data quality. Satellite image quality is measured by ground
sample distance (GSD), i.e. the geographic distance repre-
sented between centers of adjacent pixels. As GSD decreases,
image quality increases. Commercial, monolithic systems
have GSD as low as 0.3m/px [21], while commercial nano-
satellite systems have GSD around 3.0m/px [74].

Three parameters govern GSD: orbit altitude, camera focal
length, and pixel sensor size. Merit is proportional to focal
length and inversely proportional to altitude and sensor size.
Sensor size. We assume a COTS image sensor of at least

4096 × 3072 pixel sensors (i.e. 4K), each 1.1 µm [73] in size.
Orbit altitude. Orbit altitude is often between 325 km and

825 km for LEO. Higher altitudes support longer missions
(years instead of weeks), but suffer worse image quality.

Focal length. The cubesat standard bounds camera focal
length because components compete for limited volume.
Earth-observation cubesats must include radios, energy stor-
age, computing systems, and an attitude determination and
control system (ADACS) to point the camera.
Designing for LowGSD.AnEarth-observing satellite should
optimize for low GSD. Figure 2 plots a cubesat design space,
assuming a 3U volume (like existing, commercial systems [20])
and calculating GSDs with the pinhole camera model [35].
Each curve represents a different camera focal length. The
data show that a 20 cm focal length provides a GSD of 2.26m/px,
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Figure 3. The volume, mass, power, and cost of an Earth-
observing, 3U cubesat. These nanosatellites are constrained
in volume and power, but not in mass or cost.

which is 7.5× worse than a monolithic satellite but compa-
rable to existing cubesats. Low GSD requires a long focal
length, limiting non-camera components to a 1U volume.
Figure 3 charts contributions of state-of-the-art nanosatel-
lite subsystems [1, 4, 25, 27, 46–49, 52, 84] toward volume,
mass, power, and cost, revealing that volume and power limit
cubesat design while mass and cost do not.

3.2 Data Rate Depends on Orbit Parameters
The astrodynamics of a nanosatellite determine the opti-
mal rate at which to collect images. This rate must be both
frequent enough to cover the entire ground track, and in-
frequent enough to avoid redundant data. A satellite avoids
collecting redundant images by making observations at the
ground track frame rate (GTFR). The GTFR is the rate at
which an entirely new geographic scene fills the camera
view with no pixel overlapping a previous frame. The ground
track frame period (GTFP) is the inverse of GTFR, i.e. the time
a nanosatellite takes to pass over one ground track frame.
To minimize data volume, camera sensors need not capture
frames at rates higher than the GTFR. In order to achieve
sufficient coverage of a ground track, a satellite or constella-
tion must capture images individually or in aggregate at the
GTFR. We discuss distributing sensing across a constellation
in Section 4.2.

3.3 Bitrate Bottlenecks Constrain Constellations
Bent pipes break as nanosatellite constellation population
increases due to limitations on downlink availability and
bitrate. Under a bent-pipe architecture, each nanosatellite
stores data (generally for minutes or hours) until it nears a
ground station. During a downlink session, which lasts be-
tween a few seconds and ten minutes, the satellite transmits
its unprocessed data. Under this model, existing systems [20]
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experience a 5.5 h delay before data reach customers. Re-
configuring a constellation via uplink takes longer; initial
configuration lasts months [12].
Bent-pipe architectures require many ground stations to

support a large constellation. We evaluate existing, bent-pipe
constellations with cote-sim in Section 7.1 and provide a
simple motivating example here. A satellite in a polar orbit
has access to all latitudes and, with a sun-synchronous orbit,
ensures consistent pass times. Such a satellite at a 410 km
altitude has an orbit period of 92.9min and revisits the same
point on Earth every two days [11]. Existing ground stations
with a 200Mbit/s downlink datarate [20] retrieve up to 15GB
of data per 10min session. With these parameters, a ground
station optimistically and ideally positioned to observe every
pass (e.g. a polar station for a polar orbit) supports only 9
satellites per revolution. Supporting a future 1000-satellite
constellation requires 112 of these ideally positioned stations.
Provisioning this costly ground station network may be

pointless, because a large fraction of downlinked images
contain no features of interest. And, as cote-sim reveals
in Section 7.1, this estimate is overly ideal. It assumes that
satellites are positioned in orbit such that all 112 ground
stations are constantly in use, and it assumes that all satellites
receive a full 10min of downlink time. cote-sim reveals that
neither of these assumptions hold true in realistic systems.
OEC Eliminates the Bent-Pipe Bottleneck OEC reduces
the need for a large number of ground stations by process-
ing images on orbit, downlinking only interesting images,
and discarding or logging the rest. For example, assuming
that machine inference identifies 0.75GB of interesting data
out of 15GB of raw data, all data downlink in only 30 s at
200Mbit/s. Instead of servicing just 9 satellites per revo-
lution, each ground station supports 185 satellites, and a
constellation of 1000 OEC satellites requires only 6 ground
stations.

4 Orbital Edge Computing
OEC is a nanosatellite system design consisting of a set of or-
ganizational principles that relies on near-sensor processing
in order to avoid the limitations of bent-pipe architectures.
We first provide an overview of an individual OEC nanosat-
ellite, i.e. a computational nanosatellite. We then describe a
computational nanosatellite pipeline (CNP), which organizes
a constellation into a parallel pipeline to hide processing
latency by leveraging formation flying techniques [5, 62].

