
IoTReplay: Troubleshooting COTS IoT Devices
with Record and Replay

Kaiming Fang
Department of Computer Science

Binghamton University, State University of New York
kfang2@binghamton.edu

Guanhua Yan
Department of Computer Science

Binghamton University, State University of New York
ghyan@binghamton.edu

Abstract—Internet-of-Things (IoT) devices have been expand-
ing at a blistering pace in recent years. Many of these devices have
not been thoroughly tested for their security and dependability
prior to shipment. These COTS (Commercial-Off-The-Shelf) IoT
devices pose severe security threats to not only their users but
also critical infrastructures, as evidenced by the infamous Mirai
botnet attack. This work explores how to use the record and
replay technique to troubleshoot COTS devices. To this end, we
have developed an edge-assisted system called IoTReplay, which
identifies contextual events in an IoT system that may affect the
operations of the target IoT device. These contextual events are
recorded when the IoT device is operating in the real world and
then replayed in a test environment. We evaluate the performance
of IoTReplay for troubleshooting four different types of COTS
IoT devices. Our experiments demonstrate that IoTReplay is able
to replay execution sequences of these devices with high fidelity
while causing negligible interference with the operations of these
IoT devices in the real world.

I. INTRODUCTION

Internet-of-Things (IoT) devices have been expanding at a
blistering pace in recent years. According to a new forecast
by International Data Corporation, in 2025 there will be 41.6
billion connected IoT devices, generating almost 80 zettabytes
of data [19]. Despite the great convenience, automation, and
cost-effectiveness offered by IoT devices, they raise growing
user concerns with their dependability, security, and privacy.
Indeed, many consumers in a recent survey have had trust
issues with IoT devices [9]: 28% of the people who never own
smart devices are deterred from buying one due to security
concerns and 53% of the people surveyed do not believe that
their IoT devices have protected or respected their privacy
effectively. Vulnerabilities of IoT devices not only pose great
security risks to their users’ information, but also can be
exploited to cause infrastructure-level service disruption, as
evidenced by the infamous Mirai botnet attacks against Dyn’s
DNS (Domain Name System) service [12].

Ideally, IoT device vendors should have thoroughly tested
their products to fix all possible vulnerabilities before shipping
them to the market. However, many of the vast IoT devices
are produced by manufacturers that have only limited capa-
bilities, such as budgets and expertise, for security testing [1].
Particularly, the laboratory settings in which IoT devices are
tested prior to shipment can be drastically different from
the real-world scenarios where these devices are operated by

users with diverse knowledge levels of IoT and interact with
myriad physical environments that are hard to emulate exhaus-
tively. Therefore, numerous vulnerable COTS (Commercial-
Off-Shelf) IoT devices have been placed into operation, which
is confirmed by a recent finding by Palo Alto Networks
that 57% of 1.2 million IoT devices deployed in thousands
of physical locations in the United States are vulnerable to
medium- or high-severity attacks [22].

Against this backdrop, this work explores how to trou-
bleshoot COTS IoT devices using record and replay. Record
and replay is an automated blackbox system testing technique
with a wide range of applications, including system reverse en-
gineering [10], malware analysis [26], intrusion analysis [11],
network troubleshooting [30], Web application analysis [5],
[21], Android application analysis [14], [17], [16], [23], re-
production of Windows application execution [15]. Even with
many successful examples for record and replay, there are
unprecedented challenges when applying this technique to
troubleshoot COTS IoT devices, because they interact with
not only other components in an IoT system, including the
counterpart mobile app and the backend IoT cloud, but also
their physical environments, which are unpredictable and hard
to emulate perfectly.

In this work we develop a new edge-assisted system called
IoTReplay to facilitate record and replay for troubleshooting
COTS IoT devices. Its key idea is to identify a comprehensive
set of external events that may affect the behavior of a COTS
IoT device and truthfully replay them in a test environment.
IoTReplay instruments the operational environment of a COTS
IoT device to record direct or indirect contextual events while
minimizing interference with its operation. The contextual
events collected are replayed within test environments which
run either in parallel with the operational one or in an offline
fashion. A test environment uses IoT components of identical
models or versions in hope of replaying the same problems
seen in the operational environment. Moreover, extra tools can
be deployed inside the test environment to help diagnose the
COTS IoT devices.

In a nutshell, our key contributions in this work are sum-
marized as follows. (1) We identify the key challenges in
implementing record and replay for COTS IoT devices. To
address these challenges, we identify various contextual events
that may affect the operation of a COTS IoT device in an

IoT system and analyze whether or how they should be
replayed. (2) We design a scalable edge-assisted architecture
for IoTReplay to support both online and offline modes of
replaying contextual events within a test environment. (3)
We implement IoTReplay for COTS IoT devices managed by
Android apps. We develop a combination of static analysis
and dynamic instrumentation techniques to record and replay
indirect contextual events affecting IoT applications, including
UI operations, geolocation information, and sensor data. We
also implement a method for translating Android UI operations
across different mobile phones to ensure their replayability.
(4) We perform extensive experiments to evaluate the ef-
fectiveness of IoTReplay in troubleshooting IoT devices, its
usability due to UI performance degradation, and its scalability
for troubleshooting multiple IoT devices simultaneously. Our
experimental results suggest that the record and replay mech-
anism offered by IoTReplay complements existing techniques
in enhancing the security and dependability of IoT devices.

The remainder of the paper is organized as follows. Sec-
tion II presents the challenges for troubleshooting COTS IoT
devices as well as the rationale of IoTReplay. Section III
describes the design of IoTReplay. Section IV gives the
implementation details of IoTReplay. Section V shows the
performance evaluation results of IoTReplay with four types of
IoT devices. Section VI surveys related work and Section VII
draws concluding remarks.

II. BACKGROUND

A typical IoT system works as follows. An IoT device
operates in a certain physical environment, from which its
sensors can collect environmental data, such as temperature,
smell, and surrounding scene. Through the UI (User Interface)
of an IoT app installed on a mobile phone, an IoT user can
monitor, control, and manage the IoT device remotely. There
can be direct communications between the IoT app and the IoT
device using wireless technologies, such as WiFi, Bluetooth,
and ZigBee, when they are in physical proximity. In case that
no direct messaging between the IoT app and the IoT device
is possible, the IoT cloud can act as a proxy to relay every
communication message sent between them.

