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Abstract—Game livestreaming is hugely popular and growing.
Each month, Twitch hosts over two million unique broadcasters
with a collective audience of 140 million unique viewers. Despite
its success, livestreaming services are costly to run. AWS and
Azure both charge hundreds of dollars to encode 100 hours
of multi-bitrate video, and potentially thousands each month
to transfer the video data of one gamer to a relatively small
audience.

In this work, we demonstrate that mobile edge devices are
ready to play a more central role in multi-bitrate livestreaming.
In particular, we explore a new strategy for game livestreaming
that we call a thin-cloud approach. Under a thin-cloud approach,
livestreaming services rely on commodity web infrastructure
to store and distribute video content and leverage hardware
acceleration on edge devices to transcode video and boost the
video quality of low-bitrate streams. We have built a prototype
system called LevelUp that embodies the thin-cloud approach,
and using our prototype we demonstrate that mobile hardware
acceleration can support realtime video transcoding and signifi-
cantly boost the quality of low-bitrate video through a machine-
learning technique called super resolution. We show that super-
resolution can improve the visual quality of low-resolution game
streams by up to 88% while requiring approximately half the
bandwidth of higher-bitrate streams. Finally, energy experiments
show that LevelUp clients consume only 5% of their battery
capacity watching 30 minutes of video.

I. INTRODUCTION

Game livestreaming services are large and growing. Be-
tween 2017 and 2019 Twitch increased the average number
of concurrent viewers from nearly 750,000 to over 1.2 million
and doubled the average number of concurrent streams from
25,000 to 50,0001. Yet despite despite the popularity and scale
of services like Twitch and Facebook Live, streaming live
multi-bitrate video remains expensive.

Multi-bitrate livestreaming services typically accept video
from a broadcaster at a single bitrate and transcode the video at
multiple bitrates so that viewers can adapt their stream quality
to network conditions. When network conditions are good
clients stream high-quality video, and as network conditions
worsen clients stream lower-quality video. Generating multiple
video qualities in realtime is computationally intensive and
requires specialized hardware like graphical processing units
(GPUs) or dedicated hardware transcoders. Unlike commodity
cloud infrastructure like web front-ends, blob storage, and
content distribution networks (CDNs), video transcoding has
not achieved the economies of scale needed to drive down
costs.
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As a result, for 100 hours of live multi-bitrate video, AWS
and Azure can charge hundreds of dollars for transcoding
and thousands of dollars for data transfer. In comparison,
third-party service Wowza charges less than $20 to livestream
100 hours of single-bitrate video. This makes livestreaming
multi-bitrate video cost-prohibitive for small companies and
a significant savings opportunity for large companies like
Amazon, Facebook, and Microsoft.

In this paper, we observe that edge devices are ready to play
a more central role in multi-bitrate livestreaming. We propose
a new approach to livestreaming based on the notion of a thin
cloud, in which the cloud provides commodity storage and
CDN infrastructure, but does not supply expensive GPUs and
other hardware accelerators. We have implemented a prototype
system called LevelUp that embodies this approach. LevelUp is
a game livestreaming service with refactored responsibilities.
The cloud is responsible for storing and distributing video
segments and other files, and edge devices are responsible for
multi-bitrate transcoding and boost the quality of low-bitrate
streams.

Our approach is enabled by the rapid deployment of hard-
ware acceleration on the edge. Because gaming, photogra-
phy, and media playback are critical smartphone applications,
GPUs and video-transcoding hardware are standard features of
smartphone chips. Furthermore, the next wave of accelerators
target machine learning (ML) and are deployed on tens of
millions of smartphones. These accelerators handle complex
ML workloads and will become as commonplace as GPUs.

LevelUp uses edge hardware acceleration to reduce cloud
costs in two ways. First, it uses broadcasting devices’ hardware
video encoders to generate and upload videos at different
resolutions. This obviates the need to transcode in the cloud.
Second, LevelUp viewers use a hardware-accelerated convolu-
tional neural network (CNN) to improve the visual quality of
lower bitrate video. This can significantly reduce the amount
of data the cloud transfers to clients without sacrificing visual
quality.

We do not claim any contributions to ML. Work on com-
pressing models to run more effectively on mobile devices and
constructing models that achieve better inference and/or per-
formance are orthogonal to LevelUp. Instead, our contributions
are as follows:

• We identify multi-bitrate transcoding and data transfer as
major costs for multi-bitrate livestreaming, and propose
a thin-cloud approach to reducing those costs.
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• We identify super-resolution as a way to mitigate the
high cost of transferring game-stream data. In partic-
ular, we observe that super-resolution models trained
on specific game content can provide additional quality
improvements over networks trained on different games.
• Using our LevelUp prototype, we show that real-
time multi-bitrate transcoding is feasible on commod-
ity devices, and that smartphones can perform realtime
super-resolution of reduced-resolution videos. We further
demonstrate that super-resolution can improve the visual
quality of reduced-resolution game streams by up to 88%,
and that training a super-resolution model on specific
game content can improve visual quality by over 25%
compared to a model trained on a diffferent game’s
content. Finally, energy experiments show that LevelUp
clients spend only 5% of their total battery capacity to
super-resolve 30 minutes of low-resolution video.

The rest of the paper is organized as follows: Section II
provides background information on livestreaming, mobile-
device hardware, and image-similarity metrics; Section III ar-
ticulates the design principles underlying LevelUp, Section IV
describes the LevelUp design and implementation, Section V
describes our experimental evaluation, Section VI describes
related work, and Section VII provides our conclusions.

II. BACKGROUND

In this Section, we provide background information on
video streaming, mobile hardware accelerators, and image-
similarity metrics.

A. Live streaming

The two most widely used live-streaming protocols are
Real-Time Messaging Protocol (RTMP) and HTTP Live
Streaming (HLS). RTMP sits directly above TCP. RTMP
broadcasters split streams into small audio and video chunks
(e.g., 4KB videos) and send them over a persistent TCP
connection to an RTMP server. Each stream viewer maintains
a persistent TCP connection to the RTMP server, and the
RTMP server pushes new chunks to viewers as they become
available. In its simplest form, an RTMP server acts as a pass-
through relay for media chunks from broadcasters to viewers.
RTMP also supports multi-bitrate coding, in which an RTMP
server transcodes incoming media into different qualities (e.g.,
resolutions) before forwarding chunks to viewers. In this
mode, viewers communicate their desired level of quality to
the server.

