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ABSTRACT
In this paper, we introduce ObscureNet, an encoder-decoder archi-
tecture that effectively conceals private attributes associated with
time series data generated by sensors in IoT devices, while preserv-
ing the information content of the original time series. Drawing on
conditional generative models and adversarial information factor-
ization, ObscureNet learns latent representations that are invariant
to the user-specified private attributes. This allows for modifying
the private attributes or generating them randomly before using
the decoder to synthesize a new version of data. We present three
approaches to alter private attributes at anonymization time, and
show that non-deterministic approaches can prevent an adversary
from re-identifying private attributes. We compare ObscureNet
with the autoencoder-based anonymization methods proposed in
the literature and other generative models in terms of the accu-
racy of sensitive and desired inferences. Our experiments on two
human activity recognition datasets show that compared to the
original data, the sensitive inference accuracy is reduced by 80.38%
on average, while the desired inference accuracy is only reduced
by 6.82%. Moreover, ObscureNet reduces the sensitive inference
accuracy by an additional 13.48% on average compared to the best
baseline method. We report the computation overhead of running
ObscureNet on a Raspberry Pi, and corroborate that it can be used
for real-time anonymization of sensor data.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Com-
puting methodologies→ Learning latent representations; • Secu-
rity and privacy→ Privacy protections.
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1 INTRODUCTION
Embedded and networked sensors are becoming increasingly ubiq-
uitous in our lives. Smart home devices, such as smart thermostats,
security systems, and virtual personal assistants, integrate various
sensors that gather a substantial amount of data from our living
and work space. Wearable devices and mobile phones are equipped
with multiple sensors producing time series of heart rate, skin tem-
perature, blood oxygen level, etc. The large volume and diversity of
the sensor data that has become available is a mixed blessing. On
one hand, valuable insights can be generated through multimodal
sensor fusion, enabling sophisticated monitoring and control ap-
plications, such as Human Activity Recognition (HAR) [14] and
thermal comfort inference [9]. On the other hand, the collected
data may contain specific patterns that disclose private attributes
associated with people present in the monitored environment, such
as their age, gender, race, weight, height, personality traits, and
moods. These private attributes can be easily inferred from data
using machine learning techniques [3, 24, 36], leading to serious
privacy concerns.

The privacy concerns can be addressed by concealing private
attributes before sharing sensor data with third-party applications.
But doing this without reducing the utility of data, which is defined
as the accuracy of desired inferences, is proven to be a difficult
task. This is because the intersection between features (or patterns
in time series data) that correlate to public and private attributes
is typically nonempty. Thus, attempts to prevent sensitive infer-
ences through down-sampling these features, adding noise to them,
and masking them in the dataset can result in a significant loss of
accuracy for desired inferences, hence a lower utility. This is an im-
portant barrier to widespread adoption of these privacy-preserving
techniques as people by and large prefer convenience over privacy.
A more practical and promising solution should maintain the ac-
curacy of desired inferences, offering a better trade-off between
privacy and utility.

In recent years, deep generativemodels, and in particular, encoder-
decoder architectures have been used to manipulate natural images,
e.g., to change the facial expression of a portrait [18, 19]. Inspired
by the success of autoencoders and generative adversarial networks
in the image generation task, they have been applied to anonymize
data generated by IoT and mobile devices [11, 24, 25]. These ap-
proaches transform sensor data, such that the leak of private infor-
mation is minimized. For example, an autoencoder is used in [25]
to replace sections of time series that reveal private attributes with
same-length sections that are neutral. In follow-on work [24], an
autoencoder is trained in an adversarial fashion using a loss func-
tion that ensures maximum data distortion and minimum mutual
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information between private attributes and synthesized data. How-
ever, the sensor data anonymized via both techniques can still be
used to re-identify the user and their private information should
the attacker pass a dataset with known private attributes through
these autoencoders [11]. We refer to this as the re-identification
attack. To prevent user re-identification, sensor data with private
attributes must be transformed in a non-deterministic fashion, a
direction we pursue in this work.

We propose an encoder-decoder architecture called ObscureNet.
Unlike conventional autoencoders, which are suitable for learning
unsupervised latent representations, ObscureNet learns latent rep-
resentations that are constrained to be invariant to one or several
private attributes. The invariance is obtained by incorporating the
classification error of a classifier that predicts the private attribute
given the latent representation in the loss function of ObscureNet.
Thanks to adversarial training, we can build a network that recon-
structs data such that it resembles the original sensor data, but
fools the attribute classifier. Such latent representations are best
for data anonymization using ObscureNet as the decoder network
is fed the latent representation along with the private attribute.
Hence, at anonymization time, we can modify the private attribute
in a deterministic or probabilistic manner to ensure that the recon-
structed data cannot be used to perform unwanted inferences. We
show that modifying the private attribute in a non-deterministic
fashion prevents the adversary from re-identifying this information
by training another model given the output of ObscureNet when it
is fed input data with known labels. Our contribution is threefold:

• We assess the efficacy of ObscureNet in concealing private
attributes associated with sensor data by running experi-
ments on two HAR datasets, namely MotionSense [24] and
MobiAct [4]. We show that anonymization performed by
ObscureNet reduces the accuracy of a sensitive inference by
13.48% compared to the best baseline method while main-
taining the utility of data. Furthermore, we explain how the
loss function of ObscureNet can be augmented to protect
multiple private attributes.
• By tuning parameters of ObscureNet, we show that it is
possible to navigate the privacy-utility trade-off. This enables
users to trade utility for privacy (or vice versa) depending
on the context and data that is being collected.
• We compare three different ways that ObscureNet can mod-
ify private attributes. We find that using a stochastic vec-
tor instead of the one-hot encoding of the private attribute,
brings the sensitive inference accuracy to the level of a ran-
dom guess and diminishes the possibility of re-identifying
private information to a great extent. As a result, a sensi-
tive inference model will not be needed at anonymization
time and ObscureNet can easily run on IoT or edge devices
to anonymize sensor data in real time. To show this, we
run ObscureNet on a Raspberry Pi 3 model B and time its
execution.

While the application of conditional deep generative models
with information factorization to image synthesis has been ex-
plored in the literature (see for example Fader Networks [19]), to
the best of our knowledge, these conditional models have not been
extended and adapted to address the anonymization of time series

data. Despite having a similar architecture to Fader Networks [19],
ObscureNet utilizes a VAE instead of an autoencoder. We examine
3 modifiers that can be used with ObscureNet to anonymize sensor
data. These modifiers have no counterpart in Fader Networks.

Previous work on sensor data anonymization using autoencoders
has several shortcomings which are discussed in the next section.

2 RELATEDWORK
Privacy is a major issue in sensor-rich environments. While per-
vasive sensing and inconspicuous data collection bring about new
services, they can lead to major privacy concerns. As shown in
previous work, voice data collected by the built-in microphone of
virtual personal assistants and mobile phones, often without user’s
knowledge and consent, can be analyzed to infer their emotional
state and mental health condition [3, 12]. Similarly, cameras em-
bedded in mobile devices can collect sensitive and personal data,
especially in indoor environments [37]. According to [32], many
mobile apps extract information from camera data that users do
not expect. This can turn into visual privacy leaks if the app is
malicious, i.e., makes an unsolicited or intrusive inference on this
data, or when this data is sent to third-party servers for storage and
processing. Examples of intrusive inferences are gender inference
performed by a fitness tracking app [24] and building occupancy
detection using smart meter data [5].

Many different solutions have been proposed to date to protect
user privacy, ranging from physically disrupting the data collection
process when there is a risk of privacy infringement, to adopting
access-control mechanisms that contain the use of private data
by malicious apps, to transforming sensor data to conceal private
information before it is accessed by apps. To disrupt data collection,
as in [37] where an LED is used to generate flickering patterns,
the user must have control over the sensor or have the ability to
meddle with the environment. However, interfering with the data
collection process is not always possible and most related work
assumes that sensor data is already collected.