Between the IoT device and the IoT cloud, there can also be
communication messages initiated in both directions. The IoT
device can send its sensor data and other telemetry events to
the IoT cloud. For example, a smart camera can automatically
upload the video recorded to the cloud. On the other hand,
the IoT cloud usually maintained by the IoT device vendor
can actively push messages (e.g., notifications and fireware
updates) to the individual IoT devices.

Challenges for troubleshooting COTS IoT devices. Trou-
bleshooting COTS devices has the following challenges. First,
although their functionalities are explained in their manuals,
their implementation details are usually unavailable, making
it difficult to perform whitebox or greybox tests on these
devices. Second, many issues found with IoT devices are
encountered by their users when they are operating in the real
world. It is hard to reproduce these problems without repeating

the same user operations in a test environment. Last but not
least, IoT devices usually need to interact with their physical
environments, which are impossible to reproduce exactly.
Such non-determinism of the physical world, which is wisely
characterized by Greek philosopher Heraclitus’ quote, “No
man ever steps in the same river twice, for it’s not the same
river and he’s not the same man,” makes it particularly difficult
to diagnose issues previously observed in the operations of
COTS IoT devices.

Rationale of IoTReplay. Our key idea for troubleshooting
IoT devices is to record all relevant contextual events that may
affect the operations of an IoT device in the real world and
replay these contextual events truthfully in a test environment
with additional diagnosis instruments. A contextual event is
defined to be one that is triggered by the environment external
to the operation of an IoT device. An example contextual event
can be a user input to the IoT app or a network packet received
by the IoT device. A self-triggered event by the IoT device is
not deemed as a contextual one.

IoTReplay strives to record and replay all possible contex-
tual events with minimal interference with the operation of the
IoT device in the real world. Although not all contextual events
contribute to the issue observed in the operational environ-
ment, the true factors are not known before troubleshooting.
Therefore, having all possible contextual events replayed in
the test environment maximizes the likelihood that the same
problem should appear again.

Due to nondeterminism of the physical world, contextual
events observed in the operational environment may not be
reproducible inside the test one. For example, a scene captured
by a smart security camera may not be exactly reproducible
to another security camera, even if they are placed physically
close to each other, or to the same security camera which
attempts to capture the same scene at a different time. Even
with such irreproducible contextual events, record and replay
can still be a powerful tool for troubleshooting IoT devices,
because the bug bothering the IoT device in an operational
environment can be activated in the test environment as long as
its logical prerequisite is reproducible. Following the previous
security camera example, an ill-formed user command sent
from the IoT app and causes the security camera to crash can
be replayed to troubleshoot the device if its generation does
not depend on a nondeterministic input.

Scope of work. IoTReplay aims to record and replay
external events that can drive the IoT device under test into a
faulty state. It is thus not effective in troubleshooting issues
triggered by its internal events. For example, if the IoT
device is infected by a malware, those problems caused by
local malware activities may not be manifested through the
record and replay mechanism offered by IoTReplay. However,
IoTReplay can still be instrumental in revealing how the
malware spread onto the IoT device from a remote machine.

III. SYSTEM DESIGN

In this section we first present the architecture of IoTReplay
and then discuss the contextual events identified by IoTReplay.

A. IoTReplay architecture

The architecture of IoTReplay is illustrated in Figure 1.
IoTReplay distinguishes two types of worlds, operational
world and shadow world. The operational world is the real
environment where an IoT device of interest is used. In the
operational world, the operational IoT device can be managed
by a human user from its counterpart IoT app installed on a
real mobile phone (operational mobile phone). The operational
IoT app is instrumented to record relevant contextual events
that happen to the operational mobile phone. The communi-
cations between the IoT app and the IoT device can be be
direct or relayed through an IoT cloud. A network gateway is
placed in front of the operational IoT device to record relevant
network packets destined to it. The operational dataflows,
which are shown as black solid arrows in Figure 1, include all
communication messages that exist in the real environment,
including those among the IoT app, the IoT cloud, and the
IoT device.

IoTReplay records different types of contextual events col-
lected from the operational world and replays them in shadow
worlds. A shadow world consists of a shadow IoT device,
which is a duplicate of the operational IoT device, and its
counterpart shadow IoT app, which is instrumented from the
original IoT app to support replay of contextual events. The
shadow IoT app can run on a virtual or real mobile phone
(shadow mobile phone).

As illustrated in Figure 1, a shadow world is not fully
isolated from the operational one or another shadow world,
because it is impractical to create duplicate vendor-specific IoT
clouds for testing purposes. When necessary, it is possible to
execute multiple shadow worlds for the same operational one.
Moreover, depending on how a shadow world is operated, we
can have the following two modes:

• Online mode: An online shadow world is running simul-
taneously with the operational one. Hence, any new issue
encountered in the operational world can be immediately
replayed in the shadow one where additional diagnosis
tools are deployed to troubleshoot the problem. In an
online shadow world, however, the shadow IoT device
must differ from the operational one, because two COTS
devices even of the same brand and model have their
unique product identifiers. If these product identifiers are
used as inputs to encrypt or obfuscate their communica-
tion payloads, we cannot simply record network packets
from the operational world and replay them within the
shadow world to troubleshoot these IoT devices.

• Offline mode: An offline shadow world, which replays
the contextual events recorded from the operational world
during an earlier time period, allows to reuse the oper-
ational IoT device as its shadow one. Hence, the afore-
mentioned problem can be avoided when unique product
identifiers are used for traffic encryption or obfuscation.
However, as the offline shadow world operates in a
different time epoch as the operational one, the physical
environment experienced by the same IoT device may

still differ from the one in the operational world even if
its location has not changed.

In the IoTReplay architecture, the dispatcher is responsible
for coordinating record and replay activities between opera-
tional and shadow worlds. On the arrival of each contextual
event recorded from the operational world, the dispatcher
either forwards it to an online shadow world immediately, or
stores it for a certain period of time before delivering it to an
offline shadow world.