The primary benefit of RTMP is that it provides low end-to-
end latency. Servers can forward chunks as soon as they are
available because RTMP pushes media over persistent TCP
connections. This is much faster than viewers’ polling for new
chunks, or worse, initiating a new connection for each down-
load. In addition, each chunk in an RTMP stream contains a
brief playback period. For example, if a broadcaster uploads
at 250kbs and the server expects 4KB chunks, then each 4KB
chunk will capture 128ms of video. Thus, a broadcaster can
send new data to the RTMP server every 128ms.

Despite its low latency, RTMP requires dedicated servers
that do not easily integrate CDNs. Because of this, most
streaming services use HLS and Dynamic Adaptive Streaming
over HTTP (MPEG-DASH), which scale better than RTMP but
sacrifice end-to-end latency. Like RTMP, HLS divides video
streams into segments, but because it runs on top of HTTP
segments are stored as normal files (e.g., a self-contained H264
video) and viewers retrieve new segments by issuing HTTP get
requests. HTTP/2 supports server-side push but is not widely
deployed or integrated with HLS.

HLS segments are large relative to RTMP chunks to amor-
tize the cost of HTTP. HLS segments typically capture 2-
10 seconds of playback, and these longer lengths create
additional end-to-end delay. For example, if a stream uses 10-
second segments, then a broadcaster must wait 10 seconds
before uploading the first segment, and stream viewers will
always be more than 10 seconds behind the broadcaster. For
many applications, seconds of delay is tolerable. For example,
celebrities on Facebook Live and popular on Twitch attract
large enough audiences (e.g., thousands if not millions of
viewers) that interactivity is not practical. Lower latency is
always better, but RTMP is often overkill for broadcasts that
scale beyond dozens of participants.

For a viewer to retrieve segments over HTTP, it must
know segments’ URLs. Thus, each HLS stream contains a
plaintext playlist that describes the URLs for all of a stream’s
segments. This playlist also helps with multi-bitrate stream-
ing by describing where viewers can download segments of
different qualities. Viewers adapt the quality of their stream
by downloading the segments that best match their network
conditions.

HLS and MPEG-DASH scale well because CDNs can easily
distribute playlists and video segments. This is the main reason
that all major streaming services support MPEG-DASH and/or
HLS, including Facebook Live, Twitch, Netflix, and YouTube.
LevelUp’s aim is to repurpose as much web infrastructure as
possible, and it also uses HTTP for transport. However, HTTP
is compatible with commodity web infrastructure, but multi-
bitrate streaming still requires special-purpose machinery. For
both RTMP and HLS, broadcasters upload video at the best
bitrate they can, and a specialized server transcodes video
segments into different qualities.

Transcoding live video in the cloud is expensive. Transcod-
ing 100 hours of live video at resolutions of 1920x1080
and below at 30 frames-per-second (FPS) using Azure Media
Services costs over $300 (not including transfer costs).2.
Amazon’s Media Live product costs over $500 per month,
per video channel at 1920x1080 resolution and at 30 FPS,
also not including data transfer costs3. A primary reason that
multi-bitrate transcoding in the cloud is so expensive is that
transcoding in realtime requires hardware acceleration, such
as GPUs or other dedicated transcoders. In addition, the cost
to deliver high-quality videos to clients at even moderate scale

2As of 12-2019: azure.microsoft.com/en-us/pricing/details/media-services/
3As of 12-2019: aws.amazon.com/medialive/pricing/
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can be expensive. Azure charges between $5,000 and $7,500
to transfer 150-500 TB/month. AWS Media Connect prices
are similar.

We believe that mobile devices can play an important role
to play in reducing these costs. LevelUp explores this idea
by using smartphone hardware on the edge to (1) eliminate
cloud-based transcoding, and (2) improve the visual quality
of reduced-bitrate video.

B. Mobile hardware accelerators

System-on-chip (SoC) and smartphone manufacturers de-
ploy hardware accelerators to meet the computational demands
of mobile applications. As it became clear that gaming was
important for smartphones, devices of all qualities began to
ship with GPUs. Similarly, as smartphones became users’
primary device for taking photos and videos, SoCs integrated
dedicated hardware for video encoding and decoding. For
example, iPhones have included hardware for encoding and
decoding H264 video for many generations, and they have
included hardware for encoding and decoding H265 video
since the iPhone 6.

The next wave of SoC accelerators target machine learning
(ML) through on-chip ML co-processors. For example, Apple
added a two-core ML accelerator called a Neural Engine
to the A11 processor included in the iPhone 8, iPhone 8
Plus, and iPhone X. Apple increased the number of cores
in this accelerator to eight in the A12 and A13 processor.
The Qualcomm Snapdragon 855 used by Google’s Pixel 4 and
other high-end Android smartphones, also supports hardware-
accelerated neural-network execution.

This advanced hardware is much more widely deployed on
smartphones than in public clouds. As of May 2018, there
were an estimated 118.7 million active iPhone 7 devices, 118.5
iPhone 6s devices, over 60 million iPhone 8 devices, and
over 40 million iPhone X devices [3]. In the first quarter
of 2020, Apples sold an estimated 32 million devices with
its A13 chip [4]. Thus, just among active iPhones there
are hundreds of millions of processors capable of hardware-
accelerated video transcoding. While individual computational
units in the cloud may be more capable than their mobile
counterparts due to power constraints, the cloud will never
reach the same scale of deployment collectively achieved by
smartphones. Furthermore, new hardware accelerators, such as
ML processors, will be deployed at scale far more rapidly on
mobile devices through natural user upgrade cycles than is
practical for public-cloud providers such as AWS and Azure.

LevelUp uses these trends to drive down the cost of
livestreaming. In particular, as long as smartphones are ca-
pable of transcoding video and performing ML-based image
processing in realtime, then it will be more cost effective to
shift workloads to devices on the edge than solely relying on
cloud infrastructure.

C. Image-quality metrics

To properly evaluate whether LevelUp can meaningfully
boost the quality of low-bitrate videos, one needs an image-

quality metric. In particular, one must have a way to charac-
terize how well a transformed image (e.g., by video encoding
and decoding or by ML processing) approximates the original.
Image quality is subjective, and image-quality metrics try to
predict this subjectivity. For example, image-quality metrics
typically only consider differences of luminance because stud-
ies have found that humans react more negatively to loss of
luminance than loss of chrominance.