4.1 Computational Nanosatellites
A computational nanosatellite is a nanosatellite with several
key changes to its computing hardware and power system.

Computing Hardware. A computational nanosatellite sup-
plements existing sensing, communication, and control hard-
ware with onboard computing. In this work, we characterize
onboard computing with a Jetson TX2 industrial module. The

Figure 4. Top: The orbit determines the ground track, i.e.
the locations over which a satellite passes. A ground track
can be separated into a sequence of ground track frames.
Typically, each frame is tiled before processing. Bottom: An
illustration of a CNP. A satellite images a ground track frame
and performs processing until arriving at the next frame.

Jetson TX2 includes a high-capability, low-power, efficient
mobile GPU; the industrial variant is designed for extreme
temperature environments. Its small volume allows for inte-
gration among all other necessary components within the
1U volume available to a 3U cubesat containing a 2U camera
system. A 7.5W power mode closely matches the 7.1W in-
put power provided by surface-mounted solar panels. The
OEC computing model supports computing systems other
than the Jetson by varying input performance and energy
parameters.

Energy. A computational nanosatellite harvests and stores
energy. In this work, the energy harvester is a low-risk,
chassis-mounted solar cell array that avoids the mechan-
ical complexity of deployable panels. A chassis-mounted
array limits total solar cell area and, as a result, available
power peaks at about 7.1W. A high-density supercapaci-
tor bank stores energy. Supercapacitors hold less total en-
ergy than batteries of the same volume, but offer several
advantages. Supercapacitors charge quickly and provide
immediate, high current; batteries charge slowly and are
current-limited. Supercapacitors operate across the wide
range of temperatures in space, while batteries fail in ex-
cessive heat or cold. OEC systems operate like intermittent
systems [16, 17, 37–39, 61, 65, 93, 100], harvesting energy
while sleeping to charge capacitors. When energy is suffi-
cient, it performs its sensing, computing, or communication
task.
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Figure 5. Four modes of operation for computational nanosatellite pipelines. Each of the four graphics depicts a snapshot in
time. In the next time step, each satellite will have progressed one ground track frame to the right.

Operating Model. A computational nanosatellite operates
by capturing an image and processing it locally instead of
transmitting it to Earth through a bent pipe. The applica-
tion determines the processing method. Examples include
CNN-based image classification, object detection, and seg-
mentation, or any other computation; Section 7 evaluates
OEC systems with onboard machine inference. A typical
OEC processing task identifies features of interest, separat-
ing them from raw sensor data. An OEC system discards
uninteresting data and sends processed features of interest
to Earth, using intelligent early discard as described by prior
work [19].

4.2 Computational Nanosatellite Pipelines
AnOEC system is energy and latency constrained.While pro-
cessing a frame, a nanosatellite can capture but not process
additional frames. A nanosatellite cannot capture a frame
while sleeping. Effective OEC systems leverage the constella-
tion as a whole to overcome energy and latency constraints.
A constellation of OEC nanosatellites overcomes the en-

ergy and latency limitations of individual satellites by orga-
nizing them into a computational nanosatellite pipeline (CNP).
A CNP leverages existing formation flying techniques [5, 62]
to orbit in a fixed configuration, parallelizing data collection
and processing across a constellation. CNPs divide image
frames into tiles; in somemodes, tile processing is distributed
among satellites to reduce system-level frame processing la-
tency. Figure 4 illustrates a CNP operating on ground track
frames, which are tiled during processing.

We identify and evaluate several modes of operation for
CNPs: frame-spaced, tile-parallel; frame-spaced, frame-parallel;
close-spaced, tile-parallel; and close-spaced, frame-parallel.
Figure 5 illustrates each of these modes. Frame-parallel and
tile-parallel describe how image processing tasks are dis-
tributed across a CNP. Under frame-parallel processing, each
nanosatellite processes all tiles in each captured frame. Un-
der tile-parallel processing, each nanosatellite processes a
subset of tiles in each captured frame. Frame-spaced and
close-spaced describe the physical configuration of a CNP. A
frame-spaced pipeline places each nanosatellite exactly one
GTF apart in distance. A close-spaced pipeline places each
nanosatellite as close together as is feasible, e.g. meters or
tens of meters apart, with a requirement that the end-to-end
pipeline distance is less than the length of one GTF.
A frame-spaced, tile-parallel CNP separates devices by

one GTF in distance; each device images every GTF (so long
as there is sufficient energy) and processes a subset of tiles.
A frame-spaced, frame-parallel CNP also separates devices
by one GTF in distance; each device images a distinct subset
of GTFs and processes all tiles in the frame. A close-spaced,
tile-parallel CNP places devices close together in distance;
each device images every GTF and processes a subset of tiles.
A close-spaced, frame-parallel CNP also places devices close
together in distance; each device images a distinct subset of
GTFs and processes all tiles in the frame. An orbit-spaced
constellation, in which satellites are evenly distributed across
an orbit, is a modified version of a frame-spaced constellation
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offering improved communication opportunities. Station-
keeping, which allows a nanosatellite convoy to maintain
consistent distances between adjacent devices (e.g. frame-
spaced, close-spaced), requires formation flying techniques
to compensate for atmospheric drag and other astrodynamic
effects.
The number of devices in a CNP, or pipeline depth, in-