The privacy-preserving techniques can be broadly categorized
into hardware and operating system-level solutions, and application-
level solutions. The former category includes fine-grained access-
control mechanisms and isolated execution environments [20, 26,
29]. These solutions are usually tailored to specific use cases and are
incapable of preventing the leak of private information while main-
taining the utility of data. The latter category includes federated
learning frameworks [28], differential privacy algorithms [7, 31],
cryptographic solutions based on homomorphic encryption and
compressive sensing [1, 34], and privacy-preserving techniques that
transform data to a subspace where private attributes can be easily
identified and altered [8, 11, 24]. Federated learning addresses the
problem of training a model given data from many users without
transferring them to a server. It is not useful when a public dataset is
available for training the inference model, which is the assumption
we make in this work. Differential privacy algorithms endow users
with plausible deniability, but are not suitable for anonymizing
streaming sensor data on IoT devices. Existing methods based on
homomorphic encryption are computationally expensive. Hence,
privacy-preserving techniques that employ data transformation are
more favorable for efficient data anonymization on IoT devices.
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Deep generative models, such as Generative Adversarial Net-
works (GANs) [10], Autoencoders, and Variational Autoencoders
(VAE) [17], are extensively used to generate a realistic version of an
image which has a few differences with the original version (e.g.,
an image that has a different background color) [18, 19]. Apart from
image synthesis, generative models have been utilized to produce
synthetic time series datasets [2, 21, 22, 33]. For instance, in [2] a
Wasserstein GAN is used to generate balanced and realistic sen-
sor data for HAR. In a recent study [22], the authors propose a
framework based on GAN, called DoppelGANger, to generate net-
work time series data with 43% higher fidelity than other baselines.
Moreover, variants of autoencoders are commonly used to learn
useful representations, especially when multiple sensing modalities
are present. For example, autoencoders are used in [27] to learn a
shared representation between multiple modalities.

Inspired by advances in deep generative models, recent work on
data anonymization [24, 25] uses autoencoders to reconstruct the
input data such that private attributes are no longer identifiable.
This approach provides a reasonable trade-off between utility and
privacy by minimizing the leak of private information while pre-
serving the information content of the input data. However, the
data anonymized by these networks is shown to be susceptible
to the re-identification attack [11]. To address this shortcoming, a
probabilistic transformation technique is proposed in [11] which
manipulates private attributes such that the anonymized data is
less vulnerable to the re-identification attack. This approach has
several disadvantages. It requires a central entity to collect, update,
and propagate the mean of latent representations over time. Fur-
thermore, the anonymization does not preserve the information
content of the original data, reducing its utility.

To provide a better trade-off between privacy and utility, the
privacy adversarial network (PAN) is introduced in [23]. PAN learns
an encoder that generates features from the raw sensor data by
combining adversarial training with generative and discriminative
training. This work is different from ours as it aims to generate task-
specific features in a privacy-preserving manner, whereas our goal
is to construct an anonymized version of the sensor data. In [13],
segments of the time series that can be used for sensitive inferences
are black-listed, while other segments that can be used to make
desired inferences are white-listed. The authors propose the Gen-
erative Adversarial Privacy (GAP) framework to offer a trade-off
between utility and privacy. Replacement Autoencoder [25] builds
on this idea by adding grey-listed inferences, i.e., non-sensitive in-
ferences, to the white-listed and black-listed inferences introduced
in [13]. These techniques are more suitable for replacing activities
that are privacy intrusive, for example smoking and drinking. Ac-
cording to our evaluation (Section 6), race, gender or other private
attributes cannot be obscured using these techniques as white-listed
segments contain information about these attributes.

In [35], anonymization is performed through learning pertur-
bations in transforming raw sensor data. The goal of these trans-
formations are to reduce the sensitive inference accuracy while
maintaining the accuracy of desired inferences. The authors refer to
private attributes as style and public attributes as content. A trans-
formation is used to map the style to random noise. We compare the
anonymization performance of ObscureNet with the performance
of this method in Section 6 and show that our method is superior.

None of the above techniques introduce structure into the latent
representation of autoencoders and utilize it to control data at-
tributes in the synthesis process. We show through ablation studies
that learning latent representations in a supervised manner opens
the door to various anonymization techniques which differ in how
they modify the private attribute. It reduces the leak of private data
to a great extent and provides a better trade-off between utility and
privacy.

3 ENCODER-DECODER ARCHITECTURE
Let X be the domain of fixed-length embeddings of time series data
generated by one or several sensors, and Y and Ȳ be respectively
domains of private and public attributes that can be associated with
embeddings in X. Our dataset, D = {(𝑥1, 𝑦1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚, 𝑦𝑚)}
consists of𝑚 data embeddings, each denoted by 𝑥𝑖 , and their cor-
responding private and public attributes denoted by 𝑦𝑖 and 𝑦𝑖 . We
assume this dataset is publicly available, and can be used by anyone
to train models for desired and sensitive inferences1. We consider
categorical attributes such as mood, activity, and gender. Hence,
the private attribute takes value from A = {𝑎1, · · · , 𝑎𝐾 } and the
public attribute takes value from B = {𝑏1, · · · , 𝑏𝐾 }.

We present three autoencoder architectures below, and give
a mathematical derivation of the loss function in each case. The
main distinction between these architectures lies in their ability to
impose some structure into the latent space. We discuss different
approaches to incorporate structure into the latent representations
learned by a VAE, and explain how this structure helps change
private attributes associated with sensor data. The reason we focus
on autoencoders rather than GANs is that they represent the data
distribution more faithfully and provide a simple way to map data
to its latent representation, which can be manipulated to anonymize
data.

3.1 Variational Autoencoder
A VAE is an autoencoder comprised of a probabilistic encoder and a
probabilistic decoder which are instantiated as two neural networks.
The probabilistic encoder 𝑞𝜃 (𝑧 |𝑥𝑖 ) maps sensor data 𝑥𝑖 (or an em-
bedding of it) to a distribution (e.g., a multivariate Gaussian) over
low-dimensional continuous latent representations from which 𝑥𝑖
could have been generated. The probabilistic decoder 𝑝𝜙 (𝑥𝑖 |𝑧) pro-
duces a distribution over 𝑥𝑖 given its latent representation 𝑧. This
model can be used to generate a new version of the sensor data
denoted by 𝑥𝑖 . Note that 𝜃 and 𝜙 are network parameters that can
be learned jointly.

Instead of maximizing the marginal likelihood which is typi-
cally intractable, the VAE is trained to maximize a lower bound
on the marginal log-likelihood which is known as the evidence
lower bound (ELBO) [17]. This lower bound can be written for an
individual data point denoted by 𝑥𝑖 as follows:

ELBO𝑖 (𝜙, 𝜃 ) = E𝑧∼𝑞𝜃 (𝑧 |𝑥𝑖 )log 𝑝𝜙 (𝑥𝑖 |𝑧)− DKL
(
𝑞𝜃 (𝑧 |𝑥𝑖 ) | |𝑝 (𝑧)

)
(1)

The Kullback–Leibler (KL) divergence term in ELBO acts as a regu-
larizer for the approximate posterior.

In the training phase, we maximize the sum of 𝐸𝐿𝐵𝑂𝑖 over all
samples in D. This ensures that the encoder maximally preserves

1Preventing the membership inference attack is outside the scope of this paper.
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the information content of the input data and the decoder produces
data as close as possible to its original input.