Peak-signal-to-noise-ratio (PSNR) is a simple and well
known image-similarity metric. PSNR is calculated by av-
eraging the pixel-by-pixel mean-squared-error (MSE) of the
luminance (Y) and chrominance (Cr and Cb) channels of
two images. PSNR has known limitations, and researchers
proposed the Structural Similarity Index (SSIM) as an al-
ternative to PSNR over 15 years ago [21]. SSIM is more
complex than PSNR and tries to capture the perceived change
in structural information caused by an image transformation.
SSIM is generally viewed as an improvement over PSNR,
but both fail to consistently reflect human perception [1].
Of particular concern for LevelUp, measuring the quality of
individual frames may not capture video quality.

Netflix’s Video Multi-method Assessment Fusion (VMAF)
is a relatively new quality metric designed specifically for
video [1]. VMAF uses ML to model how humans grade the
quality of a sequence of images. VMAF combines several
metrics, including Visual Information Fidelity (VIF) [18],
Detail Loss Metric (DLM) [15], and luminance differences
between adjacent frames to measure motion fidelity. VMAF
uses a support vector machine (SVM) regressor to assign
weights to these elementary metrics by training it with data
from user studies. By doing so, VMAF tries to avoid the
weaknesses of individual metrics and better approximate how
a human would evaluate a video’s quality. We primarily rely
on VMAF to evaluate LevelUp.

III. DESIGN PRINCIPLES

To reduce the cost of game livestreaming, we designed
LevelUp using the following principles.

Transcode videos on edge devices. As discussed in Sec-
tion II-A, existing cloud services charge an order of magnitude
more for multi-bitrate livestreaming than for single-bitrate
livestreaming. And as discussed in Section II-B, nearly all
mobile devices possess dedicated hardware for encoding and
decoding video. Thus, LevelUp broadcasters directly transcode
their game output on their smartphones in realtime and
upload these video files to the cloud for distribution. Our
LevelUp prototype encodes gameplay at three resolutions: high
(1920x1080), medium (854x480), and low (480x270).

Even with the impressive capabilities of commodity devices,
shifting work from the cloud to smartphones raises the ques-
tion of whether these additional responsibilities will be too
demanding. In particular, LevelUp’s approach asks clients to
expend additional energy and network bandwidth to create and
upload multiple videos.

For energy, we strongly suspect that the marginal energy
impact of multi-bitrate coding while playing a game is small.



Gaming is already very energy intensive, requiring a device’s
screen, CPU cores, and GPU to be in high-power states. On top
of that, game streaming via services like Twitch or Mobcrush
keeps a device’s network radio in a high-power state and uses
the device’s hardware video-encoder to generate single-bitrate
videos. LevelUp clients’ energy usage above a service like
Twitch or Mobcrush would be due to encoding and uploading
multiple videos instead of one.

Fortunately, compared to other tasks involved in game
streaming, hardware video-encoding is one of the most en-
ergy efficient. Dedicated hardware is far more efficient at
transcoding than performing the same task on a CPU or GPU.
Furthermore, the additional effort of generating and uploading
medium- and low-resolution videos is small compared to high-
resolution videos. For example, our results in Section V-A3
show that medium-resolution game streams are an order of
magnitude smaller than high-resolution streams.

Nonetheless, some broadcasters may find that encoding and
uploading high-, medium-, and low-resolution videos is too
resource intensive. This could be due to transient periods
of depleted battery or poor connectivity, or may be due to
persistent issues like a network data cap. Platforms may also
wish to limit their egress bandwidth by serving lower-bitrate
streams. LevelUp mitigates the effect of these constraints
through hardware-accelerated ML on viewers’ devices.

Boost video quality with ML. Transcoding videos on
a broadcaster’s device instead of the cloud will reduce the
cost of multi-bitrate streaming, but it asks broadcasters to
create and upload more videos. In some cases broadcasters
may save resources by encoding and uploading only reduced-
resolution videos. Generating reduced-resolution videos uses
less energy than generating high-resolution videos, and based
on our results in Section V-A3, uploading medium- and
low-resolution videos would save significant bandwidth com-
pared to uploading all three qualities. Transferring lower
bitrate video also offers large potential savings for platforms.
Of course, reduced-resolution videos look worse than high-
resolution videos. But like LevelUp broadcasters, LevelUp
viewers have sophisticated hardware accelerators, and they can
use these accelerators to mitigate the diminished visual quality
of low-bitrate video.

Single-image super-resolution is an ML approach to improv-
ing the quality of reduced-resolution images [11], [22]. Unlike
a simple interpolation, super resolution aims to model the
complex, non-linear mapping of low-resolution image repre-
sentations to high-resolution representations. That is, a super-
resolution algorithm takes a low-resolution image and outputs
an estimate of the image’s high-resolution version. Initial
work on super resolution used sparse-coding techniques [8],
[23], and more recent work has investigated training neural
networks [7], [14], [16], [19].

LevelUp uses the convolutional neural network (CNN) for
super resolution described in [19]. Even though this CNN is
relatively lightweight (it has just four layers), running it on a
CPU would be too slow for livestreaming. Instead, LevelUp
viewers run the CNN on their devices’ ML co-processors. At

the moment, these accelerators are available on smartphones
like recent iPhones and Google Pixels, but this hardware will
trickle down to all device levels in the near future.

LevelUp is not the first system to use super-resolution for
video streaming. NAS [24] also trains a super-resolution deep
neural network (DNN) to learn the mappings from low-quality
to high-quality videos. NAS clients download and use a large
DNN to transform lower-quality frames into higher quality.
NAS uses a heavier-weight neural net than LevelUp, and as a
result NAS models are over 100MB (LevelUp’s are hundreds
of KBs) and NAS must run on a desktop-class GPU.

More fundamentally, NAS targets pre-recorded content, and
trains its DNNs on the same videos that clients stream. This
approach will not work for livestreaming, because streamed
content is not known in advance. Dejavu [12] leverages
similar insights and techniques to enhance video conferencing.
We hypothesize that games’ visual content presents a major
opportunity to use super-resolution for livestreaming.

Train a different model for each game. While many
livestreams may change from broadcast to broadcast, a po-
tential advantage of super-resolving gaming content is that
there is significant visual similarity across game sessions.
How a game’s characters and objects interact with a game
setting will change with each session, but the visual elements
of those characters, objects, and settings will be consistent.
Thus, LevelUp trains CNNs with video data from prior game
sessions.