creases the aggregate parallel work performed and the ag-
gregate energy collected. Pipeline depth does not affect total
data per revolution, because the number of frames per orbit
remains constant. When the aggregate energy harvested by
a CNP is less than the aggregate energy required to process
all data, adding devices increases coverage (the fraction of
GTFs captured per revolution) by increasing total system
energy per revolution. When the aggregate energy harvested
by a CNP is enough to process all data, a CNP may achieve
full coverage. However, such a pipeline may still fall short of
full coverage due to processing latency. If there are too few
nanosatellites to complete parallel processing of all frames in
one revolution, then coverage remains incomplete. Adding
devices to the pipeline increases parallelism and decreases
latency, eventually yielding a system capable of full coverage.
A computational nanosatellite pipeline requires propul-

sion and positioning. Unlike uncontrolled constellation con-
figurations, formation flying requires each nanosatellite to
have a propulsion system to correct for drag. One recent
survey describes a variety of nanosatellite propulsion sys-
tems [91], including cold gas, liquid, ion thrusters, and hall
effect propulsion systems. Additionally, 39 deployed and
tested propulsion systems were evaluated in a recent survey
of nanosatellite formation flying [5]. The wealth of recent
research on propulsion makes CNP formation flying feasible.

To avoid the complications and expense of cross-link satel-
lite communication, each device independently triggers cam-
era captures based on position. The predetermined orbit and
formation of a CNP allows capture coordinates to be defined
before launch. Contemporary navigation constellation re-
ceivers track position with milliwatts of power, and they can
be unlocked for high-velocity, high-altitude use in space [9].
We anticipate that cubesat pipelining may motivate further
research in nanosatellite guidance, navigation, and control.

5 cote: A Model for Design and Control
cote is the first full-systemmodel for orbital edge computing.
The unique characteristics of OEC systems stem from the
astrodynamics that govern them, giving rise to fundamental
differences compared to terrestrial edge computing systems.

cote provides a detailed, physical simulation of OEC sys-
tems through an analytical model of orbital mechanics, the
time-evolution of celestial and terrestrial coordinate frames,
and physical bounds on communication bitrates, as well as a
discrete-time model for harvested and buffered energy, sens-
ing, data storage, and computing. These core components

are shared across two applications: cote-sim and cote-lib.
cote-sim supports OEC system design, and cote-lib sup-
ports dynamic, online autonomy at the edge.

5.1 Model Applications
cote has twomain OEC applications: pre-mission simulation
(cote-sim) and online, autonomous control (cote-lib).

cote-sim provides offline simulation of OEC systems for
mission design, planning, and analysis. No existing spacemis-
sion planning software (e.g. AGI’s STK) supports modeling
interactions between energy-constrained, intermittent com-
puting, computational nanosatellite pipeline configurations,
data collection at the GTFR, and communication. cote-sim
fills this gap by integrating computing, communication, and
energy as first-class counterparts to space mission dynamics.

cote-lib supports online autonomy, continuously run-
ning on each device in an OEC system. As described in Sec-
tion 2, existing nanosatellites rely on a bent-pipe architecture
for command and control instead of using autonomous con-
trol [36]. No existing online nanosatellite software system
models the interaction between astrodynamics and intermit-
tent computing in order to autonomously decide when to
compute locally and when to communicate. cote-lib fills
this gap by integrating space mission dynamics into an edge
computing runtime system, enabling autonomous control at
the orbital edge.

cote-lib runs continuously in the background on an
OEC device, explicitly modeling ground station availability.
cote-lib estimates latency and energy collection given in-
put power and computing workload parameters. When an
OEC satellite collects an image, it leverages cote-lib to de-
termine whether to process an image locally or to transmit
raw data to the ground. Thus, cote-lib enables an OEC
satellite to adapt to changing orbit and power conditions in
real-time; such fine-grained adaptation is impossible with
high-latency, bent-pipe terrestrial control.

5.2 Model Design
cote integrates standard, analytical models of astrodynam-
ics with discrete-time models for edge computing. In the
following sections, we discuss major components of cote.
Time. Orbital edge computer systems deployed to LEO for
Earth observation must be aware of time. While orbits are
periodic, typically completing one LEO revolution in about
90 minutes, several factors make each revolution unique.
Over the course of one revolution, the Earth rotates more
than 22.5°. Due to the oblateness of the Earth, the orbit longi-
tude of the ascending node precesses. Additionally, the Earth
advances through its revolution around the Sun. Although a
satellite returns to the same true anomaly value after each
revolution, system conditions change. Distances to nearby
ground stations shift, and the amount of harvestable energy
changes with the relative position of the Sun. These changes
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can be modeled and predicted by plotting them within a
system of time.

cote tracks time with Universal Time, or UT1 [3], which
measures the rotation of Earth relative to distant astronom-
ical objects [68]. The more familiar Coordinated Universal
Time, or UTC, is a civil time system closely aligned with UT1.
The precise difference between UT1 and UTC (UT1−UTC)
and the approximate difference (DUT1) are published by the
International Earth Rotation and Reference Systems Service
(IERS) in Bulletins A and D, respectively [50]. When the IERS
projects a UT1−UTC value exceeding 0.9 s, it announces a
leap second via Bulletin C [50, 68]

cote represents dates and times with the ISO 8601 stan-
dard [53]. To compare different points in the Gregorian cal-
endar, cote converts each date and time to the equivalent
Julian date [29]. A Julian date counts the number and frac-
tion of days since the Julian epoch; the J2000 epoch is set
to noon on January 1, 2000 with a Julian date of 2451545.0.
cote represents a date and time with seven values: an integer
for the Gregorian year, unsigned integers for the Gregorian
month and day, and unsigned integers for the hour, minute,
second, and nanosecond. Fractions of a second are rounded
to the nearest nanosecond.
Coordinate Frames. In addition to time, orbital edge com-
puter systems deployed to LEO for Earth observation must
be aware of position. The position of an Earth-observation
satellite determines which data can be collected and whether
communication channels are available. cote supports three
coordinate frames: the Earth-centered, inertial (ECI) frame,
the latitude, longitude, and height above the ellipsoid (LLH)
frame, and the south, east, z (SEZ) frame.