Benefits of edge computing. Deploying IoTReploy on edge
computers can improve the reproducibility of the problems
encountered by an operational IoT device. First, the IoT
gateway in the operational world should be able to intercept
any network packets of interest destined to the operational
IoT device and then forward them to the shadow ones. Hence,
deploying the gateway on an edge device close to the opera-
tional IoT one helps improve the coverage of network packets
replayable in the shadow worlds. Second, we can split the
logical functionalities of the dispatcher into two components:
dispatcher-app and dispatcher-gateway. The dispatcher-app
component can run on the same physical machine as the virtual
mobile phones hosting the shadow IoT apps. This physical
machine can be an edge computer which stays close to the
operational phone so the latency in forwarding the recorded ac-
tivities from the operational IoT app to the shadow ones can be
minimized, which is particularly ideal for online deployment
of IoTReplay. Similarly the dispatcher-gateway component can
run on an edge computer close to the gateways for forwarding
network packets between operational and shadow worlds to
reduce the record and replay latency.

B. Contextual Events

At the heart of IoTReplay is how contextual events are iden-
tified. The behavior of an IoT device, assumed to be a blackbox
for troubleshooting, can be modeled as a deterministic finite
state machine (FSM) whose state transitions are driven by an
input alphabet including all possible contextual events. In a
typical IoT architecture, the contextual events that affect the
operation of an IoT device can originate from the IoT app, the
IoT cloud, and its physical environment. A shadow world can
run its shadow device inside the same physical environment
as the operational device or in an emulated environment. Our
discussions in the rest of this section will focus on other types
of contextual events.

The direct contextual events of the operational IoT device
obviously include all network packets it receives. A naive
approach, which we call the original blackbox approach, is
to replay each of these packets to a shadow one in a shadow
world. This scheme, however, does not work if a different IoT
device is used in the shadow world and the in-band messages
destined to the IoT devices are encrypted with device-specific
identities. Even if the same IoT device is used in an offline
shadow world, oft-used cryptographic nonces or time stamps
in network security protocols can still make the naive packet
replaying method futile.

Fig. 1. Architecture of IoTReplay

To circumvent this problem, we consider indirect contextual
events, which trigger internal state transitions of the opera-
tional IoT device through their effects on the other components
in the IoT system. For example, the IoT app receives a user
input and sends an encrypted command to the IoT device.
Although it is hard to replay the encrypted command message
directly to the shadow IoT device because it is encrypted by a
different key, we can replay the user input to the shadow IoT
app, which generates the same command message encrypted
by the key shared with the shadow IoT device.

Based on indirect contextual events, we can extend the
original blackbox, which includes only the COTS IoT device,
to include the other components in an IoT system. The
advantage of this approach is that, although we need to rerun
the extended blackbox during the replay phase, we do not need
to record and replay any communication messages, which may
be encrypted with device-specific keys, among the components
inside the blackbox. Instead, we only need to identify and
replay the contextual events that are external to the extended
blackbox. However, it is impractical to extend the blackbox
to include the entire IoT system, because it is hard to create
a duplicate copy of the IoT cloud running inside the shadow
world or instrument the IoT cloud in the operational world
to record its contextual events. Another challenge is that
recording and replaying all possible contextual events external
to the extended blackbox can be computationally prohibitive.
It is also unnecessary to do so in some cases. For example,
suppose that an IoT app reads the geolocation information of
the mobile device. If this information is only shown locally
to the mobile user but never used to update the messages
sent to the IoT device, the contextual event of reading the
geolocation does not have any effect on the behavior of the
IoT device, making it unnecessary to replay this contextual
event for troubleshooting the device.

Due to these concerns, IoTReplay still treats the COTS IoT
device as a blackbox but handles three types of contextual
events based on their receivers. The actions taken by IoTRe-
play for these contextual events are summarized in Table I.

C. Replayability analysis of contextual events

We next analyze the replayability of different types of
contextual events shown in Table I.

Indirect contextual events received from IoT app. IoTRe-
play records and replays UI operations, geolocation infor-
mation, and sensor data received by the IoT app. The UI
operations include a variety of mobile gestures performed by
either the user’s fingers (e.g., tap, swipe, drag, and slide) or
hand movements (e.g., shaking, tilting, moving, and rotat-
ing the mobile device). An IoT app may read the location
information of the mobile device. For example, the Google
Nest IoT platform obtains the current location of a mobile
device to arrange its user’s schedule. Some IoT apps read
data from sensors like accelerometer and linear acceleration
on their mobile devices. These sensor data may also affect the
communications between the IoT app and the IoT device.

IoTReplay does not record and replay any network packets
received by the IoT app. To explain how this affects the
precision of IoT device troubleshooting, we first define the
following properties:

Definition 1. We say that entity A’s responses are time-
insensitive if and only if for any two other entities, B and
C, if B’s request RB and C’s request RC have identical
contents, then A’s responses to RB and RC must also have
identical contents, regardless of the time and order of these
two requests. The contents of a request or a response do not
include how it is encrypted.

Definition 2. We say that entity A’s unsolicited requests are
undifferentiated to entities B and C if and only if for any
unsolicited request that A sends to B (or C), there must be
another one with the same contents sent from A to C (or B)
at the same time.

The network packets received by an IoT app fall into
the following categories based on the entities involved. (1)
Network packets directly from the IoT device: These packets
should not be recorded and replayed to avoid the chicken-and-

TABLE I
ACTION TABLE FOR DIFFERENT TYPES OF CONTEXTUAL EVENTS

Event Receiver Event Type Shadow mode IoTReplay Action
IoT App UI operations Online/Offline Record & Replay

Geolocation information Online/Offline Record & Replay
Sensor data Online/Offline Record & Replay

Network packets from IoT device Online/Offline None
Network packets from IoT cloud Online/Offline None

Exotic network packets Online/Offline None
Timer events Online None
Timer events Offline Start time alignment

IoT Device UI operations Online/Offline Human Replay
Sensor data Online/Offline Physical Replay

Network packets from IoT app Online/Offline None
Network packets from IoT cloud Online/Offline None

Exotic network packets Online/Offline Record & Replay
IoT Cloud Any Online/Offline None

egg problem as our goal is to examine the effects of indirect
contextual events on the IoT device through the IoT app. (2)
Network packets from the IoT cloud: If they are relayed packets
from the IoT device, they should not be replayed for the same
reason as those directly from the IoT device. If they are re-
sponses to app-triggered packets, they should be automatically
replayed if the following two conditions are satisfied: all the
contextual events triggering the IoT app to communicate with
the IoT cloud (e.g., UI operations) are replayed and the IoT
cloud’s responses are time-insensitive to the requests from the
IoT app (see Definition 1). If they are cloud-triggered packets,
we have the following cases. When the shadow world works
in an online mode, these indirect contextual events should not
be replayed if the IoT cloud’s unsolicited requests (i.e., cloud-
triggered packets) are undifferentiated to all the IoT apps (see
Definition 2). When the shadow world works in an offline
mode, the situation becomes complicated because these cloud-
triggered packets may or may not be received by the shadow
IoT device. (3) Exotic network packets: these packets originate
from sources other than the IoT devices and the IoT cloud.
When the IoT app contacts an external network service, the
responses received may taint its communications with the IoT
device. Similarly, assuming that any network service contacted
by the IoT app must have time-insensitive responses to the
requests from the IoT app, exotic network packets should not
be replayed in the shadow world.