These CNNs learn general rules for upscaling arbitrary
images, and they learn how specific visual elements within
a game should be upscaled. This approach places LevelUp
between neural nets that are trained to upscale arbitrary content
and those that are trained to upscale very specific content (e.g.,
NAS).

LevelUp can offer CNNs to viewers that are tuned to the
specific game content that they are streaming. For example,
for games that have different levels or stages, a viewer might
apply a different CNN to each level or stage of the game.
Alternatively, for combat games like Super Smash Brothers
or FortNite, a viewer might receive a CNN that has been
trained to super-resolve the specific set of characters. There
are far more possibilities to explore than can be covered in
this paper. Could a CNN be trained for a region within the
geography of a game? Could a client use object-detection
ML to identify which objects or characters are present in
a game and adaptively apply the appropriate CNN? How
often should a client switch CNNs? LiveNAS [13] recently
investigated some of these questions and demonstrated that
enlisting broadcasters to help maintain super-resolution models
can be beneficial for live video, including game content. For
the purposes of this paper, we put the questions of where
models come from and how they are maintained to the side.
LevelUp could rely on game developers or streaming services
to provide a library of CNNs or it could adopt the client-
assisted techniques proposed by LiveNAS.



Fig. 1. High-level view of the LevelUp architecture. A broadcasting device
uses its local hardware video-encoder to generate high-, medium-, and low-
resolution videos. It uploads these files to cloud storage, where they can be
distributed to viewers via CDN. Viewers use a stream playlist to identify the
locations of each resolution stream, as well as the appropriate super-resolution
model to apply to the stream it is viewing.

IV. DESIGN AND IMPLEMENTATION

The three main components of LevelUp’s architecture are
the broadcaster, viewer, and server. Figure 1 shows each of
these components. Our LevelUp implementation is written
in Objective-C for iOS. It takes advantage of several iOS
frameworks, including CoreML and ReplayKit, and overall
contains roughly 2,500 non-comment lines of code.

A. Broadcaster

The broadcaster is responsible for capturing video frames
from the display as a user plays a mobile game, enqueuing
those frames for the hardware encoder, and uploading video
segments to the server as they complete.

To capture video frames from the display while a user
plays a game, LevelUp uses the ReplayKit framework for iOS.
ReplayKit allows third parties such as LevelUp to record audio
and video in the background. To register with the ReplayKit
system, an app must implement a user interface for handling
remote account setup or registration, and a live-broadcast
extension for processing video frames and audio clips. After
registration and setup, a user can start streaming by selecting
LevelUp as the destination screen recorder.

iOS imposes strict resource restrictions on live-broadcast
extensions so that they do not compete for resources with the
foreground application. In particular, it is critical that LevelUp
stay under the 50MB memory limit and not compete with the
streamed game for compute resources like the CPU and GPU.
Fortunately, the ReplayKit framework is designed to make
this straightforward, and LevelUp does not require significant
compute resources besides the hardware video encoder.

The LevelUp extension is responsible for converting frames
into video segments and then uploading those segments. Our
current prototype encodes two-second segments at 30FPS.
Two-second segments are an optimization for latency at the
expense of bandwidth. Streaming delay grows with segment
length, but the encoder can often compress more effectively
when segments are larger.

Nonetheless, whenever ReplayKit gives LevelUp a new
video frame, the handler enqueues it with the hardware

encoder at three resolutions (1920x1080, 960x540, and
480x270). The extension then increments a frame counter
(modulo 60), and checks if the counter is equal to 60. If the
counter is equal to 60, then the current frame must be the last
frame of the segment.

When a segment is complete, the extension directs the
hardware encoder to finalize all videos it has queued. Once
those requests return, the extension must upload the new
videos as well as a new playlist to reflect that new segments
are available. Uploading the new playlist and segments would
be too slow to perform synchronously, so those tasks are per-
formed on background threads that have been pre-initialized
with HTTP connections to the server. Critically, uploading an
updated playlist cannot begin until all of the video segments
it references have been successfully uploaded.

Our playlist format is a simple JSON object with fields
describing the locations of high-, medium-, and low-quality
segments, the most recent segment number, and the location
of any super-resolution CNNs that could be applied to reduced-
resolution segments. It is important to note that broadcasters
are not responsible for training a game’s CNNs. We assume
that LevelUp administrators or game developers will provide
these models.

B. Viewer

The viewer is responsible for downloading the highest
resolution video segment that its bandwidth will allow, queu-
ing video segments as they download, and potentially pass-
ing reduced-resolution segment frames through the a super-
resolution CNN. To start a stream, the LevelUp viewer down-
loads the playlist for a stream, constructs the URL for the first
segment at a particular quality, and schedules the download on
a background thread. Once the download has completed, the
background thread notifies another thread that the video is
ready to display, and the segment is enqueued with the video
player. Then the whole process repeats for the next segment.

The process is slightly more complicated when a frame must
be super-resolved. In this case, each frame from the down-
loaded and decoded video segment must first be converted to
a single-channel grayscale image so that it can be input the
LevelUp’s CNN. This input representation allows the CNN
to remain lightweight enough to process images in realtime
on a mobile ML-accelerator. LevelUp uses iOS’s CoreML
framework for handling the CNN’s input and output images,
as well as scheduling tasks on the hardware accelerator.

Just as inputs to the CNN must be single-channel grayscale
images, so too are the outputs of the CNN. Thus, before
displaying a super-resolved frame, LevelUp must combine the
grayscale output from the CNN with the original reduced-
resolution image. This is done by using the output of the CNN
(which is a full 1920x1080-resolution image) as the luminance
channel (i.e., Y) for a new image. Then LevelUp uses bicubic
interpolation to upscale the reduced-resolution frame to high-
resolution, and uses the chrominance channels of this upscaled
image (i.e., Cr and Cb) as the chrominance of the new, merged



image. Once the new image has been displayed, LevelUp looks
to construct the next frame in the same manner.

We should note that our LevelUp prototype does not in-
clude logic for adapting stream quality to changing network
conditions. This is an area of active research [17] and any
reasonable implementation would be suitable as long as it
does not compete for resources with the super-resolution CNN.
Our prototype allows users to manually change their stream’s
quality, but this is obviously not ideal.

C. Server

The final component of the LevelUp architecture is the
server. By design, the LevelUp server is extremely simple.
Our current implementation is an Apache webserver with a
php endpoint for accepting uploaded files. Of course, in a real
deployment the server could be integrated with a CDN and
other services for scaling HTTP workloads.