Concealing private attributes with VAE: Suppose a VAE is
trained on D. If we knew which latent variable corresponds to a
given private attribute, we would be able to modify this attribute
before the new version of data is generated by the decoder. Unfortu-
nately this is not possible because latent representations are learned
in an unsupervised fashion. Hence, to perform anonymization we
have to modify all latent variables. This is the idea of the mean ma-
nipulation technique proposed in [11]. To perform anonymization
the authors calculate the mean latent representation of all samples
in D which have the same pair of public and private attributes.
These mean latent representations are then used to manipulate
the latent representation of an input data before it is passed to the
decoder.

The manipulation process proposed in [11] is based on two arith-
metic operations in the latent variable space of the VAE. Let us
denote the mean latent representation of all data points inD which
have private attribute𝑦 = 𝑎𝑖 and public attribute𝑦 = 𝑏 𝑗 by 𝑧

𝑏 𝑗
𝑎𝑖 . Now

consider the latent representation 𝑧𝑖 corresponding to 𝑥𝑖 which has
private attribute 𝑎𝑖 and public attribute 𝑏 𝑗 . The private attribute
can be changed to 𝑎𝑘 (𝑘 ≠ 𝑖) in the data generation process by
subtracting 𝑧𝑏 𝑗𝑎𝑖 from 𝑧𝑖 and adding back 𝑧𝑏 𝑗𝑎𝑘 :

𝑧′𝑖 = 𝑧𝑖 − 𝑧
𝑏 𝑗
𝑎𝑖 + 𝑧

𝑏 𝑗
𝑎𝑘

The new latent representation is then used by the probabilistic
decoder to produce 𝑥𝑖 . Note that the target private attribute for the
new version of data, i.e., 𝑎𝑘 , can be chosen in a deterministic or
probabilistic fashion.

We call this technique anonymization with a general VAE and use
it as a baseline in Section 6. As we discuss in that section, the mean
manipulation technique can lower the accuracy of intrusive infer-
ences, but at the cost of reducing the accuracy of desired inferences.
Moreover, tracking changes in the mean latent representation of
a specific class of data points and propagating these changes to
mobile and IoT devices performing anonymization is difficult.

3.2 Conditional Variational Autoencoder
While variational autoencoders are suitable for learning unsuper-
vised latent representations of data, the learned latent variables
cannot be explained or mapped to salient attributes of input data.
Learning useful latent variables that correlate to specific attributes
in the dataset has received a lot of attention in recent years [16, 18].
Several efforts have been made to date to incorporate structure into
latent representations in a supervised or semi-supervised fashion.
Related work such as [16, 30] introduces structure in the latent
space by conditioning latent variables on the attributes. This can be
accomplished by directly incorporating these features into the la-
tent representation as in the conditional VAE (CVAE). Specifically, a
CVAE conditions the encoder, the decoder, or both on random vari-
ables representing data attributes. Thus, the probabilistic encoder
and decoder can be written as 𝑞𝜃 (𝑧 |𝑥𝑖 , 𝑐) and 𝑝𝜙 (𝑥𝑖 |𝑧, 𝑐), where the
condition 𝑐 can be a certain attribute of input data which we wish
to encode. For example, it can be the private or public attribute(s)
associated with an individual data point in a labelled dataset.

y x

z

y x

z

Encoder Decoder

Figure 1: Graph diagram of encoder and decoder of a CVAE.

The variational lower bound of CVAE can be derived from (1).
The lower bound for an individual data point can be written as:

E𝑧∼𝑞𝜃 (𝑧 |𝑥𝑖 ,𝑐)log 𝑝𝜙 (𝑥𝑖 |𝑧, 𝑐) − DKL
(
𝑞𝜃 (𝑧 |𝑥𝑖 , 𝑐) | |𝑝 (𝑧)

)
(2)

This objective is maximized using a stochastic optimization method
to train the autoencoding model. In practice the condition and
learned latent variables can be concatenated before they are passed
to the decoder for reconstructing the data. Figure 1 shows the
encoder and decoder of a CVAE.

Concealing private attributeswith conditionalmodels:We
can use the CVAE framework as a basis for data anonymization.
If the CVAE model is conditioned on the private attribute of data,
we can manipulate the private attribute of the reconstructed data,
𝑥𝑖 , through a simple modification of the condition variable. This
allows us to change the condition of the CVAE from 𝑦𝑖 to 𝑦′𝑖 to
change the private attribute of the reconstructed data from 𝑦𝑖 to 𝑦′𝑖 .

Consider a variant of this technique where a separate CVAE is
trained for each public attribute. It helps address the data imbalance
problem in training autoencoders as samples with different public
attributes are not evenly distributed in D. We call this technique
anonymization with attribute-specific CVAEs and use it as a baseline
in Section 6. Interestingly, the same technique can be used with a
conditional autoencoder (CAE) where the loss function does not
have the KL divergence term. We call this technique anonymization
with attribute-specific CAEs and use it as a baseline in Section 6.

3.3 Adversarial Information Factorization
The condition variable in the CVAE model can be utilized to alter
a certain attribute of the reconstructed data. However, the leak of
information about this attribute to latent variables undermines the
ability to change this attribute without affecting other aspects of
the reconstructed data. This problem can be mitigated by enforcing
and maximizing the disentanglement between latent variables and
the condition variable. Specifically, learning attribute-invariant
latent variables [19] can be achieved through the incorporation of
an adversarial objective into the CVAE’s ELBO expressed in (2).
Similar to [6, 19], the condition variable in this case is not fed to
the encoder to produce a latent representation; this changes the
term 𝑞𝜃 (𝑧 |𝑥𝑖 , 𝑐) in (2) to 𝑞𝜃 (𝑧 |𝑥𝑖 ).

Using adversarial training the networks can be trained so as
to disentangle the condition from the latent representation [19].
Here, we train a neural network, Disc : 𝑍 → 𝐶 , that is trained in
conjunction with the CVAE. The neural network Disc is trained to
infer the true condition corresponding to each latent representation
𝑧. Moreover, the encoder is trained to undermine the accuracy of
the adversarial model by learning latent variables that capture the
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least possible amount of information about the condition. We use
this idea in the design of ObscureNet which is described next.

4 OBSCURENET
ObscureNet is an encoder-decoder architecture that can be aug-
mented with as many discriminator networks as there are private
attributes. Each discriminator network predicts the probability dis-
tribution over one private attribute given the latent variables. Fig-
ure 2 shows the architecture of ObscureNet when there is only
one private attribute associated with the sensor data that we wish
to protect. ObscureNet conditions the decoder on the private at-
tributes (similar to a CVAE) and performs adversarial information
factorization to ensure that the learned latent representation is
invariant to the private attributes.

In essence, by combining the best of conditional deep generative
models and information factorization, ObscureNet can modify the
private attributes without affecting the information about public at-
tributes which are included in the synthesized time series data. An
advantage of this design is that the obfuscation of private attributes
reduces to a simple modification of the decoder’s condition vari-
ables. This modification can be either deterministic or probabilistic
as discussed in Section 4.2. We now describe how ObscureNet is
trained given a dataset of samples with known private and public
attributes. This training can be done in a cloud server, or on the IoT
device if it has access to the public dataset used for training (i.e.,D).
If the network is trained in the cloud, the weights and parameters
of the encoder and decoder networks must be sent to IoT devices
that run ObscureNet locally to anonymize their data.

4.1 Adversarial Training
We first describe how the ELBO of a CVAE is modified for training
an encoder-decoder architecture that learns a latent representation
containing little or no information about the private attributes. We
then outline the process of training ObscureNet using an iterative
minimax algorithm [19]. Without loss of generality and for ease
of presentation, in the following, we consider the case that there
is only one private attribute we want to conceal. Should there be
more private attributes, the decoder must be conditioned on all
these attributes and the adversarial loss function should include
the cross-entropy loss of multiple discriminators.