The origin of the ECI frame is located at Earth’s center, i.e.
the intersection of the north-south axis and the equatorial
plane. The positive x-axis points toward the vernal equinox,
the positive z-axis points toward the north pole, and the pos-
itive y-axis completes the right-handed Cartesian coordinate
frame [92]. Because the Earth revolves around the Sun, the
ECI frame is not truly inertial. Nevertheless, the ECI frame
is widely used for celestial positioning. cote uses the ECI
frame as the fundamental, universal coordinate frame.
The LLH frame, which is well-known due to widespread

use of latitude and longitude, is tied to the reference ellipsoid
defined in the World Geodetic System 1984 (WGS84) [71]
(most recently updated in 2014) and, optionally, the World
Geodetic System 1972 (WGS72) [81] for backwards compati-
bility. Modeling the oblate nature of the Earth, rather than
approximating its shape as a sphere, is important particularly
for establishing communication links via ground stations
with narrow, high-gain antenna beams. Satellite sub-point
latitude and longitude coordinates (useful for generating
ground tracks) are calculated using an exact, non-iterative
solution [7].

Ground station operations use the SEZ frame which, like
the LLH frame, is non-inertial and rotates with the Earth.

Axes point south, east, and up (normal to the local ellipsoid
surface) [92]. cote uses standard transformations [80] for
the azimuth and elevation of satellites in SEZ. cote uses the
great circle arc [95] on the celestial sphere as the measure of
distance between satellites in the ground station frame.
Orbital Mechanics. Given a model of time and position,
orbital mechanics provides a means for modeling the state
of a satellite relative to a rotating Earth. cote uses the de
facto standard simplified general perturbation model (SGP4)
as its orbital mechanics engine. The SGP4 model [43] con-
sists of a collection of analytical equations tailored for Earth
orbit. These analytical equations are seeded with a set of
empirically determined measurements provided as two-line
element sets (TLEs). SGP4 has become a de facto standard in
the sameway as GPS; the equations and source code for SGP4
are openly available [43], and TLEs for every public object
in orbit around Earth are posted freely and regularly. Unlike
more general, but less detailed, physics models [18], SGP4 is
able to capture the effects of atmospheric drag through the
empirical nature of the TLEs.
Communication. As we show in Section 3.3, the utility of
OEC stems from the communication bottleneck between
the space segment and the ground segment as constellation
population increases. cote models the maximum achievable
bitrate under received signal power for downlink, crosslink,
and uplink channels [58]. Received signal power C is given
by

C = PLlGtGr

(
λ

4πS

)2
, (1)

where P represents transmit power, Ll represents the line
loss factor at the transmitter, Gt represents the transmit-
ter gain parallel to the separation vector, Gr represents the
receiver gain parallel to the separation vector, λ is the cen-
ter frequency of the channel, and S is the magnitude of the
separation vector. Maximum bitrate Rmax is given by

Rmax = B log2 (1 +C/N ) , (2)
where B is the channel bandwidth, C is the received sig-
nal power as defined above, and N is the received noise
power. The received noise power N = kTB, where k is the
Boltzmann constant and T is the system noise temperature.
System noise temperature of satellite and ground systems is
modeled as described in [30, 51, 58].
Energy. In order to study the impact of data collection and
computing on system energy, we develop an analytical model
for energy harvesting, storage, and consumption. We use
this model in Section 7 to simulate different system designs
and evaluate their relative merits. Table 1 lists the input pa-
rameters to this model, which have been directly measured
from our test hardware or taken from component datasheets.
For energy harvesting, we model a simple solar cell at its
maximum power point with an I-V curve consisting of the
device short-circuit current at open-circuit voltage. For en-
ergy storage, we model a capacitor bank and its equivalent
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Parameter Value
Solar panel IMP (A) 1.0034
Solar panel VMP (V ) 7.0290
Capacitance per capacitor (F ) 1.0
ESR per capacitor (Ω) 0.84
Volume per capacitor (cm3) 4.224
ADACS power (W ) 1.13
Camera power - imaging (W ) 3.5
Camera power - readout (W ) 2.5
Jetson sleep power (W ) 0.5
Jetson avg. power - detect (W ) 11.3
Time step (s) 2.0 × 10−5

Table 1. Energy model parameters. Increasing solar panel
surface area by placing additional panels in series increases
input power by increasing current. Total energy storage ca-
pacity is determined by the number of capacitors in parallel;
increasing capacity also decreases effective ESR.

series resistance (ESR). The modeled load includes a Jetson
TX2 module, a camera system, and an ADACS, each repre-
sented as variable resistors consuming energy over time as
determined by the power mode at each time step. The power
consumption of the TX2 module varies depending on the
computation, while the power consumption of the camera
varies depending on whether an image is being captured or
read out for analysis. Our system simulations produce a time
series of events and measurements, including device current
and voltage at the granularity of the simulation time step
and power state transition events.