V. EVALUATION

To evaluate LevelUp, we sought answers to the following
questions:

• Can super resolution improve the visual quality of
reduced-resolution game streams?
• Can mobile clients perform multi-bitrate coding in real-
time?
• Can mobile clients super-resolve reduced-resolution
video streams in realtime?
• What is LevelUp’s energy overhead?

To answer the first question, we performed experiments with
seven representative gaming videos from xiph.org4: Counter-
Strike, Global Offensive (CSGO); Dota 2; Fallout 4; Grand
Theft Auto V (GTAV); Rust; Starcraft 2; and The Witcher 3.
Each 1920x1080-resolution video was 60 seconds long, and
captured from Twitch at 60 FPS. The Rust video contained
a single, continuous scene, and the other videos contained
clips from different parts of a game. The xiph games included
realtime-strategy games (DOTA2 and STARCRAFT2) and
first-person action games (CSGO, Fallout4, GTAV, RUST,
and WITCHER3). We used these videos and PyTorch to
train, test, and validate a lightweight, convolutional neural
network (CNN) with a well-known sub-pixel super-resolution
architecture [19].

To answer the next two questions, we performed exper-
iments with our prototype LevelUp implementation on five
generations of Apple iPhones: an iPhone 11 Pro with an
A13 processor and 4GB of RAM,, an iPhone Xs with an
A12 processor and 4GB of RAM, an iPhone 8 with an
A11 processor and 2GB of RAM, an iPhone 7 with an
A10 processor and 2GB of RAM, and an iPhone 6s with
an A9 processor and 2GB of RAM. Performing experiments
with these devices allowed us characterize how well several
generations of mobile processors ran LevelUp.

To answer the final question, we performed experiments
with an iPhone Xs and 11 Pro using the popular iOS game

4https://media.xiph.org/video/derf/

Monument Valley. We viewed a stream with a full battery, and
recorded the remaining battery capacity after 30 minutes.

All videos in our experiments were encoded using H264
for two reasons. First, unlike newer coding algorithms, such as
AV1 [2], nearly all devices provide hardware-accelerated H264
decoding. Many mobile devices support hardware-accelerated
H265 decoding (e.g., all iPhones since the iPhone 6), but H264
support remains much more common. Second, algorithms
like H265 provide better compression than H264 but are
often slower, which makes them less appropriate for game
streaming. Though we limited ourselves to H264, we believe
that LevelUp would behave similarly for any video coding
algorithm that can be hardware-accelerated.

A. Super resolution

To test if a super-resolution CNN can provide better video
quality than H264 for the same bitrate, we trained a CNN using
gaming videos from xiph.org. Each video consisted of frames
captured at a resolution of 1920x1080. For each video, we
selected a four-second segment of 240 continuous frames, and
randomly assigned frames to a testing and training set. When
validating a model, we never included input frames from the
model’s testing or training sets. When validating a game model
with frames from another game, we used all 3600 frames from
the 60-second video. However, when validating a game model
with frames from the same video, we excluded the testing and
training frames, i.e., we used 3360 frames from the 54 seconds
not used for testing and training.

We used ffmpeg to downscale and re-encode testing, train-
ing, and validation frames using ffmpeg at medium resolution
(i.e., 854x480) and low resolution (i.e., 480x270). We re-
encoded videos using ffmpeg’s default H264 encoder (libx264)
with a Constant Rate Factor (CRF) of 23 and tuned coding to
low latency. In all cases, the target frame for an input frame
was the corresponding, full-resolution frame from the original
xiph video.

Testing, training, and validation input frames had less visual
information than the original frames due to their reduced
resolution and lossy H264 encoding. We used these decoded
frames to train a CNN for each game with upscale factors of
two and four. For an upscale factor of two, our input frames
were 854x480, and each model generated a 1708x960 output
image. To match the original resolution, we used bicubic
interpolation to upscale the 1708x960 images to 1920x1080.
For an upscale factor of four, our models took a 480x270
image as input and directly output a full-resolution, 1920x1080
image. We used PyTorch to train each model with loss rate of
0.0001 for 1000 epochs.

1) PSNR, SSIM, and VMAF image quality: We fed each
game’s CNN decoded frames from a validation set. For each
medium- or low-resolution input frame, the CNNs output a
high-resolution frame that we compared to the corresponding
original high-resolution frame using PSNR, SSIM, and VMAF.
Figure 2 shows how super resolution changed the quality of
medium-resolution H264 videos, and Figure 3 shows how
super resolution changed the quality of low-resolution H264

https://media.xiph.org/video/derf/
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Fig. 2. Percent change in PSNR, SSIM, and VMAF after super resolution
for 854x480 frames.
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Fig. 3. Percent change in PSNR, SSIM, and VMAF after super resolution
for 480x270 frames.

videos. For these experiments we used models trained and
validated with frames from the same game.

The first result from these graphs is that super resolution af-
fected VMAF far more than PSNR and SSIM. LevelUp barely
changed the PSNR of any game stream at any resolution.
LevelUp improved SSIM between 1 and 13% on medium-
resolution inputs, and between four and 20% on low-resolution
inputs. On the other hand, LevelUp improved the VMAF of
medium-resolution frames between 15.1% (Starcraft 2) and
20.5% (Witcher 3). Even more impressive, LevelUp improved
the VMAF of low-resolution frames between 61.2% (Fallout
4) and 88.4% (Witcher 3).

In Section II-C we discussed differences among PSNR,
SSIM, and VMAF, but to gain a better sense why LevelUp
improves VMAF scores more than PSNR and SSIM, consider
the examples in Figure 4 and Figure 5. Figure 4 shows a
200x200 detail from the game Dota 2, and Figure 5 shows
a 200x200 detail from the game Witcher 3. Moving left
to right, the figures show a game detail at full resolution,
medium resolution, super-resolved medium-resolution, low
resolution, and super-resolved low-resolution. For both games,
super resolution qualitatively improves edge sharpness. The
medium- and low-resolution frames are blurry because of in-

Fig. 4. Example 200x200 detail from Dota 2 at high resolution (1920x1080),
medium resolution (854x480), super-resolved medium resolution, low resolu-
tion (480x270), and super-resolved low resolution. Lower-resolution images
were upscaled to high resolution using bicubic interpolation.