An IoT app may use a timer to trigger some internal state
changes. If the shadow world is operating in an online mode,
timer events without using random delays should be identical
between the two worlds so there is no need to replay such timer
events. For an offline shadow world, sometimes the conditions
for firing the time events can be reproduced by carefully
aligning the world’s start time. For example, if a timer event
is scheduled by the IoT app exactly at the beginning of each
hour, we can align the start time of an offline shadow world
at the hour level to ensure that the same timer events are fired
in the shadow world. However, if the IoT app uses irregular
or random timer events, it would be difficult to replay them
in the shadow world.

Network packets received from IoT cloud. IoTReplay
does not record and replay any packets received from the

IoT cloud, partly because they may be encrypted with device-
specific keys. Such packets fall into two categories. For the IoT
cloud’s responses to device-triggered packets, it is unnecessary
to record and replay them if the following conditions are
satisfied: the contents of the deviced-triggered packets in the
shadow world are identical to those in the operational world
(although they may be encrypted with different keys) and
the IoT cloud’s responses are time-insensitive to the request
packets from the IoT devices. However, the IoT cloud can
also initiate communications with individual IoT devices,
such as firmware upgrade, keepalive messages, and system
notifications. For broadcast messages, they should be received
by the shadow IoT devices in online shadow worlds, but can
be missed by those running in offline shadow worlds due to
time epoch difference. For unicast messages, they should be
recorded and replayed, which is however hard to do because
they are usually encrypted or obfuscated.

Exotic packets received by IoT devices. Without a firewall
that allows only in-band messages (i.e., those from the IoT
cloud or from the IoT app directly) to reach the IoT device,
out-of-band network packets from network scanners or IoT
device intruders can cause internal state changes to the IoT
device. These unexpected packets are usually not encrypted
with device-specific keys. As they can also cause trouble to
the IoT device, IoTReplay records them in the operational
world and replays them in the shadow ones.

IV. IMPLEMENTATIONS

In this section we present the implementation details of
IoTReplay. As seen from Table I, record and replay are needed
for UI operations, geolocation information, and sensor data
received by the IoT app and exotic network packets destined
to the IoT device.

A. Record and replay for IoT app

The current implementation of IoTReplay targets COTS
IoT devices with companion IoT apps developed for Android
systems, whose open nature allows for use of abundant freely
available analysis and instrumentation tools. Figure 2 presents
IoTReplay’s workflow of recording indirect contextual events
from the IoT app.

1) Indirect contextual events: To explain the workflow,
we first discuss the three types of indirect contextual events
affecting the IoT app, UI events, geolocation information, and
sensor data, which need to be recorded at the end of the
workflow (orange boxes in Figure 2).

UI events. In each Android device including AVD (Android
Virtual Device), there is a device at /dev/input/ that logs
the user’s finger operations. When a user touches the screen,
moves around, or even uses multiple fingers to do operations,
this device generates a sequence of input event data in tuple:
“type code value”, where type and code determine the category
of an event, respectively, and value denotes its numeric value.
An example of an event is given by Google Nexus 5: “0003
003a 000000ff”, indicating an event has a type of an absolute
value (0003 or EV ABS), a code of pressure event (003a or
ABS MT PRESSURE), and the value of the touch pressure
is 000000ff, all represented in hexadecimal format.

Because the UI events, which are generated and processed
from the Linux OS level, are shared by all running apps, we
need to tease out those relevant to the IoT app. Intuitively,
an app is affected by UI operations when it is running
in foreground. Based on the life cycle of an Android app
activity [6], an app runs in foreground after its activities invoke
onResume() and goes into the background after onPause() is
called. Although some apps, such as malicious apps, may
generate UI events even running in the background, for usually
simple IoT apps, it is sufficient to use these calls to determine
which events logged at /dev/input are relevant to the IoT app.

Geolocation information. An IoT app may use the current
location of the mobile phone. For example, the Nest app
developed by Google uses the current location of the mobile
phone to arrange its user’s schedule. The location information
can be obtained by an app using Android’s geolocation-
related system APIs. There are typically three types of location
information based on their sources:
• WiFi: The coarse-grained location of a mobile device can

be found through the WiFi access point with which it
is connected. The following APIs can be used by An-
droid apps to obtain WiFi-related information: WifiMan-
ager.getScanResults, WifiManager.getWifiState, and Wifi-
Info.getSSID.

• Cellular: A mobile phone can acquire the TOA (time of
arrival) and TDOA (time difference of arrival) of cellular
signals from multiple base stations to estimate its loca-
tion. APIs commonly used by Android apps to obtain
cell locations are TelephonyManager.getCellLocation and
TelephonyManager.getAllCellInfo.

• GPS: The geographic coordinate of a mobile de-
vice can be directly obtained from satellites through
its GPS antenna. Related APIs used by Android
apps include the following: LocationManager.getGpsStatus,
LocationManager.getCurrentLocation, and LocationMan-
ager.getLastKnownLocation.
Sensor data. An app can acquire data collected by sensors

such as accelerometer and gyroscope through an API called
onSensorChanged(SensorEvent se). This callback function is

invoked whenever there is a new sensor event. The IoT app
can process parameter se to extract new sensor events from it.

2) Static analysis: Although UI events can be directly
obtained from /dev/input, geolocation information and sensor
data fed to an IoT app can only be acquired by intercepting
the relevant APIs. A naive approach is to intercept all relevant
API calls as discussed previously to record the geolocation
information and sensor data read by the operational IoT
app. This method, however, overestimates the effects of these
indirect contextual events if they do not affect the messages
sent from the app to the IoT device. To reduce the computa-
tional overhead in dynamic instrumentation, IoTRelay uses a
backtracking technique to identify all the API calls in an IoT
app that can taint the messages sent to the IoT device.