Figure 2 shows the architecture of ObscureNet and the flow of
gradients through the networks. In ObscureNet, the CVAE is aug-
mented with a discriminator network which outputs 𝑃𝜂 (𝑦 |𝑧), i.e.,
private attribute class-membership probabilities given the latent
representation of input data. Here, 𝜂 represents trainable parame-
ters of the discriminator. If the private attribute and learned latent
variables are completely disentangled, the discriminator would not
be able to predict the private attribute.

The discriminator network can be trained using binary or cate-
gorical cross-entropy loss depending on whether the corresponding
private attribute is binary (e.g., male or female) or categorical (e.g.,
weight). The loss of the discriminator network, L𝑑𝑖𝑠𝑐 , is:

L𝑑𝑖𝑠𝑐 (𝜂 |𝜃 ) = −
1

𝑚

∑
(𝑥,𝑦) ∈D

log 𝑃𝜂 (𝑦 |𝑧) = −
1

𝑚

∑
(𝑥,𝑦) ∈D

log 𝑃𝜂 (𝑦 |𝐺𝜃 (𝑥)),

(3)

Discriminator 	

Sam
pling

Latent	R
ep.

Encoder D
ec
od
er

Ladv

Ladv

Ldisc

Figure 2: Training of ObscureNet

where𝑚 is the number of samples in D and 𝐺𝜃 (𝑥) is a function
that compactly represents both the encoding of input and sampling
𝑧 from a multivariate Gaussian distribution. This is similar to the
reparameterization trick used in [17].

The adversarial loss function can be written as:

L𝑎𝑑𝑣 (𝜃, 𝜙 |𝜂) = −
1

𝑚

∑
(𝑥,𝑦) ∈D

(
E𝑧∼𝑞𝜃 (𝑧 |𝑥)log 𝑝𝜙 (𝑥 |𝑧,𝑦)

− 𝛽 𝐷KL
(
𝑞𝜃 (𝑧 |𝑥) | |𝑝 (𝑧)

)
− 𝛼 log 𝑃𝜂 (𝑦 |𝐺𝜃 (𝑥))

)
(4)

It combines the discriminator loss (3) with CVAE’s ELBO from (2).
We use the standard scalarization method and introduce weights
that determine the relative importance of different terms in the
adversarial loss function. The weights 𝛼 and 𝛽 are respectively
assigned to the discriminator loss and the KL-divergence term. We
treat these weights as hyperparameters and tune them in Section 6
to navigate the trade-off between utility and privacy.

ObscureNet is trained using an iterative algorithm, described in
Algorithm 1. The discriminator is trained to predict 𝑦 given 𝑧 while
the CVAE is trained to minimize the accuracy of the discriminator
in addition to minimizing the loss function of the CVAE. While
training the discriminator with parameter 𝜂, gradients are stopped
from updating the CVAE network parameters: 𝜃 and 𝜙 . In the same
respect, gradients are stopped from updating the parameter of the
discriminator network when training the CVAE.

Algorithm 1 shows the minibatch gradient descent for training
ObscureNet, where 𝐵 is the size of the minibatch. Both forward and
the backward passes of ObscureNet’s adversarial training can be
seen in the pseudocode.

We remark that ObscureNet utilizes a different set of encoder
and decoder networks for each public attribute. Each pair of these
networks are trained separately using only samples in D that have
the same public attribute. We argue that this helps to reduce the
number of layers and neurons in the neural networks, making it
easier to run ObscureNet on resource-constrained devices3.

4.2 Anonymization with ObscureNet
After training the networks in an adversarial setting, we use them
to perform anonymization before sharing sensor data with third-
party applications that run locally or uploading it to cloud servers
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Algorithm 1: Training ObscureNet
Data: Training dataset D, learning rate 𝜆, minibatch size 𝐵
Result: Network parameters 𝜃 , 𝜙 , 𝜂
𝜃, 𝜙, 𝜂 ← initial values
repeat

Sample a minibatch: {𝒙1, · · · , 𝒙𝐵}
/* pass samples through the networks */

𝝁,𝝈 ← Enc(𝒙;𝜃 )
𝝐 ∼ 𝑁 (0, 𝐼 )
𝒛 ← 𝝁 + 𝝈 ⊙ 𝝐

𝒙 ← Dec(𝒛, 𝑦;𝜙)
𝑃 (𝑦 |𝒛) ← Disc(𝒛;𝜂)
Estimate gradients of minibatch
/* Update parameters using gradients */

𝜂 ← 𝜂 - 𝜆∇𝜂 L𝑑𝑖𝑠𝑐 (𝜂 |𝜃 )
{𝜃, 𝜙} ← {𝜃, 𝜙} - 𝜆∇{𝜃,𝜙 } L𝑎𝑑𝑣 (𝜃, 𝜙 |𝜂)

until convergence of parameters (𝜃 , 𝜙 , 𝜂)

which host these applications. In particular, sensor data embed-
dings are passed through ObscureNet which obscures their private
attributes, i.e., generates a new version of each embedding with
private attribute(s) that might be different from the original version.
This process is depicted in Figure 3. Keep in mind that the encoder
and decoder are the same networks trained using samples inD. As
it can be seen, in addition to encoder and decoder networks, we
take advantage of a classification model that is trained separately
to identify the public and private attributes associated with each
sample in the test dataset. These attributes are denoted by ^̄𝑦 and
𝑦 respectively. The classification model will be needed as the true
public and private attributes associated with the input data are not
known at anonymization time. The identification of public attribute
is necessary to select a CVAE network for ObscureNet as discussed
in the previous section.

Three different anonymization techniques can be implemented
using ObscureNet. We refer to these techniques as deterministic
modification, probabilistic modification, and randomized approach.
They differ in whether they utilize the identified private attribute,
and how they modify this attribute before it is used as a condition
for the probabilistic decoder. We explain each of these approaches
below.

4.2.1 Deterministic modification of the identified private attribute.
This anonymization technique involves an injective function which
deterministically maps each private attribute class in A to a differ-
ent class in that set. This injective function is labelled as private
attribute modifier in Figure 3. The identified private attribute (i.e.,
output of the classifier) is changed through the use of this modifier.
We then pass the one-hot encoding of its output along with the
latent representation of input data to the decoder which produces
a new version of the input data, denoted by 𝑥 .

4.2.2 Probabilistic modification of the identified private attribute.
Probabilistic modification is similar to the deterministic one with
one exception: the mapping of private attributes is done probabilis-
tically. That is, one of the 𝐾 private attribute classes, 𝑎1, · · · , 𝑎𝐾 , is

Algorithm 2: Sensor Data Anonymization w/ ObscureNet
Data: Data embedding 𝒙 , autoencoder parameters 𝜃, 𝜙
Result: Anonymized embedding 𝒙
𝑦, ^̄𝑦 ← Classify(𝒙)
𝝁,𝝈 ← Enc ^̄𝑦 (𝒙;𝜃 )
𝝐 ∼ 𝑁 (0, 𝐼 )
𝒛 ← 𝝁 + 𝝈 ⊙ 𝝐

𝑦′ ← Modify(𝑦) // or 𝑦′ ← Randomize()

𝒙 ← Dec ^̄𝑦 (𝒛, 𝑦′;𝜙)

picked at random for each sample in the test dataset and the decoder
is fed the one-hot encoding of this private attribute class along with
the latent representation of data. The probabilistic modification is
an effective defence against the user re-identification attack as we
discuss in Section 6.

4.2.3 Randomized approach. The third anonymization technique
eliminates the need for a classification model to identify the pri-
vate attribute. Rather than identifying the private attribute first
and modifying its one-hot encoding, it simply passes a stochastic
vector along with the latent representation of data to the decoder to
produce a new version of this data. A stochastic vector is a vector
of size 𝐾 with non-negative entries that add up to 1. This technique
aims to prevent user re-identification, but is simpler than the prob-
abilistic modification technique as it does not require training an
additional classification model for the private attribute.