Fig. 5. Example 200x200 detail from Witcher 3 at high resolution
(1920x1080), medium resolution (854x480), super-resolved medium resolu-
tion, low resolution (480x270), and super-resolved low resolution. Lower-
resolution images were upscaled to high resolution using bicubic interpolation.

terpolation, whereas the super-resolved frames preserve more
of the original’s details, such as teeth, wisps of hair, and folds
of clothing.

2) Game-specific CNNs: We also wanted to characterize
how much training models for specific games impacted our
super-resolution results. We ran a full cross comparison of
game models and validation sets for both medium- and low-
resolutions. Our medium-resolution results are in Figure 6, and
our low-resolution results are in Figure 7. The tables show
the percent improvement in VMAF for either a medium- or
low-resolution validation set. Each colored entry shows the
percent change in VMAF from applying the row model to the
column validation set. Each column is conditionally formatted,
such that the greenest entry corresponds to the model that
performed the best on the validation set, whereas the reddest
entry corresponds to the model that performed the worst on
that validation set. The bottom row of each table (i.e., Max-
Min) shows the difference between the best and worst VMAF
improvement.

For both tables, in nearly all cases the models that performed
the best on a particular validation set were trained on frames
from the same game. The exceptions to this pattern are in
the medium-resolution results, in which the Witcher 3 model
outperformed the Fallout 4 model on the Fallout 4 validation
set (17.3% improvement vs 16.2%), the Rust model on the
Rust validation set (18.6% to 15.8%), and the Starcraft 2 model
on the Starcraft 2 validation set (15.2% to 15.1%).

The results also show that, like super-resolution in general,
game-specific training is more effective for low-resolution
streams. As noted above, training a model on different frames
from the same game as the validation frames always created
the best visual quality for low-resolution frames. And while
mismatched models often performed well, in several cases
they did not. For example, the difference between the matched
model and the worst model for GTAV was 25.1%. For Starcraft
2 the difference was 16.5%, and for Witcher 3 the difference



Training
CSGO Dota 2 Fallout 4 GTAV Rust Starcraft 2 Witcher 3

CSGO 19.1% 19.1% 16.6% 14.1% 17.8% 15.1% 20.4%
Dota 2 17.0% 19.5% 16.4% 15.7% 17.1% 13.1% 18.6%

Fallout 4 14.6% 16.5% 16.2% 15.6% 16.2% 5.5% 13.6%
GTAV 17.4% 18.7% 16.7% 18.2% 18.2% 13.9% 19.6%

Rust 16.7% 18.1% 16.5% 16.2% 15.8% 11.8% 17.8%
Starcraft 2 15.9% 16.6% 15.2% 14.4% 15.8% 15.1% 17.8%
Witcher 3 18.0% 19.5% 17.3% 17.3% 18.6% 15.2% 20.5%
Max-Min 4.5% 3.0% 2.1% 4.0% 2.8% 9.8% 6.9%

Validation

Fig. 6. VMAF results from cross validation of training/testing and validation
sets for 854x480 frames.

Training
CSGO Dota 2 Fallout 4 GTAV Rust Starcraft 2 Witcher 3

CSGO 81.2% 72.0% 59.1% 57.3% 73.8% 65.3% 84.1%
Dota 2 74.9% 75.9% 57.9% 75.4% 73.7% 64.5% 81.1%

Fallout 4 77.9% 74.0% 61.2% 79.7% 76.1% 59.5% 79.3%
GTAV 79.9% 73.3% 61.6% 82.4% 76.8% 66.0% 84.5%

Rust 75.5% 71.8% 61.9% 79.0% 78.3% 56.3% 76.0%
Starcraft 2 75.9% 72.3% 58.8% 74.7% 74.0% 72.8% 82.9%
Witcher 3 78.8% 74.8% 59.0% 79.7% 78.0% 69.4% 88.4%
Max-Min 6.3% 4.0% 4.0% 25.1% 4.6% 16.5% 12.4%

Validation

Fig. 7. VMAF results from cross validation of training/testing and validation
sets for 480x270 frames.

was 12.4%. The conclusion we draw from these results is that
applying a game-specific model is almost always effective and
provides insurance against using a poor-performing model.

These results are consistent with our hypothesis that Lev-
elUp can benefit from training CNNs for the visuals of a
particular game. At the same time, these results also suggest
that a super-resolution CNN will improve visual quality even
when given reduced-resolution images that are dissimilar from
its training data.

3) Bandwidth-quality tradeoffs: In Section V-A1 we
demonstrated that super-resolution CNNs can significantly
improve the visual quality of reduced-resolution H264 videos.
We would also like to understand the bandwidth and quality
tradeoffs that LevelUp could offer. In particular, how do the
visual quality and bitrate of a super-resolved video compare
to a higher-resolution video?

Figure 8 shows the bitrate and VMAF for each game’s H264
videos (the dots) and super-resolved videos (the stars). Note
that since all super-resolution models are less than 250KB and
could be downloaded in advance of streaming, we have not
factored their size into the bitrates for super-resolved videos.
Rather, super-resolution data points reflect the bitrates of the
input H264 videos.

Our bitrate-VMAF results show that super-resolution cannot
achieve the highest visual quality, and that the highest qualities
require more than 10Mbs. Reducing videos’ resolution leads
to approximately 10x bandwidth savings for all streams.
As expected, this bandwidth savings comes at the cost of
reduced visual quality. In general, medium-resolution videos
provide 10x bandwidth savings and 20-30% lower VMAF than
high-resolution videos, whereas low-resolution videos provide
3x bandwidth savings and 50% lower VMAF compared to
medium-resolution videos.

Though our results show that super-resolution CNNs cannot
recover all of the visual quality lost from reducing a video’s
resolution, they show that these CNNs recover a great deal of
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Fig. 8. Bitrate versus VMAF for game streams under H264 and super-
resolved H264. Each dot represents an H264 stream, and each star represents
a super-resolved stream. Dots and stars from the same game share the same
color. The lowest-bitrate data points represent low-resolution videos (i.e.,
480x270), the middle-bitrate data points represent medium-resolution videos
(i.e., 854x480), and the highest bitrate data points represent high-resolution
videos (i.e., 1920x1080). Note the logarithmic x-axis.

it. In particular, for medium-resolution videos, rather than the
20-30% VMAF penalty of H264, super-resolved videos’ qual-
ity is 10-20% of their high-resolution counterpart (at one-tenth
the bitrate). The effect is more dramatic for low-resolution
videos. Using low-resolution frames, super-resolution gener-
ates videos with VMAF values that are approximately 3-
20% worse than medium-resolution H264, whereas raw low-
resolution H264 provides visual quality that is 50% worse than
medium-resolution H264.