Data dependence graph. As illustrated in Figure 2, IoTRe-
play uses the Amandroid tool [27] to extract DDG (Data
Dependence Graph) of the IoT app. Amandroid is a static
analysis framework for Android apps capable of generating
control flow graphs and data dependency graphs as well as
performing taint analysis. Compared with other static analysis
tools, Amandroid allows inter-component analysis of Android
apps to improve the precision and completeness of static
analysis. Using the Amandroid APIs, we develop a custom
analysis tool to generate the data dependence graph of the IoT
app, which is comprised of a set of points-to facts representing
the relationships between the use sites and creation/definition
sites of Dalvik objects or variables.

Backtracking. Let G(V,E) be the DDG extracted by Aman-
droid for the IoT app. In this graph, each node v ∈ V
has a name attribute, v.name, and for each directed edge
(u, v) ∈ E, the start node u is treated as a use site and the end
node v its creation/definition site. In addition to G(V,E), the
inputs to the backtracking algorithm also include L, which is
the list of system APIs that can be hooked to record contextual
events, and F , which is a list of functions that can send
messages to the IoT device. Each function in F is a node
in the DDG after static analysis.

Given DDG G(V,E) and any node u ∈ V , we define
reach(u,G) to include all the nodes that are reachable from
node v in graph G. Similarly, for node set U ⊆ V , we define
reach(U,G) to be the union of reach(u,G) for all u ∈ U .
The output of the backtracking algorithm is the hooking set
H , which is initialized to be empty and eventually includes all
the nodes that need to be hooked to record contextual events.
A simple graph traversal algorithm can be used to derive the
hooking set H , which is defined as follows:

H = {∀v : v ∈ reach(F,G) ∧ v.name ∈ L}

Informally, the hooking set H includes every system API
call named in set L that obtains data (e.g., geolocation infor-
mation or sensor data) capable of tainting the message-sending
functions in list F .

Identification of message-sending functions. We use an
example to show how to identify message-sending functions
in an IoT app. For the IoT app of the Tycam LTE camera, we
can find the following method in its smali code:

Fig. 2. Workflow of recording indirect contextual events from IoT app

1 // smali code
2 .method smali_classes7/com/tutk/IOTC/Camera$p;->run()V

This method is added to list F fed to the backtracking algo-
rithm, because it invokes avSendIOCtrl(), where avSendIOC-
trl() is a native function in its library libAVAPIs.so responsible
for sending commands towards its camera device.

3) Dynamic instrumentation: IoTReplay uses VirtualX-
posed [3] to instrument the operational IoT app. VirtualXposed
allows modification of Android app behaviors through the use
of Xposed modules, but it does not need to root the mobile
device or flash a custom system image on it. Therefore, Vir-
tualXposed, which itself runs as a normal app on an Android
device, offers a non-intrusive approach to hooking the API
calls in the operational IoT app identified by the backtracking
technique. More specifically, for each API call in the hooking
set H , we write an Xposed module calling param.getValue()
and result.getResult() to record its parameter and returned
values in the operational IoT app, and a counterpart one calling
param.setValue() and result.setResult() to replay them in the
shadow IoT app. These parameter and result values are relayed
by the dispatcher from the operational IoT app to the shadow
one through TCP connections.

We use an approach similar to RERAN [14] for record and
replay of UI events. On the operational mobile phone, we
use the standard getevent tool to record the UI events from
the /dev/input directory. On the shadow mobile phone (either
a real one or an AVD), the standard sendevent tool is not
used due to its slow replay speed. Instead, we run a custom
program on the shadow mobile phone to inject events recorded
on the operational mobile phone into the event stream stored
at /dev/input.

The operational IoT app is also instrumented with an
Xposed module to monitor whether the app’s activity is
running in foreground or background by hooking its two life-
cycle methods, onResume and onPause. The module sends a
notification to the dispatcher whenever one of the two methods
is invoked by the app. The dispatcher uses these notifications
to infer whether the IoT app is running in foreground or not.
On the arrival of onPause notification, the dispatcher stops
relaying the UI events from the operational mobile phone to
the shadow one; on the arrival of onResume notification, the
dispatcher resumes UI event relaying to the shadow phone.

B. Record and replay for exotic network packets

We use the classical ARP spoofing technique to insert the
gateway between the router and the operational IoT device.
The gateway sends one ARP packet with its source spoofed
as the router to the IoT device, which updates its ARP
table with the binding between the gateway’s MAC address
and the router’s IP address. Similarly, the gateway sends
another ARP packet with its source as the IoT device to the
router, which adds the binding between the gateway’s MAC
address and the IoT device’s IP address to its ARP table.
This approach, which is also adopted by IoT Inspector [18],
does not need configuration changes of the IoT device or
extra dedicated devices for capturing packets. The gateway
can forward intercepted packets to the dispatcher, who further
decides which shadow worlds they should be delivered to.

C. Dispatcher

The dispatcher, which is implemented in Python 3, relays
the following messages from an operational world to a shadow
one: UI events, parameter and result values extracted by
Xposed modules, and exotic network packets from the gateway
of the operational IoT device. It also decides whether to
relay UI events based on the onResume and onPause notifi-
cation messages from the operational mobile phone. Another
important function performed by the dispatcher is UI event
translation, which is done from three different aspects.

Event device. Different Android mobile phones may have
different event devices in the Linux directory, /dev/input.
For example, the touchscreen device of Samsung Galaxy S5
resides at /dev/input/event2, while AVD uses its touchscreen
device as /dev/input/event5. As each touchscreen device must
have codes of BTN TOUCH or BTN TOOL FINGER con-
stants in its device information, the event devices can be
mapped between different Android mobile phones.

Event code. Event devices in different mobile phones may
be developed by different vendors. A vendor may use its own
event codes and value definitions for its devices. Moreover,
different phones use different event codes for touch, move/-
press, lift, pressure, and orientation operations. For example,
some mobile phones use ABS MT TRACKING ID value of -1
to indicate a finger release from the touchscreen, while others
like Honor 8 use code BTN TOUCH. Therefore, the dispatcher

relies on a map to translate these event codes and values
received from the operational mobile phone before relaying
them to the shadow one.