Algorithm 2 shows the steps of the deterministic and proba-
bilistic modification techniques. In the randomized approach, a
randomly generated stochastic vector is used instead of the one-hot
encoding of 𝑦′. In Section 6, we compare the three anonymization
techniques presented above in terms of their ability to prevent user
re-identification.

5 DATASETS
We use two open HAR datasets, namely MotionSense and MobiAct,
to evaluate the efficacy of ObscureNet and other baseline methods
from Section 3 in reducing the accuracy of intrusive inferences
about private attributes of data while maintaining the accuracy of
desired inferences about its public attributes. We describe these
datasets below and elaborate on the process of creating embeddings
of time series data generated by sensors.

5.1 MobiAct Dataset
The MobiAct [4] dataset is comprised of IMU readings from ac-
celerometer and gyroscope sensors. The readings are collected
from 66 subjects performing 12 different activities including walk-
ing, running, climbing up and down the stairs. We consider data
from a group of 37 subjects only to create a more balanced dataset
which has roughly the same number of male and female subjects.
Out of the 37 subjects we select, 17 are female and the remaining
20 are male. Also from the 12 different activities captured in the
dataset, we consider the following 4 activities: walking, standing,
jogging, and climbing up the stairs. We choose these activities for
two reasons. First, these are the same activities captured in the
MotionSense dataset so we can make a comparison between the
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Figure 3: Anonymization with ObscureNet.

two datasets. Second, limiting our study to these activities partly
addresses the class imbalance problem.

We assume in our experiments that the activity exercised by
a subject is the public attribute and must be inferred by a fitness
tracking application. However, the weight and gender of the subject
are deemed private and their inference by this application or other
third-party applications is regarded a violation of user privacy.
We model gender as a binary attribute since these are the two
classes that are present in our dataset. Wemodel weight as a ternary
attribute using a simple binning strategy which tries to assign
roughly the same number of subjects to each bin. This helps to
address the class imbalance problem. In particular, subjects who
weigh less than or equal to 70 kg are assigned to weight-group 0.
Subjects who weigh between 70 and 90 kg are assigned to group 1
and the rest are assigned to weight-group 2.

5.2 MotionSense Dataset
The MotionSense [24] dataset is collected by accelerometer and
gyroscope sensors of an iPhone 6s using the Sensing Kit frame-
work [15]. The data obtained from accelerometer and gyroscope
has a sampling rate of 50 Hz. Each reading consists of 12 features,
including attitude (roll, pitch, yaw), gravity, rotation rate, and user
acceleration in three dimensions. As described in [24], data collec-
tion occurred when the smartphone was placed inside the pocket
of the subjects wearing fit clothing.

MotionSense contains data from 24 subjects (14 male and 10
female subjects). Each individual in this dataset performs 15 trials
of 6 different activities. These activities include climbing up and
down the stairs, walking, jogging, sitting, and standing. The subjects
in this dataset have a wide range of values for their age, weight,
and height. Following [24] we combine the standing and sitting
activities into one activity. This is done because it is difficult to tell
apart these two activities using acceleration readings. Similar to the
MobiAct dataset, we assume in our experiments that the activity
exercised by a subject is the public attribute.We also assume that the
gender identity of subjects is the private attribute and a third-party
application should not be able to detect it.

From all the 15 trials, we use trials 11, 12, 13, 14, 15, and 16 to
build our test set. This is similar to the test set in [24].

5.3 Embedding Sensor Data
It is shown in related work that activities can be identified more
accurately if a number of consecutive IMU samples are analyzed at
once. We call this an embedding of sensor data. To create our data
embeddings, we use a window of size 128 samples. The window is
moved with strides of 10 samples to create the next embedding. For
the MotionSense dataset, we combine features along the three axes
to create one feature (i.e., the magnitude). However, for the MobiAct
dataset we use readings along the three axes as three separate
features. Our experiments suggest that using three-dimensional
sensor data increases the model accuracy.

We use a trial-based partitioning of training and test data for
MotionSense, and a partitioning for MobiAct dataset with 80%
training set and 20% test set.

6 EVALUATION
We implemented ObscureNet in Python using Keras and PyTorch
libraries. It is an open-source package and can be downloaded from
our GitHub repository2. The encoder and decoder are instantiated
as neural networks with 5 layers and ReLU activation function in
hidden layers. We set the number of latent variables to 10 and 5 in
MotionSense and MobiAct datasets, respectively. The discriminator
network is a multilayer perceptron model (MLP) with 4 layers.

We use Convolutional Neural Networks (CNNs) as sensitive and
desired inference models (the right side of Figure 3). These models
are used to assess data utility and privacy loss (i.e., accuracy of
sensitive and desired inferences) before and after anonymization.
We use max pooling and dropout layers to avoid overfitting.

Other baseline methods are implemented in Python using Keras
and PyTorch libraries. In addition to these baselines, we compare
against the state-of-the-art autoencoder-based anonymization tech-
niques, i.e., Anonymization Autoencoder (AAE) [24]. We obtained
their implementation from GitHub and ran it on both datasets.

6.1 Comparison with Baselines
We compare ObscureNet with the baseline anonymization meth-
ods discussed in Section 3. Unless otherwise stated, ObscureNet is

2https://github.com/sustainable-computing/ObscureNet
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trained with hyperparameters that are set as follows: 𝛼 = 0.2 and
𝛽 = 2. We consider the following baseline methods:
• ‘General VAE’ and ‘Attribute-specific VAE’ which rely on
the mean manipulation technique explained in Section 3.1.
The only distinction between these two methods is that the
former, which is the method proposed in [11], uses a single
VAE to anonymize all samples regardless of the value of their
public attribute. The latter, however, trains different VAEs
for different public attributes. At anonymization time, it first
detects the public attribute of input data and then chooses
the appropriate VAE for learning andmanipulating the latent
representation.
• ‘Attribute-specific CAE’ and ‘Attribute-specific CVAE’ are
conditional generative models where the condition repre-
sents the private attribute. Data is anonymized by altering
the condition variable before sending it to the decoder as
discussed in Section 3.2. The difference between these two
baselines is that in the former the condition is introduced
in a vanilla autoencoder (resembling the architecture of
Fader Networks which are developed for manipulating im-
ages [19]), whereas in the latter the condition is introduced
in a variational autoencoder. Both methods train and utilize
different autoencoders for different public attributes.
• ‘Anonymization Autoencoder (AAE)’ which is proposed
in [24]. It does not uses conditional generative models. In-
stead it takes advantages of several regularizer models for
adversarial training.

Moving from the top to the bottom of this list, the baseline meth-
ods combine different ideas to increase disentanglement of latent
variables, making them more efficient and capable of concealing
private attributes. Through ablations, we highlight the importance
of incorporating each of these ideas in the design of ObscureNet,
which essentially adds adversarial information factorization to the
‘Attribute-specific CVAE’ baseline and leverages non-deterministic
private-attribute modifiers to prevent re-identification of private
attributes after anonymization.

6.1.1 Accuracy of Sensitive and Desired Inferences. As the first step
in our evaluation, we look at the accuracy of sensitive and desired
inference models when their input is the original data and when it
is the data anonymized by ObscureNet and other baselines. We eval-
uate these methods in three different anonymization tasks: gender
anonymization in MotionSense, gender anonymization in MobiAct,
and finally weight-group anonymization in MobiAct. Activity de-
tection is the desired inference in all three tasks. We only study
the problem of hiding a single private attribute. An extension to
the case where there are multiple private attributes to be obscured
simultaneously is discussed in Section 6.3.