Under the simple solar cell model described previously, an
energy-harvesting, storage, and consumption system can be
modeled over time with the following node voltage equation:

v(t) =

q(t )
C + ISRESR +

√
(
q(t )
C + ISRESR)2 − 4PMODERESR

2 .
(3)

Here, q(t) is the charge held in the capacitor bank at time
t ; C is the total capacitance of the capacitor bank; IS is the
instantaneous current provided by the solar panel (either IMP
or, whenv(t) = VMP, zero); RESR is the equivalent series resis-
tance of the capacitor bank; and PMODE is the instantaneous
power draw of all energy-consuming devices.
The current flowing into the energy-consuming systems

is governed by the following equation.

ID =
PMODE
v(t)

(4)

The current flowing into the capacitor bank is given by
IC = IS − ID. (5)

These equations hold under the condition that
q(t)

C
≤ v(t) − ISRESR, (6)

i.e. so long as the capacitor charging rate is current-limited.

6 Methodology
We evaluate OEC systems running a remote sensing applica-
tion on nanosatellite constellations.
We evaluate an OEC system in which each nanosatel-

lite includes a Jetson TX2 module. Prior work shows that
these systems remain effective in the space radiation environ-
ment [96]. Each nanosatellite collects data and either down-
links to a ground station or performs onboard machine infer-
ence.We use building footprint detection for the remote sens-
ing application. We train the DetectNet [90] CNN on satel-
lite images and ground-truth labels from the SpaceNet [94]
dataset, and we evaluate performance on separate test data.
The SpaceNet dataset is a collection of 0.3m/px satellite
images with labeled building footprints; we decimate the im-
ages to achieve higher GSDs. To evaluate the energy cost of
computing on a satellite, we directly measure average power
and latency of the inference application running on a Jetson
TX2.Wemeasure power with multimeters, recording current
and voltage into the Jetson while workloads run from energy
stored in a capacitor bank closely resembling our modeled
power system. These operating energy values are an input
to cote in its model of energy available to a nanosatellite
during a deployment.

To quantify the limitations of bent-pipe architectures, we
use cote to evaluate the performance of existing and future
constellations. Space segments consist of polar (97.3°) orbits
with 250 or 1000 satellites. This orbit is identical to one oc-
cupied by existing, deployed satellites; we use TLEs from
nanosatellites operated by Planet. For each of the two space
segments, we consider three constellation configurations,
as described in Section 4.2: close-spaced, frame-spaced, and
orbit-spaced. These configurations are compared to the cur-
rent practice, bent-pipe configuration. We consider a polar
ground segment consisting of two rings of ground stations,
one at 87°N and one at 87°S. Each ring contains the same
number of stations spaced evenly longitudinally.
The downlink frequency is centered at 8.15GHz with a

bandwidth of 20.0MHz. We model nanosatellite patch anten-
nas with a peak gain of 6.0 dB, and we model ground station
receiving dishes with a peak gain of 44.1 dB.

7 Evaluation
In order to evaluate OEC as an architecture addressing the
limitations of bent pipes, we first use cote to identify short-
comings in existing practice. We then characterize several
benefits of computing onboard each nanosatellite instead of
downlinking all data. We demonstrate that computational
nanosatellite pipelines effectively hide frame processing la-
tency, enabling persistent Earth observation at the GTFR
with a feasible constellation population. We show that la-
tency depends not only on individual device capability and
constellation population, but also on the physical configura-
tion of the CNP.We use our energy model to show that under
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Figure 6. Top: Frame-spaced and orbit-spaced CNPs reduce
downlink deficits without OEC by collecting data at the
GTFR. Close-spaced CNPs without OEC increase downlink
deficits due to communication contention. Middle: The same
constellations enhanced with OEC; intelligent early discard
leaves 5% to 25% of the data to downlink. Bottom: Larger
constellations experience worse performance under current
practice, while OEC performance remains consistent.

realistic, limited solar power and supercapacitor energy stor-
age, CNPs achieve high ground track coverage. Finally, we
demonstrate the benefits of the cote-lib runtime service
by quantifying the long reconfiguration times inherent to
bent pipes that cote-lib eliminates.

7.1 Bent Pipes Break Down
Figure 6, top, shows that bent pipes are fundamentally un-
scalable using a constellation of 250 nanosatellites in a 97.3°
inclination orbit. The figure of merit, the downlink deficit,
indicates the amount of data remaining on a nanosatellite
(averaged across all satellites in the constellation) at the end
of the time of interest. The modeled time spans two orbit

revolutions over a real ground track. The plot shows that
frame-spaced and orbit-spaced CNPs downlink a substan-
tially larger fraction of data than a bent-pipe constellation
or a close-spaced CNP. Frame-spaced and orbit-spaced CNPs
are superior because they put distance between satellites, re-
ducing downlink contention. Ground stations with high-gain
antennas must choose which satellite to target for communi-
cation; if multiple satellites appear in view simultaneously,
a ground station cannot service both for their entire respec-
tive passes. The effect of downlink contention is especially
clear in a close-spaced CNP that does not use OEC to discard
data intelligently before downlinking. In this configuration,
ground stations remain idle for much of a revolution because
satellites are clustered closely. Section 7.2 shows that the
benefits of frame-spaced and orbit-spaced CNPs come at
the cost of increased frame processing latency. Close-spaced
CNPs suffer a data deficit without OEC but have much lower
frame latency. The top plot only evaluates distributed data
collection at the GTFR with CNPs; the remaining two plots
evaluate the additional benefits of intelligent early discard
with OEC.