Super resolution appears to be particularly effective for
finely detailed game content, such as Witcher 3. As Figure 5
shows, super-resolution provides a much sharper image than
simply interpolating upscaled low-resolution images. This
sharpening effect has less impact on videos such as the Rust
clip, which was dominated by a cloudless sky.

4) Discussion: Our results demonstrate that super reso-
lution can improve the quality of reduced-resolution game
streams. However, answers to the question of which video
resolutions a LevelUp streamer should upload to the cloud
depend on the streamer’s bandwidth constraints. If the streamer
lacks the bandwidth to upload at all resolutions or she needs
to conserve bandwidth (e.g., due to data caps), then LevelUp
could allow her to upload medium- and low-resolution streams
without significantly compromising her audience’s viewing
experience. The same calculation applies to a LevelUp viewer.
LevelUp’s CNNs could allow viewers to use significantly less
bandwidth to view a stream of slightly diminished quality.

B. Broadcaster performance

A key goal for LevelUp is to perform multi-bitrate video
coding on a broadcaster’s device instead of doing it in the
cloud. To verify that multi-bitrate coding on a commodity de-
vice is feasible, we used our LevelUp prototype to livestream
ten seconds of FortNite gameplay. For each test, we encoded
and uploaded H264 videos at high resolution (1920x1080),
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Fig. 9. Time to process frames while super-resolving low resolution
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medium resolution (854x480), and low resolution (480x270).
LevelUp divided the ten seconds of gameplay into five two-
second video segments, each encoded at 30FPS.

Apple’s ReplayKit2 subsystem enforces strict resource lim-
its on all broadcast extensions, including LevelUp’s. In par-
ticular, LevelUp can use only 50MB of memory, so Lev-
elUp synchronously processed each incoming video buffer
to simplify memory management. After receiving a buffer,
LevelUp placed it on a high-resolution encoding queue, a
medium-resolution queue, and a low-resolution queue before
returning. Once these queues filled to 60 buffers (i.e., two
seconds at 30 FPS), LevelUp directed the encoder to save the
three videos to disk. When each video was fully encoded,
a completion handler for each video ran on a background
thread and uploaded its video over a pre-initialized HTTP
connection. For our experiments, we measured the time that
LevelUp spent processing each screen buffer, starting from the
time that the ReplayKit2 subsystem invoked LevelUp’s buffer
handler until the time that the handler returned. We performed
our experiments on five generations of iPhones: the iPhone 11
Pro, the iPhone Xs, iPhone 8, iPhone 7, and iPhone 6s. All of
these devices included an H264 hardware encoder.

As expected, all four devices processed livestream buffers in
realtime, and the median processing time for all four devices
was less than 1ms. Several devices had maximum processing
times of close to 20ms due to the time to initialize the hardware
encoder. Each of these outliers appeared only once and at
the beginning of a run. Overall, our results demonstrate that
modern mobile devices are capable of performing multi-bitrate
video encoding in realtime.

C. Viewer performance

Multi-bitrate coding on mobile devices is not limited by
devices’ ability to encode videos in realtime, but platforms
and broadcasters could be limited by bandwidth constraints.
A broadcaster’s connection may be too poor to upload high-,
medium-, and low-resolution videos, or she may have wish to

upload fewer bytes to remain under a data cap. A platform may
wish to send less data to reduce the cloud-provider’s transfer
costs. Section V-A demonstrated that a super-resolution CNN
can significantly improve the quality of reduced-resolution
videos and could potentially mitigate bandwidth constraints,
but for these CNNs to be practical, LevelUp viewers must be
capable of super-resolving videos in realtime.

To determine whether LevelUp clients can super-resolve
livestreams in realtime, we measured the time that our
prototype spent processing frames of a Monument Valley
livestream. For the experiment, we downloaded low-resolution
video (i.e., 480x270) and processed each frame using Apple’s
CoreML subsystem. Prior to streaming, LevelUp pre-compiled
and loaded a Monument Valley CNN for low-resolution im-
ages. To apply the model, incoming video frames had to be
converted to grayscale. The CNN output a high-resolution,
single-channel grayscale image (i.e., the Y luminance chan-
nel). LevelUp then merged this luminance channel with the
chrominance channels (i.e., Cr and Cb) from the upscaled
original frame. As in Section V-A, we upscaled the reduced-
resolution Cr and Cb channels using bicubic interpolation.

Figure 9 shows our results. The iPhone 11 Pro processed
frames with a median latency of 23ms and a 75-percentile
of 28ms, The iPhone Xs processed frames with a median
latency of 32ms and a 75th-percentile latency of 36ms. Both
phones can display videos at approximately 30FPS. This
demonstrates that a modern mobile device can super-resolve
video in realtime. The 11 Pro and Xs’s realtime performance
are primarily due to their SoCs’ Neural Engines. It is worth
noting the significant performance improvement of the 11’s
A13 over the Xs’s A12 (nearly 30% better median latency).
As with our results in Section V-B, our viewer performance
results show that mobile devices are ready to play a more
central role in video streaming.

It is also worth noting that phones older than the iPhone
Xs cannot deliver realtime CNN processing. The iPhone 8
has a two-core Neural Engine, and its median time to process
frames was 87ms, with a 75th-percentile latency of 90ms. The
iPhone 7 does not have a dedicated neural-net accelerator and
executes the LevelUp CNN on its six-core GPU.

D. Energy overhead

Precisely measuring the energy consumption of a modern
device like an iPhone is challenging. Like the vast majority
of modern smartphones, iPhones’ batteries are not easily
accessible, which prevented us from attaching a power mon-
itor such as a Monsoon. iOS provides coarse-grained energy
and performance monitoring, but these reports only measure
energy intensity on a scale from 1 to 10.

Despite these limitations, we ran a series of simple ex-
periments on an iPhone Xs and iPhone 11 Pro with the
game Monument Valley. First, we used LevelUp to record
five minutes of Monument Valley game play. Then we viewed
this stream under several configurations for 30 minutes with
all radios on and the screen at 25% intensity. When we
reached the end of the five-minute stream, we looped to
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Fig. 10. Percent battery remaining after streaming 30 minutes of Monument
Valley gameplay on an iPhone Xs and iPhone 11 Pro.

continue streaming from the beginning. Thus, each streaming
experiment played our Monument Valley recording six times.
Before each streaming session, we charged the phone battery
to 100%. We then unplugged the device, streamed video for 30
minutes from a LevelUp server over WiFi, and finally recorded
how much battery charge remained. For these experiments,
we streamed low-resolution video and applied super-resolution
(low-sr), low-resolution video without super-resolution (low),
and medium-resolution video without super-resolution (med).
Figure 10 shows our results.