Event value. Event value translation can be accomplished by
normalization based on the value ranges. For example, event
ABS MT PRESSURE of Google Nexus 5 has a value range
of [0, 65535], while Huawei Honor 8 has the same event code
within [0, 255]. Hence, a value of 100 for the pressure event
code in Google Nexus 5 can be mapped to 255× 100/65535
in Huawei Honor 8.

V. EXPERIMENTS

In this section we first discuss the setup of a testbed. Using
this testbed, we perform various experiments to evaluate the
effectiveness and execution performance of IoTReplay.

A. Experimental setup

We use four types of COTS IoT devices, Google Nest
camera, D-Link smart plug, Roku TV, and Tycam LTE camera.
The first two use their cloud servers as a relay to communicate
with their IoT apps, while the latter two can directly talk
to their IoT apps. The Tycam LTE camera system allows
direct communications between its mobile app and its device
(camera) even if they use different local networks, using UDP
hole punching [29] assisted by a remote server; the relay mode
through an intermediate server is enabled only when UDP hole
punching fails. In our experiments the Tycam LTE camera is
configured to have direct communications with its app.

For all the COTS IoT devices but the Tycam LTE camera,
their operational IoT apps run on a Samsung Galaxy S5 phone
and their shadow ones on an x86 AVD, which is a virtual
mobile phone shown in Figure 1. For the Tycam LTE camera
we run its operational IoT app on the Samsung Galaxy S5
phone and its shadow IoT app on a real Google Nexus 5
phone. This is because its IoT app uses native libraries for
ARMv7 but the execution performance of an ARM AVD is
too slow for record and replay.

In our experiments, all the operational and shadow phones
run AOSP (Android Open Source Project) with Android
version 7.1. The AVD used for the shadow phone uses the
same hardware configuration (e.g., RAM and screen size) as
the Samsung Galaxy S5 phone. Xposed modules are installed
inside VirtualXposed along with IoT apps on real phones. The
real Xposed is installed on each AVD to avoid virtualization
overhead in our experiments.

In addition to the real mobile phones and the COTS IoT
devices, the other hardware used include a workstation (CPU:
I7-9700 3.00GHZ, RAM: 32GB) and a Dell Inspiron laptop
(CPU: I5-6500U, RAM: 16GB). The workstation is used to
run the dispatcher and AVDs (i.e., virtual mobile phones in
Figure 1), and the laptop to run the gateways.

B. Measurement results

For each type of COTS IoT devices under test, we perform
an experiment where two separate systems with components
of identical models are running in parallel. These experiments

are done without any UI operations from their applications
to avoid interference from the IoT apps. We monitor network
traffic from and to the IoT devices and infer the type of each
network message based on the traffic characteristics.

Table II summarizes our findings about the types of mes-
sages received by four IoT devices, along with their percent-
ages. There are five different message types:

• Application: All four IoT devices receive messages from
their counterpart IoT apps, either directly or through
their corresponding IoT clouds. As discussed before,
IoTReplay can record and replay messages triggered by
the IoT apps through indirect contextual events (i.e., UI
operations, geolocation information, and sensor data).

• Cloud notification response: The two camera devices
receive responses from their IoT clouds after they report
detected sounds or object movements. These messages
are replayable if we can mimic the physical environment
of the operational world.

• Firmware upgrade: We also observe firmware upgrade
messages sent from the IoT cloud to only one of the D-
Link smart plugs, as the two smart plugs were shipped
with different versions of firmware. However, firmware
upgrade does not take place frequently; we can also avoid
such differentiated messages from the cloud by choosing
shadow IoT devices with the same firmware version as
the operational one.

• Keep-alive: The IoT cloud sends keep-alive messages to
each individual Google Nest camera registered. This type
of messages is inferred from the periodic occurrences (20
per second) of packets monitored between the device and
its cloud server, even when there is no human operation
from the IoT app side.

Table II also presents the different encryption/obfuscation
techniques used by each COTS IoT device. Both Google Nest
Camera and D-Link smart plug use TLS v1.0 to encrypt
communication traffic. However, TLS v1.0 is not deemed
as secure any more because it suffers both the BEAST and
POODLE attacks [28]. The Tycam LTE camera use proprietary
obfuscation techniques. The Roku TV transmits its messages
in plaintext except authentication fields.

Timer events. As discussed in Section III-C, time events
triggered by the counterpart IoT apps can affect the replayabil-
ity of execution traces experienced by the COTS IoT devices.
There are two Java classes that are often used for timer
events in Android applications: Timer and ScheduledThread-
PoolExecutor, both of which have two methods for scheduling
future tasks: schedule() and scheduleAtFixedRate(), with minor
differences in their parameters. Both methods have several
overloads which can be classified into two types: with or
without initial execution time specified by a starting date time
(in java.util.Date). Without loss of generality, let scheduleX be
either of these two scheduling methods. Although overloading
the scheduleX method with an absolute date time can cause
trouble to record and replay, particularly in an offline mode,
our static analysis of the bytecode of the four IoT apps used in

TABLE II
NETWORK MESSAGES FOR EACH IOT DEVICE

IoT device Message type Encryption/Obfustation

Google Nest camera
Application (6.91%)
Keep-alive (92.32%)

Cloud notification response (0.77%)
TLS v1.0

D-Link smart plug Application (93.55%)
Firmware upgrade (6.45%) TLS v1.0

Roku TV Application (100%) Plaintext
(except authentication fields)

Tycam LTE camera Application (89.41%)
Cloud notification response (10.59%)

Proprietary obfuscation
or encryption

our experiments (see Section V) shows that this never occurs.
All four IoT apps use only two overload types: sched-

uleX(task, delay) and scheduleX(task, delay, period), whose
arguments fall into three types: constant (the arguments are
fixed and hardcoded inside the bytecode), random (the argu-
ments are randomized using relevant APIs), and others (the
arguments are derived from other sources, such as user inputs).
Our static analysis of the four IoT apps reveals that random
arguments only exist in the D-Link smart plug application.