Figure 6, middle, shows that by enabling intelligent early
discard, OEC decreases data deficits and improves constella-
tion scalability. The data show that, using a bent-pipe com-
munication architecture, the downlink deficit plateaus above
0% even as polar ground station count increases. This plateau
represents the residual data across a constellation waiting
for downlink at the end of the experimental period of in-
terest. OEC intelligently discards data, downlinking only
data of interest and reaching a much lower downlink deficit
plateau (a few percent) during the period of interest with
24× fewer ground stations than a bent-pipe configuration.
To lower the plateau further, ground stations must be placed
at lower latitudes. However, such stations can communicate
with polar-orbit satellites only when the rotation of the Earth
aligns them with a satellite ground track.

OEC makes constellations more scalable. Figure 6, bottom,
repeats the experiments in Figure 6, middle, but increases
constellation population to 1000 nanosatellites. These data
show that the bent-pipe architecture does not scale, suffering
a high downlink deficit even with many ground stations. In
contrast, CNP configurations using OEC to discard data in-
telligently exhibit consistently low downlink deficits — even
with an increased constellation population. The bent-pipe ar-
chitecture requires 3.5×more ground stations to service 1000
nanosatellites than to service 250 nanosatellites. OEC CNPs
can use the same ground infrastructure for constellations of
both 250 and 1000 nanosatellites; OEC enables scaling up
constellation population without increasing ground infras-
tructure.

7.2 Pipeline Configuration Impacts Latency
We use cote-sim to simulate the CNP configurations de-
scribed in Section 4.2 and evaluate OEC latency per ground
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Figure 7. Left: Tile-parallel processing dramatically de-
creases system latency in close-spaced constellations. Im-
provements disappear when satellites are frame-spaced.
Right: System latency is high with frame-parallel processing,
but latency no longer depends on constellation configura-
tion.

track frame, i.e. the time between frame capture and comple-
tion of frame analysis. This latency varies with paralleliza-
tion across a constellation and physical distance between
nanosatellites in a CNP. System latency determines the geo-
graphic location at which frame processing completes — an
important factor when satellites can transmit results only
when in range of a ground station.

The system characteristics of frame-parallel CNPs are
identical regardless of whether satellites are frame-spaced
or close-spaced. This fact is visible in Figure 7, right, by
comparing the close-spaced, frame-parallel plot with the
frame-spaced, frame-parallel plot. In a frame-parallel CNP,
the complexity of close-spaced formation flying provides no
benefit over an uncoordinated, frame-spaced configuration.
Once each satellite has been assigned its GTFs, relative drift
between devices does not impact GTF latency. However, the
benefit of not requiring formation flying is tempered by uni-
formly high GTF latencies. Once the CNP pipeline is full, a
new frame is completed every GTFP. Nevertheless, process-
ing has long latency and the geographic location at which a
particular GTF completes processing is far from the original
observation location.

Figure 7, left, shows that tile-parallel CNPs require a close-
spaced configuration tomaintain low per-GTF latency.When
devices are close-spaced, work is distributed among satellites
and all tiles are processed shortly after all satellites observe a
frame. However, frame-spaced satellites have high per-GTF
latency with deeper pipelines. This effect emerges because,
in a tile-parallel configuration, the satellite responsible for
processing the last subset of tiles captures the frame long
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Figure 8. Coverage as a function of device count. Compared
to the baseline, increasing overall system energy with de-
ployable solar panels strongly increases coverage.

after the first satellite captures the frame. This effect is mag-
nified in an orbit-spaced configuration. The data show that
a close-spaced configuration reduces latency over 617×.

7.3 Collected Energy Impacts Coverage
We use cote-sim to simulate CNP configurations described
in Section 4.2 and evaluate OEC ground track coverage, i.e.
the fraction of GTFs captured per revolution. To examine the
impact of energy and computing on coverage, we vary en-
ergy buffer capacity, solar panel surface area, and computing
hardware. We select a baseline design with a 5.0 F capacitor
bank, 7.1W surface-mounted solar panels, and one Jetson
TX2 compute module. We compare this baseline to a CNP
of devices with 10.0 F capacitor banks (“more capacitance”),
14.2W of power due to a deployable panel (“more power”),
and two Jetson TX2 modules (“more compute”).

Aggregate energy collected across a CNP limits coverage.
As device count increases, a pipeline achieves the minimum
computing capability needed for full coverage before collect-
ing sufficient aggregate energy to process all frames. Figure 8
plots coverage as a function of pipeline depth. Each plot lists
four series: the baseline configuration, and the configura-
tions with increased energy buffering, energy harvesting,
and computing. Due to the energy-constrained nature of this
design point, increasing solar panel surface area increases
coverage at a faster rate than other parameters. While “more
power” supports full coverage with a shorter pipeline, this
configuration depends on a complex, mechanically-deployed
solar array that increases system cost and risks a catastrophic
deployer failure.
Under frame-parallel operation, individual satellites col-

lect a GTF and process all tiles, which means that all GTFs
are imaged exactly once across the CNP system. As a result,
the number of times that any camera is activated across the
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Figure 9. Constellation configuration takes hours or more
with bent pipes. Ground use of cote-lib enables shorter
configuration times for all constellation types, and use of
cote-lib for OEC in space entirely eliminates configuration
delays.