Unsurprisingly, applying super resolution required more
energy than simple streaming, leaving 87% of the battery after
30 minutes on the iPhone Xs and 95% left on the iPhone 11
Pro. This was due to the additional computational burden of
super-resolving low-resolution frames and merging the results
with the original frames. It is also unsurprising that streaming
low-resolution videos is energy efficient since these videos
require less compute to decode and display and less bandwidth
to download: streaming low-resolution video left 100% of the
phone’s battery, and streaming medium-resolution video left
100% of the phone’s battery. The percent of remaining battery
remaining on the 11 Pro compared to the Xs is noteworthy.
We suspect that this is due to the 11 Pro’s larger battery as
well as a more power efficient ML-accelerator.

Our results suggest that for the most recent devices (e.g.,
the iPhone 11 Pro), super resolution will have a very small
impact on users’ experience. However, for older devices like
the Xs, when energy is scarce, the additional boost in quality
offered by super resolution may be offset by noticeable energy
loss. Thus, using super resolution makes the most sense when
battery power is plentiful (e.g., a device is fully charged) and
network bandwidth is constrained or precious (e.g., over a
weak cellular connection). However, assuming that a device’s
battery drains linearly, our results also show that someone who
begins watching a stream with a fully charged, modern device
could watch five hours of video and have close to half of her
battery charge left.

VI. RELATED WORK

There has been an great deal of recent interest in improving
video streaming. Much of this work has focused on improving
the systems that deliver video streams instead of only focusing
on greater coding efficiency. Specifically, architectures are
increasingly exploring ways to exploit resources on both the
client and server sides.

For example, NAS [24] uses a DNN to learn the mappings
from low quality to high quality videos, including super-
resolution. The client downloads and uses the DNN to trans-
form lower quality images into higher quality ones. Multiple
scalable DNNs are used to meet the resource requirements of
heterogeneous client environments. One of the challenges that
NAS faces that LevelUp does not is how to handle very large
models. NAS model are close to 100MB, whereas LevelUp
models are only 250KB. This has two implications. First, NAS
models are too large for the ML co-processor of a smartphone,
and there can only run on a machine with a desktop-class
GPU. Second, NAS includes complex logic for balancing the
bandwidth spent downloading video content and the bandwidth
downloading models. LevelUp models are so small that they
easily execute on a smartphone and do not require complex
logic to download.

CloudSeg [20] and LiveNAS [13] both try to overcome
broadcasters’ bandwidth limitations by boosting the qual-
ity of low-bitrate video with super resolution. Of the two,
LiveNAS is more relevant to LevelUp, although both use
server-side super-resolution to create higher bitrate versions
of live video. LiveNAS enlists clients’ help in maintaining
the super-resolution models; broadcasters send samples of
their local high-quality content to the server to help update
the super-resolution model at broadcast time. Many of the
techniques proposed by LiveNAS could be integrated into Lev-
elUp. In particular, enlisting clients to provide super-resolution
training data could help LevelUp create and maintain its
models. LevelUp most differs from CloudSeg and LiveNAS
in who performs super-resolution and who performs multi-
bitrate transcoding. CloudSeg and LiveNAS rely on server-side
infrastructure for these tasks, whereas LevelUp investigates the
feasibility of doing this work on the mobile edge.

Dejavu [12] leverages similar insights and techniques as
LevelUp to enhance video conferencing. The primary differ-
ence between LevelUp and Dejavu is the target application.
Whereas a video-conferencing system focuses on the visual
features of video chat (e.g., participants’ faces), LevelUp
focuses on the visual features of game content (e.g., game
characters and settings).

Like LevelUp, Kahawai [6] focuses on gaming and saving
bandwidth. However, Kahawai is a cloud gaming system that
offloads part of the mobile GPU’s workload to the server.
The server creates and sends a “patch” video to the client.
The client then applies the patch, either “delta” frames, or I-
frames, to the local images to improve game visual quality. It
is possible that the technique used in LevelUp could also be
applied to cloud gaming, but we leave this for future work.



Choosing the right video streaming bitrate under different
network conditions is a well known research topic. This is
a hard problem because a chosen bitrate must balance two
seemly conflicting goals: maximizing quality and minimizing
re-buffering time. Pensieve [17] uses reinforcement learning
to learn a control policy for adaptively choosing streaming
bitrates. A neural network expresses different system observa-
tions in the control policy so that it can adapt to networks of
different characteristics automatically. LevelUp is orthogonal
to this and other work on policies for stream adaptation.

Other recent work introduces novel codec/network inter-
faces for video processing platforms. Salsify [9] is a video
conferencing system that uses a pure functional codec so that
the encoder state can “fork” into different execution branches
and delay the choice of frame quality as late as possible. This
allows it to swiftly and precisely adapt to network condition
changes. However, it is only designed for one-to-one video
conferencing, not one-to-many video streaming like LevelUp.

ExCamera [10] uses a similar functional video codec, but
instead of exploring multiple execution branches, it exposes
the internal state of each thread so that videos can be encoded
with more parallelism using serverless platforms without los-
ing compressing efficiency. Sprocket [5] extends ExCamera
so that it can not only encode videos but also allow users to
build more complex video process pipelines, including those
with machine learning applications like facial recognition.
These pipelines are then orchestrated by Sprocket to run
on serverless platforms with high parallelism and low cost.
LevelUp occupies a decidedly different point in the design
space than either ExCamera or Sprocket since it relies on
mobile devices’ hardware encoders to perform multi-bitrate
transcoding.

VII. CONCLUSION

We have presented the design and implementation of Lev-
elUp. LevelUp embodies a thin-cloud approach to game
livestreaming. LevelUp broadcasters use hardware accelerators
to generate videos at multiple levels of quality and upscale
reduced-resolution streams. Experiments with a prototype im-
plementation demonstrate that mobile hardware acceleration
can transcode and super-resolve video in realtime, and that su-
per resolution can improve the visual quality of low-resolution
game streams by up to 88%.
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