The results reported for ObscureNet in this section are obtained
using a deterministic private attribute modifier. We argue that if
the deterministic modifier can reduce the accuracy of a sensitive
inference to zero, through randomization, we can achieve the level
of accuracy of a random guess. This also prevents re-identification
of private attributes. Thus, we favour a lower accuracy for sensitive
inferences.

Table 1 shows the inference accuracy achieved when using the
output of different baselines and ObscureNet in the MotionSense

gender anonymization task. Moreover, the overall F1-scores for ac-
tivity and gender inferences are given in the last two columns. The
first row, labelled ‘Original Data’, indicates the accuracy of activity
and gender inference models on the original (unanonymized) data.
It can be readily seen that using attribute-specific VAEs improves
the F1-score of activity inference from 65.51% obtained by a Gen-
eral VAE to 72.45%. This can be attributed to the fact that having a
specific VAE for each public attribute can partly address the imbal-
ance problem in the training data3. Unfortunately this comes at the
price of increasing the F1-score of gender inference. Comparing
attribute-specific CAE and attribute-specific CVAE, we observe that
both methods achieve comparable results for activity inference, but
attribute-specific CVAE can effectively lower the gender inference
accuracy and F1-score. We attribute this to the fact that variational
autoencoders increase disentanglement of latent variables and al-
low for easy generalization compared to vanilla autoencoders. We
witness that the four baseline methods we discussed so far either
fail to obscure the private data or significantly reduce its usefulness
for desired inferences.

The Replacement Autoencoder [25] cannot successfully obscure
gender as the average accuracy results of activity and gender infer-
ences are 96.3% and 97.1%, respectively. AAE [24] significantly
reduces the gender inference accuracy, but cannot beat ObscureNet.
ObscureNet reduces the F1-score of gender inference by an addi-
tional 36%. This is done while achieving a comparable activity
inference F1-score with the best baseline methods. It is worth men-
tioning that going downstairs is the most difficult activity to detect
after concealing the gender attribute. Comparing ObscureNet with
the technique proposed in [35], which reduces the gender inference
accuracy to roughly 60% as reported by the authors, we can con-
clude that our anonymization technique has better performance4.

Next, we investigate gender anonymization results from the Mo-
biAct dataset. Table 2 shows the accuracy of activity and gender
inferences on the original data and the data anonymized by Ob-
scureNet and baseline methods. The results are quite similar to the
gender anonymization results from the MotionSense dataset. In
this case going upstairs is the most difficult activity to detect after
concealing the gender attribute. Compared to AAE, ObscureNet
can significantly decrease the accuracy and F1-score of gender in-
ference (by more than 30%) with a small loss of data utility (∼ 6%).
Compared to attribute-specific CVAEs which has the best perfor-
mance among the baselines, ObscureNet can decrease the F1-score
of gender inference by an additional 8%.

Lastly, we consider weight-group anonymization results from
the MobiAct dataset. Recall that weight-group is a ternary private
attribute; thus, this experiment is to check if ObscureNet can hide
non-binary private attributes. It can be readily seen from Table 3
that ObscureNet outperforms all baselines in terms of the intrusive

3It also reduces the size of the model. To illustrate this, we calculated the total
size of the general VAE and multiple VAEs models. The general VAE model, for the
MotionSense dataset, has 24.5 million trainable parameters. In case of the MobiAct
dataset, the general model has 8.7 million trainable parameters. Each of the attribute-
specific VAEs has 1.7 million trainable parameters in case of the MobiAct dataset (a
total of roughly 7 million trainable parameters for all VAEs) and 0.5 million trainable
parameters in case of the MotionSense dataset (a total of 2 million trainable parameters
for all VAEs).

4We were unable to reproduce the results of [35] and did not find their code in a
public repository. Hence, we cannot use it as a baseline in the MobiAct dataset.
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Table 1: Gender anonymization results from the MotionSense dataset. For each activity, the number of embeddings in the test
set used for evaluation is shown in parentheses.

Method
Inference Accuracy Accuracy/F1-score

Downstairs (1.9k) Upstairs (2.5k) Walking (6.2k) Jogging (2.7k) Overall
Activity Gender Activity Gender Activity Gender Activity Gender Activity Gender

Original Data 95.58% 87.67% 93.19% 90.86% 98.71% 95.16% 97.28% 95.5% 96.93 / 95.90% 93.35 / 93.10%
General VAE 71.49% 38.62% 80.24% 28.34% 91.5% 45.12% 83.43% 38.61% 84.80 / 65.51% 39.72 / 38.05%

Attribute-specific VAEs 91.94% 76.22% 85.09% 64.05% 93.14% 77.9% 97.02% 23.12% 77.77 / 72.45% 63.94 / 61.95%
Attribute-specific CAEs 92.81% 63.74% 92.75% 77.60% 98.46% 76.13% 97.21% 85.52% 96.33 / 95.23% 76.54 / 74.81%
Attribute-specific CVAEs 92.09% 60.25% 93.31% 71.78% 96.13% 52.98% 96.8% 72.90% 95.39 / 94.05% 61.60 / 59.30%

AAE [24] 84.65% 57.91% 97.18% 57.64% 91.82% 52.89% 99.65% 46.23% 93.39 / 92.01% 53.15 / 42.83%
ObscureNet 87.52% 27.48% 92.83% 19.0% 98.71% 15.94% 96.87% 10.5% 95.63 / 94.23% 17.06 / 16.34%

Table 2: Gender anonymization results from the MobiAct dataset. For each activity, the number of embeddings in the test set
used for evaluation is shown in parentheses.

Method
Inference Accuracy Accuracy/F1-score

Walking (42.9k) Standing (43.2k) Jogging (4.2k) Upstairs (1k) Overall
Activity Gender Activity Gender Activity Gender Activity Gender Activity Gender

Original Data 98.09% 99.63% 99.53% 95.52% 99.78% 99.28% 95.45% 94.47% 98.82 / 91.46% 97.61 / 97.52%
General VAE 92.34% 88.53% 98.56% 63.83% 90.52% 87.07% 52.93% 66.47% 94.77 / 77.55% 76.54 / 76.49%

Attribute-specific VAEs 95.48% 90.06% 99.63% 52.73% 98.14% 93.36% 93.32% 82.68% 97.54 / 86.23% 72.53 / 75.63%
Attribute-specific CAEs 93.22% 25.06% 99.59% 80.89% 97.47% 75.68% 94.82% 78.45% 96.45 / 83.15% 54.39 / 54.37%
Attribute-specific CVAEs 92.66% 14.65% 99.65% 28.75% 96.55% 25.67% 94.3% 58.81% 96.16 / 81.86% 22.31 / 22.35%

AAE [24] 96.96% 58.13% 99.61% 42.12% 99.61% 56.72% 84.44% 58.60% 98.19 / 87.98% 50.49 / 45.73%
ObscureNet 91.82% 5.39% 99.54% 23.48% 96.11% 10.55% 91.10% 24.46% 95.66 / 81.23% 14.39 / 14.28%

Table 3: Weight-group anonymization results from the MobiAct dataset. For each activity, the number of embeddings in the
test set used for evaluation is shown in parentheses.