We use Xposed modules to hook methods invoking sched-
uleX to evaluate the fraction of each type parameter mentioned
above. We run each IoT app for 10 minutes using the Monkey
utility [4] to generate UI operations. Table III presents the
average fraction of timer events per type over 10 runs for each
experiment. It is noted that for the majority of time events, they
are scheduled with constant delays; a small fraction of timer
events depend on other inputs such as user inputs. Only for
the D-Link smart plug, 7.89% of timer events are scheduled
with random delay arguments.

TABLE III
FRACTION OF TIMER EVENTS SCHEDULED PER CATEGORY

IoT application Constant Random Other
Google Nest camera 72.57% 0 27.43%
D-Link smart plug 77.64% 7.89% 14.47%

Roku TV 95.24% 0 4.76%
Tycam LTE camera 86.23% 0 13.77%

The results in Table III confirm our hypothesis that the
majority of timer events can be truthfully replayed in a shadow
world. Timer events with constant delays are replayable as
long as the events that schedule these timer events can be
replayed. The timer events with other inputs are replayable
if these inputs themselves can be replayed. For instance, if
the user, through UI operations, schedules a timer event with
a delay with respect to the current time, this timer event is
replayable as long as the UI operations can be replayed. In
rase cases where the user schedules an timer event to be fired
at an absolute time, such events may not be replayable in an
offline shadow world because the position of the timer event
fire time with respect to the start time of an offline experiment
is different from that in the operational world. For timer
events with random delays, they are typically not replayable
unless the same seed is used to initialize the random number
generator in both the operational and shadow worlds. Table III
shows that timer events with random delays usually do not
exist in IoT apps except the D-Link smart plug application.

C. Effectiveness results

1) Execution similarity.: In a new set of experiments,
we measure the execution similarity between the operational
world and the corresponding shadow worlds for each COTS
IoT device. The task is challenging because we cannot see
the internal state of each IoT device and, as seen in Ta-
ble II, communication messages sent or received by an IoT
device can be encrypted or obfuscated. To measure execution
similarity, we again resort to instrumentation of IoT apps,
which records a sequence of methods that have been invoked
for every message received by an IoT app. An example
method sequence is [‘a()Z’, ‘c(Lh/v/b$a;)V’, ‘a(Z)V’, ‘b()J’,
‘a(FF)V’]. We assign a unique symbol to each distinct method
to convert the sequence to a string, which we call invoked
method string. For each run of an operational or shadow world,
the IoT app can receive a sequence of messages. Assuming
a unique symbol for each distinct invoked method string,
their corresponding invoked method strings can be further
transformed into an execution state sequence. For example,
if in a run four messages are received by the IoT app,
its execution state sequence should include four symbols,
each representing an invoked method string for processing a
received message.

We use the execution state sequence to approximate the
execution trajectory of an experiment. Let E1 and E2 be
two execution state sequences. Their execution similarity score
S(E1, E2) is calculated as follows:

S(E1, E2) = 1− D(E1, E2)

max{|E1|, |E2|}
, (1)

where D(E1, E2) denotes the edit distance between E1 and
E2, and |X| the length of sequence X . If E1 = E2, then we
have S(E1, E2) = 1.

In our experiments, we notice that two invoked method
strings can be very close to each other, suggesting that they
correspond to two similar or identical messages received. For
example, we observe an invoked method string of length 17
from the operational world but a slightly different one of the
same length from the shadow world. As their only difference
is at the 16-th position (‘b([BI)J’ instead of ‘E()Z’), we
hypothesize that these two methods should deal with almost
identical messages from the IoT devices. To characterize such
situations, we define a tolerance level θ: if the edit distance
between two invoked method strings is no greater than θ, they
are treated as indistinguishable and thus mapped to the same

symbol. If θ = 0, the two invoked method strings must be
exactly the same to be assigned with the same symbol.

Figure 3 shows the execution similarity score between the
operational and shadow world for each of the COTS IoT
devices considered. We observe that even with θ = 0 for exact
matching between invoked method sequences, the execution
similarity score is always higher than 90% for all four IoT
devices; this means that less than 10% of the execution state
sequence derived from the operational world need to be edited
to get exactly the same one seen in the shadow world. If
we increase the tolerance level θ, the execution similarity
score gets closer to 1, suggesting that the IoT devices in the
operational and shadow worlds go through similar internal
state changes.

To gain insights into why execution traces may not be
exactly the same, we examine the Google Nest camera applica-
tion. It is found to use a UDP port to receive time information
from a remote server. The receiving procedure converts the
time information into strings to be used later. It is however
possible that the IoT app fails to get the time information from
the remote server, thus generating an error message“Failed to
fetch time from server.” Hence, the remote server’s responses
do not satisfy the time-insensitive property as discussed in
Section III-C, which is necessary to achieve replayability.

2) Attacks due to exotic network packets.: In a new set of
experiments we evaluate whether IoTReplay can successfully
record and replay exotic network packets targeting the four
COTS IoT devices. We consider four attack scenarios:

• Reboot attack: Through message fuzzing we have found
a way to cause the Tycam LTE camera to reboot 1. This
attack does not apply to the other three IoT devices.

• Nmap probing: Nmap [2] is a popular network scanner
supporting host discovery, port scanning, and OS detec-
tion with active probing packets.

• IoTSeeker: IoTSeeker [24] scans IoT devices in the local
network through their HTTP services to check if they are
using the factory-set credentials.

• IoT Inspector: IoT Inspector [18] is an open source tool
for automatic penetration testing of IoT devices. This tool
can be used to identify a variety of security, privacy, and
performance problems for IoT devices.

In our experiments we consider both online and offline
modes for the shadow world. For the two cameras, we record
object movements and sounds into files and replay them in
front of the lens of the shadow camera devices when they are
tested in an offline mode.

Table IV summarizes the replayability of each attack for
both online and offline modes. We observe that IoTReplay
can successfully reproduce the attack effects from the Nmap
scanner and IoTSeeker for all four IoT devices, regardless of
the work mode of the shadow world. The reboot attack against

1The Tycam LTE camera was manufactured by Jimi with firmware IH21 -
30 35V4 M5H IR V25 and mobile app of Version 4.12.0. The camera uses
a closed-source library called TUTK from ThroughTek Co., Ltd. The reboot
attack requires modification of a UDP packet sent to the camera. We have
reported this issue to the vendor through its official website.

the Tycam LTE camera can also be replayed for both modes.
However, the penetration test results by IoT Inspector cannot
be replayed by the current implementation of IoTReplay,
because the tool generates extra attack packets (e.g., ARP
spoofing) that are not destined to the operational IoT devices.