CNP system matches the number of ground track frames
as coverage approaches 100%. In tile-parallel operation, ev-
ery satellite images each GTF. Thus, the number of times
that cameras are activated across the CNP system is equal
to the pipeline depth times the number of GTFs. However,
the overall energy effect of more frequent camera use at the
system level is small because camera energy is four orders
of magnitude less than compute energy. The effect of more
frequent camera activation manifests as a lower slope in the
tile-parallel graphs compared to the frame-parallel graphs
as coverage approaches 100%. In Figure 8, the slopes in the
tile-parallel configurations are less steep than the slopes in
the frame-parallel configurations.
The data show that for object detection, full coverage of

the ground track is feasible under multiple configurations,
requiring around 100 satellites with deployable solar pan-
els and around 250 satellites with surface-mounted panels.
Existing nanosatellite constellations contain more than 200
devices, which means that OEC pipeline depths achieving
full coverage are feasible. Increasing solar panel surface area
dramatically reduces pipeline depth at the expense of greater
engineering complexity (deployable panels) and higher per-
device cost. Coverage degrades gracefully as pipeline depth
decreases.

7.4 OEC Enables Online Autonomy
We use cote-lib to avoid the long reconfiguration time in-
herent to bent-pipe architectures. Uplink channels are much
lower in bitrate than downlink channels. Maximum down-
link channel bitrate increases with receiver gain; on Earth,
receiver gain increases with dish diameter. Nanosatellites
cannot increase receiver gain arbitrarily due to physical re-
strictions on device size. Thus, uplinked data volume may

be limited to kilobytes per pass. Larger constellations experi-
ence longer reconfiguration times because satellites compete
for uplink opportunities. Bent-pipe architectures require
hours, days, or even months to reconfigure existing constel-
lations.

Satellites with onboard positioning (e.g. GPS) and knowl-
edge of ground station locations are aware of approaching
link opportunities. However, under a bent-pipe architecture,
remote-controlled satellites cannot predict whether a ground
station will establish a link session. Knowledge of upcom-
ing communication events allows satellites to intelligently
choose between onboard processing and data transmission.
cote-lib augments ground segments by modeling satellite
states; we show in Figure 9 that cote-lib improves exist-
ing ground systems by enabling link-schedule policies that
prioritize communication to nanosatellites with the largest
amount of data to communicate, instead of heuristic policies
that instead optimize for signal strength. The benefits of
cote-lib are greatest when used in space for OEC. Rather
than a ground station forgoing valuable downlink opportu-
nities to upload link schedules, an OEC nanosatellite uses
cote-lib to model the state of the entire constellation. With
knowledge of the link-schedule policy, each nanosatellite
generates upcoming communication events on orbit.
Figure 9 plots reconfiguration times with and without

cote-lib. At left, ground stations operating under a bent-
pipe architecture use a highest-elevation link-schedule pol-
icy to maximize signal quality. At right, cote-lib augments
existing ground segments by enabling a more advanced link-
schedule policy prioritizing satellites with the largest amount
of buffered data. Ground use of cote-lib reduces reconfigu-
ration times, but constellations of tens to hundreds of devices
often require multiple revolutions before the entire system
reconfigures. During this time, the constellation misses thou-
sands of GTFs. cote-lib avoids lengthy reconfiguration
times. By running continuously in the background on an
OEC satellite, computing and communication decisions can
be made autonomously on orbit.

8 Related Work
Several categories of work relate to orbital edge computing.
Section 2 provides a brief space systems background. The
NASA guide to the state-of-the-art in small satellites [9]
describes characteristic aspects of nanosatellites, including
technology readiness levels of essential subsystems. Recent
surveys [5, 62] studymulti-satellite orbital dynamics and pro-
vide an overview of propulsion systems. Commercial efforts
demonstrate the viability of camera-equipped nanosatellite
constellations [20, 74]. The SpaceNet challenge [94] illus-
trates broad interest in visual computing on space data, and
the proposed Amazon ground station network [2] further
cements the value of computing on visual and other space
sensor data.
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Recent edge computing work provides context for our
work. Edge computing recognizes that, as high-datarate
sensors (e.g. cameras, lidar) proliferate, streaming all data
to central cloud systems for processing becomes infeasi-
ble [78, 79, 97]. Edge computing is important particularly
in cases of complex processing, e.g. video querying [44],
search [57], or DNN speech processing [55]. We propose to
leverage early discard, which has been studied for search [45],
video indexing [44], and drone video processing [97]. Re-
cent work [8, 82] demonstrates the utility of simulation
frameworks for edge computing on drones; cote is an analo-
gous utility for the orbital edge. Machine inference accelera-
tors [14, 15, 24, 33] could significantly shorten full-coverage
CNP pipeline depths, although some that rely on temporal
data redundancy [10] may have limited benefit for devices
capturing images at the GTFR.
Intermittent computing [61] shares challenges with or-

bital edge computing in that both types of systems are fully
energy-autonomous. A number of recent intermittent sys-
tems [16, 39, 54, 64–66] function despite unpredictable power
failures using techniques that may be applicable to the or-
bital edge in future work. Some intermittent computing plat-
forms [17] are similar in that they rely only on superca-
pacitors for energy storage. Other intermittent systems are
similar in that they target DNN workloads [32] and commu-
nication minimization [63] at the edge in batteryless devices.
While similar in spirit, these efforts differ significantly in
scale, deployment environment, and in their inability to rely
on processor sleep modes; instead, they power off frequently.