Method
Inference Accuracy Accuracy/F1-score

Walking (42.9k) Standing (43.2k) Jogging (4.2k) Upstairs (1k) Overall
Activity Weight Activity Weight Activity Weight Activity Weight Activity Weight

Original Data 98.17% 97.42% 99.55% 85.85% 99.74% 93.36% 95.16% 76.69% 98.86 / 91.96% 91.53 / 91.95%
General VAE 81.88% 46.86% 90.34% 44.59% 54.73% 56.13% 18.47% 47.15% 83.94 / 59.84% 46.22 / 37.14%

Attribute-specific VAEs 92.83% 70.04% 99.66% 71.79% 97.7% 53.87% 93.33% 61.34% 96.29 / 81.79% 70.03 / 65.51%
Attribute-specific CAEs 94.23% 49.75% 99.65% 76.85% 97.82% 88.21% 94.87% 59.79% 96.97 / 84.22% 64.45 / 64.21%
Attribute-specific CVAEs 94.88% 26.59% 99.7% 19.37% 94.59% 53.55% 95.44% 51.41% 97.15 / 84.28% 24.69 / 21.46%

AAE [24] 97.39% 63.77% 99.35% 50.15% 98.91% 72.66% 90.91% 57.16% 98.32 / 88.50% 57.66 / 56.44%
ObscureNet 94.22% 7.58% 99.59% 14.12% 96.40% 21.07% 91.37% 29.5% 96.83 / 83.40% 11.54 / 10.80%

inference accuracy by a huge margin. This is while it only reduces
the data utility slightly, i.e., by less than ∼ 6% compared to AAE.

To conclude, our experiments show that ObscureNet outperforms
the baselines and autoencoder-based anonymization techniques
from related work in all three tasks we studied in this section.
In particular, it obscures gender in the MotionSense dataset while
yielding the same utility as the best baseline. In the MobiAct dataset,
it completely obscures gender and weight-group with a small loss
of data utility. We believe that data utility can be further improved
by using different hyperparameters as discussed in Section 6.2.
In the next section, we examine the effects of different private-
attribute modifiers and corroborate that ObscureNet can prevent
re-identification of private attributes thanks to non-deterministic

modifications of these attributes. This is a major improvement over
other autoencoder-based anonymization techniques [24, 25].

6.1.2 Non-deterministic Anonymization. In this section, we com-
pare the three anonymization techniques which can be imple-
mented using ObscureNet and were described in Section 4.2. Two
of the three techniques, namely probabilistic modification and ran-
domized approach, add randomness to the anonymization process.
This can effectively prevent an adversary from passing a dataset
with known private attributes through ObscureNet and training a
model to recover the original data based on the anonymized data
and true private attributes.
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Table 4 shows the accuracy of desired and sensitive inferences
when the private attribute (noted in parentheses) is obscured us-
ing ObscureNet. Expectedly, the deterministic modifier yields the
lowest sensitive inference accuracy because, unlike the other two
techniques, it modifies the private attribute at all times. However,
as we discuss in the next section, private attributes can be easily
re-identified due to the deterministic nature of this anonymization.
Results for the other two techniques are quite similar; they can
reduce the intrusive inference accuracy to the level of a random
guess. A nice property of the randomized approach is that it does
not need to use a model to detect the private attribute before mod-
ifying it. This makes it a suitable and more practical choice for
anonymization on resource-constrained devices.

6.1.3 Re-identification Accuracy. In the previous section, the ability
of ObscureNet to anonymize private data was evaluated in deter-
ministic and non-deterministic cases. Although the deterministic
private-attribute modifier does a better job of reducing the accuracy
of a sensitive inference, we show here that it cannot prevent the
re-identification attack.

The re-identification attack exploits the deterministic nature of
data anonymization to foil the anonymization process [11]. Suppose
20% of the anonymized data is leaked to the attacker, i.e., they know
the true private attribute associated with this data and can leverage
this knowledge to train a model to re-identify the true attribute of
the rest of data. To get this 20%, we randomly choose 20% of the
anonymized data and evaluate the accuracy of the re-identification
attack. We do 20 independent runs and report the average and
standard deviation of the accuracy of the re-identification model.
Figure 4 illustrates that both ObscureNet and Anonymization Au-
toencoder [24] fail to completely prevent the re-identification at-
tack due to the deterministic nature of anonymization they perform.
However, probabilistic modification and randomized approach can
both greatly reduce the accuracy of a re-identification model.

Figure 4 shows that the randomized approach, which is easier
to deploy than the probabilistic attribute modifier, has nearly the
same performance as the probabilistic one in the gender anonymiza-
tion task. But, in the weight-group anonymization task, it further
reduces the re-identification accuracy by roughly 13%.

6.2 Investigating Utility-Privacy Trade-offs
In this section, we investigate how the anonymization performance
of ObscureNet can be enhanced by adjusting the two hyperparam-
eters, 𝛼 and 𝛽 , when networks are being trained. Furthermore. we
explore if users can trade utility for privacy by adjusting the hyper-
parameters. For brevity, we only study the gender anonymization
problem using the MotionSense dataset and report the results when
the deterministic attribute modifier is adopted. Since we neglect the
possibility of user re-identification in this stage, the best anonymiza-
tion technique would be the one that reduces the accuracy of the
sensitive inference to zero.

Recall the adversarial loss function of ObscureNet expressed in
Equation (4). Intuitively, higher 𝛼 encourages information factoriza-
tion, which subsequently prevents the leak of private information
through the latent representation. But it can lower the reconstruc-
tion quality because VAE’s ELBO gets a lower relative importance.
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Figure 4: Comparing the inference accuracy of the re-
identification model averaged over 20 runs on the sensor
data anonymized by ObscureNet using different attribute
modifiers. Error bars show 2𝜎 from the mean.

Similarly, higher 𝛽 encourages the disentanglement of latent vari-
ables but reduces the reconstruction quality. Thus, it is possible to
achieve different utility-privacy trade-offs by tuning 𝛼 and 𝛽 .

Figures 5 and 6 show respectively the accuracy of desired and
sensitive inferences and how it changes with 𝛼 and 𝛽 values. We
consider 6 values of 𝛽 and 4 values of 𝛼 ; these values are inten-
tionally chosen from the logarithmic scale to examine the range
of behaviour we can expect from ObscureNet. We assume 𝛽 can
take values from {0.1, 0.2, 0.5, 1, 2, 10} and 𝛼 can take values from
{0.1, 0.2, 1, 10}.

As it can be seen from Figure 5, for a fixed value of 𝛼 , shifting
𝛽 to the two extremes, i.e., 10 or 0.1, would diminish the utility
of data, although the decline in utility is more pronounced when
𝛽 = 10. Another observation is that for a fixed 𝛽 , the value of 𝛼 does
not seem to drastically affect the utility of data unless it is equal
to 10. We attribute this to the fact that when 𝛼 = 10, information
factorization overwhelms the VAE’s reconstruction loss.

In Figure 6, we can see that increasing the value of 𝛽 from 0.2 to
2 lowers the accuracy of the sensitive inference in general. However,
moving 𝛽 to any of the two extremes diminishes the anonymization
performance of the ObscureNet for all 𝛼 values. Comparing the
curves for different values of 𝛼 suggests that 𝛼 = 0.1 is almost
always better than other values of 𝛼 regardless of the value of 𝛽 .

Considering the accuracy of both desired and sensitive infer-
ences, it turns out setting 𝛼 to 0.2 and changing 𝛽 between 0.1 and
2 yields the Pareto frontier. For example, the user can trade utility
for privacy by setting 𝛽 to 2 and do the opposite by setting 𝛽 to
0.1. While we only tried a small number of choices for 𝛼 and 𝛽 , we
already showed that it is possible to navigate the privacy-utility
trade-off by tuning these weights.

6.3 Obscuring Multiple Private Attributes
We now turn our attention to the case where there are multiple
private attributes. Specifically, we treat gender and weight-group of
subjects in the MobiAct dataset as private attributes and consider
their activity as the public attribute. We evaluate the anonymization
performance of a single ObscureNet model, which can hide both
private attributes at the same time, with deterministic, probabilistic,
and randomized modifiers. In this case, ObscureNet conditions
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Table 4: Accuracy of sensitive and desired inferences using ObscureNet with different private-attribute modifiers in the three
anonymization tasks.

Original data Random guess Deterministic Probabilistic Randomized
Activity Private Private Activity Private Activity Private Activity Private

MotionSense (Gender) 96.94 93.33 50.00 95.61 16.95 96.02 54.32 95.99 58.49
MobiAct (Gender) 98.82 97.52 50.00 95.72 14.43 97.02 52.70 96.26 54.20
MobiAct (Weight-group) 98.84 91.67 33.33 96.86 11.47 97.57 49.78 97.45 43.02
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Figure 5: The accuracy of activity inference with varying 𝛼
and 𝛽 values. Note that the x-axis has logarithmic scale and
the y-axis is exaggerated.
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Figure 6: The accuracy of gender inference with varying 𝛼
and 𝛽 values. Note that the x-axis has logarithmic scale.

the probabilistic decoder on both private attributes and uses two
discriminator networks, one for each private attribute. We train
ObscureNet in adversarial setting as described in Section 4.1.

This problem is interesting because in practice the user often
wishes to anonymize multiple private attributes simultaneously.
Figure 7 shows the result of joint anonymization of gender and
weight-group attributes, while preserving information about the
activity in the anonymized data. It is evident that ObscureNet with
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Figure 7: Inference accuracy of ObscureNet with different
attribute modifiers when it is trained to hide two private at-
tributes at the same time.

a deterministic attribute modifier can successfully reduce the accu-
racy of both sensitive inferences to less than 25% while achieving
the accuracy of 94.8% for the desired inference. Should we use the
probabilistic modifier or the randomized approach, the accuracy of
both sensitive inferences would get close to the level of a random
guess. This indicates that a single ObscureNet model can effectively
hide multiple private attributes.

Nevertheless, comparing this result with the result of removing
each private attribute using a separate ObscureNetmodel (cf. Table 2
and Table 3), we can see that the anonymization performance is
slightly degraded. Therefore, if the execution time and required
resources are not an issue, an alternative approach for anonymizing
several attributes could be to create an anonymization pipeline by
utilizing multiple ObscureNet models (each concealing only one
private attribute) and feeding the output of one model to the next
model in the pipeline.

6.4 Deployment on IoT Devices
We finally investigate if ObscureNet can run on a Raspberry Pi 3
Model B to anonymize sensor data in real time. We use the Rasp-
berry Pi as an IoT device that collects data from several sensors and
runs ObscureNet locally to anonymize the collected data. We install
Keras and PyTorch libraries on the Raspberry Pi, and report the
running time of ObscureNet when the private attribute is modified
in a probabilistic fashion5. We assume the encoder and decoder

5The running time would be even lower if we adopt the randomized approach.
This is because we do not need to predict the private attribute before modifying it.
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Table 5: The running time of ObscureNet when anonymizing one embedding in different tasks

Anonymization task Running time (ms)/Embedding Total running time (ms)
Desired Inference Sensitive Inference Probabilistic Encoder Probabilistic Decoder per embedding

MotionSense (Gender) 0.60 0.62 0.86 0.83 2.91
MobiAct (Gender) 10.39 10.14 9.33 1.15 31.01
MobiAct (Weight-group) 10.05 10.05 9.78 1.18 31.06

networks of ObscureNet are trained in a server, where the training
data resides, and the weights are sent to the IoT device prior to
anonymization.

To make real-time anonymization possible on the the Raspberry
Pi, ObscureNet must be able to anonymize an embedding before the
next one becomes available. Recall that in both datasets, we set the
stride length to 10 samples, which means that the next embedding
is created after receiving 10 sensor readings. The sampling rate of
the IMU sensor is respectively 50Hz and 20Hz in MotionSense and
MobiAct. Hence, a new embedding is created every 200 milliseconds
in MotionSense, and every 500 milliseconds in MobiAct. If the
running time of ObscureNet per embedding is less than this, it will
be able to perform anonymization in real time.

As illustrated in Figure 3, an execution of ObscureNet can be
divided into four main steps: (1) predicting the public and private
attributes associated with the original data using the pre-trained
desired and sensitive inference models, (2) encoding the input data
through an attribute-specific encoder, (3) modifying the predicted
private attribute, and (4) decoding the latent representation together
with the modified attribute through an attribute-specific decoder.
The first step involves running both inference models. The second
and fourth steps require selecting the attribute-specific encoder and
decoder networks according to the predicted public attribute. The
third step involves generating a random number to determine how
the private attribute should be modified. We ignore the running
time of this step as it is negligible compared to the running time of
the other three steps.

Table 5 shows the running time (in milliseconds) of the main
steps in ObscureNet in three different anonymization tasks, namely
gender anonymization in MotionSense, and gender and weight-
group anonymization in MobiAct. To obtain the running time per
embedding, we calculated the total running time of each step for ap-
proximately 8,000 embeddings and then divided this by the number
of embeddings. Note that the running times of the attribute-specific
encoder and decoder networks depend on the predicted public at-
tribute. In this table, we only report the worst-case running times of
the attribute-specific encoder and decoder networks across different
activities (i.e., values of the public attribute).

Considering the gender anonymization task in MobiAct, the ac-
tivity and gender inference models take roughly 10 milliseconds
each to predict the private and public attributes of one embedding.
The encoder and decoder running times for one input data em-
bedding are around 9 and 1 milliseconds, respectively. These add
up to 31 milliseconds per embedding. In the case of weight-group
anonymization, the running times also add up to roughly 31 mil-
liseconds. Given the time budget of 500 milliseconds, our results
show that ObscureNet can anonymize the gender and weight-group
attributes of participants in the MobiAct dataset in real time on a
Raspberry Pi 3 model B.

Turning our attention to the gender anonymization task in Mo-
tionSense, we find that predicting the private and public attributes
takes much less time. In particular, gender and activity inferences
complete in 0.62 and 0.60 milliseconds, respectively. Moreover,
the encoder and decoder networks take respectively 0.86 and 0.83
milliseconds to run. Thus, the total running time of ObscureNet
would be 3 milliseconds per embedding. Given the time budget
of 200 milliseconds, we corroborate that ObscureNet is capable of
anonymizing input data embeddings of MotionSense in real time.

7 CONCLUSION
With the rapid adoption of consumer IoT devices, from indoor
flying drones to robot vacuums and smart thermostats, a plethora
of sensors will soon be installed in our homes and workplaces.
Since the data gathered by these sensors can enable many useful
services, it is anticipated that the existing all-or-nothing models
for data sharing will force many users to give up on their privacy
to benefit from these services. Despite the significant amount of
research that has been done in recent years on understanding and
addressing trade-offs between utility and privacy, there is still no
anonymization technique that offers acceptable levels of utility and
privacy loss, while preventing user re-identification. ObscureNet
addresses this gap in the literature through the use of conditional
generative models and information factorization. To our knowledge,
these ideas have not been previously applied to the sensor data
anonymization problem.

Our experiments on twoHAR datasets suggested that ObscureNet
can reduce the accuracy of intrusive inferences by an additional
13.48% on average compared to the best autoencoder-based base-
line without causing a significant drop in the accuracy of desired
inferences. We showed that ObscureNet can conceal multiple pri-
vate attributes simultaneously and discussed how tuning its hyper-
parameters enables users to navigate trade-offs between utility and
privacy. We believe this is an important property of our anonymiza-
tion technique as users of IoT devices naturally have different ex-
pectations and concerns about applications they install which work
on their data. Furthermore, we confirmed that ObscureNet can run
locally on an IoT device to anonymize sensor data in real time.

In future work, we plan to use ObscureNet to remove private
attributes from the data collected from indoor environment. We
aim to provide users with abstract ways to describe their privacy
concerns and add a slider knob to the anonymization technique
that can be used to indicate how important a privacy threat is to
them or how much they are willing to sacrifice their privacy in
return for higher utility. Lastly, in this paper we assumed that a
public dataset is available for training ObscureNet. We will relax
this assumption in future work and investigate how ObscureNet
can be trained in a federated learning setting.
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