9 Conclusion & Future Work
In this work, we develop orbital edge computing: edge com-
puting on orbit using processing resources colocated with
sensors inside small, low-cost satellites. The low cost of a na-
nosatellite compared to monolithic satellite systems makes
large satellite constellations feasible for the first time. Appli-
cations of this emerging technology are impeded by existing,
bent-pipe architectures. Orbital edge computing provides
responsiveness, reliability, and scalability benefits. Future
work should study energy collection and storage for orbital
edge computing and radiation-hardened, machine-learning
(ML) accelerators.

For example, we observe that incomplete ground track
coverage stems from the energy-constrained, intermittent
nature of these nanosatellites. Once a constellation, in ag-
gregate, collects sufficient energy for full coverage, high
processing latency can still limit coverage. Increasing energy
availability with deployable solar panels is unsatisfactory,
because this solution raises mission cost and mission risk. As
an alternative solution, future work could investigate energy-
efficient, domain-specific accelerators (DSAs) for orbital edge
computing workloads. Future work could evaluate the archi-
tectural vulnerability factors (AVFs) of recently-proposedML

accelerators and propose new ML accelerators that operate
intermittently in the space environment.
While this work has focused on nanosatellite constella-

tions that share a single orbit and a single workload, future
work may investigate heterogeneous systems and heteroge-
neous workloads. For example, a constellation operator may
wish to serve many different clients over time. Clients will
be interested in different features at different scales. As a
result, different orbit altitudes and different hardware will
be better suited to different clients. Supporting a dynamic
set of workloads from a dynamic set of clients poses an in-
teresting challenge, especially with regards to constellation
reconfiguration. The high overhead of uplinking new ML
models could be offset with federated learning techniques.

Looking forward, we expect deployments of satellites that
are even smaller than nanosatellites. Chip-scale or gram-
scale satellites (“chipsats”) can be deployed more numer-
ously and at even lower cost. Such devices are even more
attritable than nanosatellites, but the smaller size places
even tighter constraints on capability. Successful operation
of these emerging devices will require the application of
orbital edge computing techniques.
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A Artifact Appendix
A.1 Abstract
This appendix describes software artifacts associated with
this work.

A.2 Artifact checklist
• Compilation: GCC 8.3.0 (setup script provided)
• Data set: Sample configuration files are included
• Runtime environment: Ubuntu 18.04 or similar
• Hardware: Simulations run concurrently as separate pro-
cesses; 48 cores or more are recommended for timely results

• Execution: Managed by bash scripts
• Metrics: Percent data not downlinked per revolution; aver-
age system ground track frame latency; fraction of ground
track processed per revolution (coverage)

• Output: Data plots
• Experiments:

– Close-spaced downlink communication simulations
– Frame-spaced downlink communication simulations
– Orbit-spaced downlink communication simulations
– Close-spaced, frame-parallel energy and computing simulations
– Close-spaced, tile-parallel energy and computing simulations
– Frame-spaced, frame-parallel energy and computing simulations
– Frame-spaced, tile-parallel energy and computing simulations

• How much disk space required (approximately)?:
23 GB

• How much time is needed to prepare workflow (ap-
proximately)?: A few hours

• How much time is needed to complete experiments
(approximately)?: About a week

• Publicly available?:
https://github.com/CMUAbstract/oec-asplos20-artifact

• Code licenses (if publicly available)?: Apache License,
Version 2.0

A.3 Description
A.3.1 Howdelivered. TheCarnegieMellonUniversity ABSTRACT
ResearchGroupGitHub: https://github.com/CMUAbstract/oec-asplos20-
artifact

A.3.2 Hardware dependencies. For timely results, 48 cores or
more are recommended. A few gigabytes of RAM should be suffi-
cient. Around 25 GB of empty hard drive space may be required.

A.3.3 Software dependencies. This artifact assumes execution
with Ubuntu 18.04 or similar. GCC 8.3.0 is used for compilation.
CMake is used for building Makefiles. Common command line tools
(e.g. git, make, wget) are also assumed. For plot generation, Python
3 with venv is required.

A.3.4 Data sets. Sample configuration files are included. Up-to-
date satellite TLEs can be accessed fromhttp://celestrak.com/NORAD/elements/.

A.4 Installation
https://github.com/CMUAbstract/oec-asplos20-artifact/blob/1.0.0/README.md

A.5 Experiment workflow
https://github.com/CMUAbstract/oec-asplos20-artifact/blob/1.0.0/README.md

A.6 Evaluation and expected result
After completing the README, the user will have launched seven
sets of experiments. The README describes how to use included
scripts to parse the resulting log files. The user generates plots with
the included plot generation scripts.

A.7 Experiment customization
Scenarios are implemented as C++ programs located in the artifacts
directory. To customize a scenario, select a directory from artifacts
and modify the .cpp file located in source.

The communication scenarios parse configuration files at run-
time to set program behavior. Users can modify these configuration
files in order to customize experiments without recompiling.
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