D. Execution performance results

1) UI performance degradation.: On an operational mo-
bile phone the IoT app is instrumented by VirtualXposed to
intercept system APIs of interest. As a human user interacts
with the operational IoT app through its UI, the additional
latency caused by VirtualXposed and its modules may affect
the usability of IoTReplay. By default, an Android device
refreshes its screen at the speed of 60 fps (frames per second).
Hence, each frame should be generated within 16 milliseconds
to prevent unsmooth motions which are called janks. To
measure the UI performance impact of VirtualXposed and
its modules, we use the new framestats command for gfxinfo
introduced in Android 6.0.

We run each IoT app on Samsung Galaxy S5, with and
without VirtualXposed and its modules. Each application is
operated by a user for about 5 minutes. The average frame
latency over 10000 frames rendered is shown in Table V for
each IoT app:

Table V tells us that the UI performance degrades only
slightly because of VirtualXposed. The average increase in
the frame generation time over the four IoT devices is only
2.19%. Even with VirtualXposed and its modules, the frame
generation time is smaller than 16 milliseconds, which is
needed to keep up with the pace of 60 frames per second on
an Android device. The negligible performance degradation
seen in Table V agrees well with our own experiences with
operating the instrumented IoT apps.

2) Latency.: Latency measurements between the opera-
tional and shadow worlds can be classified as follows:

• UI operations: For each UI operation, we measure the
difference between the time when a UI operation is sent
by the operational mobile phone, and the time when
its corresponding translated UI operation is received by
the shadow mobile phone. The latency thus includes the
processing time of a UI operation by the dispatcher and
the network transmission delays.

• Geolocation and sensor data: The latency is measured
by Xposed modules as the difference in time when the
same system API hooked is invoked in the operational
and shadow IoT apps.

• Exotic messages: This latency is measured as the time
interval between the two gateways of the operational and
shadow IoT devices.

The average latency over 10 runs, as well as its observed
value range, is shown in Figure 4 for each type of IoT
devices tested. We observe that the average latency measures
are around 400∼500 milliseconds, irrespective of the type
of contextual events. Their latency measures are similar to
each other because all of them are relayed through the same
dispatcher.

(1) Online replay (2) Offline replay
Fig. 3. Execution similarity. Each bar shows the average similarity score along with the minimum and maximum observed.

TABLE IV
REPLAYABILITY OF EXTERNAL ATTACKS. IN EACH ENTRY “a/b”, a AND b GIVE THE TEST RESULT OF ONLINE AND OFFLINE MODES, RESPECTIVELY.

IoT Device Nmap scanner IoTSeeker IoT Inspector Reboot attack
Google Nest camera Yes/Yes Yes/Yes No/No -
D-Link smart plug Yes/Yes Yes/Yes No/No -

Roku TV Yes/Yes Yes/Yes No/No -
Tycam LTE camera Yes/Yes Yes/Yes No/No Yes/Yes

TABLE V
AVERAGE FRAME GENERATION TIME

IoT App Average frame latency Average frame latency Overhead
(w/o VirtualXposed) (with VirtualXposed)

Google Nest camera 11.43 ms 11.62 ms 1.66%
D-Link smart plug 10.67 ms 10.83 ms 1.50%

Roku TV 10.25 ms 10.31 ms 0.59%
Tycam LTE camera 12.58 ms 13.21 ms 5.01%

(1) UI operations (2) Geolocation & Sensor (3) Exotic messages
Fig. 4. Latency of different contextual events

3) Scalability.: We measure the resource usage of the
workstation which hosts both the dispatcher and the AVDs
under a vary number of shadow worlds. We perform two sets
of experiments. The first set (one-to-multiple) includes parallel
execution of one operational world and multiple shadow
worlds for the Google Nest camera, and the second (multiple
one-to-one) has one parallel execution of one operational
world and one shadow world for multiple types of IoT devices.
In the second set of experiments, we first order the IoT devices

as follows: Nest Camera, D-Link smart plug, Roku TV, and
Tycam LTE camera; in an experiment with k shadow worlds,
we choose the first k IoT devices for testing.

Figure 5 gives the CPU and memory usage for both sets
of experiments. In the one-to-multiple case, we observe that
both the CPU and memory usages grow almost linealy with the
number of shadow worlds: a new shadow world increases the
CPU usage by about 1.7% and the memory usage by about
2.5%. In the multiple one-to-one case, when the number of

(1) One-to-multiple (2) Multiple one-to-one
Fig. 5. CPU and memory usage of the workstation

shadow worlds increases from one to three, there is also a
linear increase in CPU and memory usage: a new shadow
world introduces an increase of about 2.4% in CPU usage
and 2.0% in memory usage. However, when the number of
shadow worlds increases from three to four, the CPU and
memory usages both increase only slightly. The reason for
this phenomenon is two-fold. First, the last IoT device added
to the experiment is Tycam LTE camera, for which its IoT app
runs on a real mobile phone instead of an AVD. Second, the
computational overhead of running an AVD is much higher
than that of the dispatcher.

VI. RELATED WORK

The risks posed by vulnerable IoT devices have inspired
many researchers to develop new methods to understand and
enhance their security. Fernandes et al. performed thorough
security analysis of Samsung’s SmartThings IoT platform
and found severe flaws that can lead to overprivilege and
information leakage [13]. Jia et al. proposed a system called
ContextIoT that can identify fine-grained contexts for sensitive
actions and generate run-time prompts to assist IoT users with
permission control [20]. Chen et al. developed a system called
IoTFuzzer that can identify program-specific logic in IoT apps
such as encryption functions and fuzz specific fields to expose
memory corruption vulnerabilities in IoT devices [8]. Huang
et al. developed an open source tool called IoTInspector to
crowdsource labeled network traffic collected from smart IoT
devices deployed within real-world home networks [18]. Celik
et al. developed a system called IoTGuard that can monitor an
IoT app’s runtime behavior with a dynamic model and enforce
safety and security for individual apps or sets of interacting
apps [7]. Schuster et al. proposed environmental situation
oracles to enhance access control for IoT platforms [25]. Our
work on IoTReplay, which applies the record and replay tech-
nique to troubleshoot COTS IoT devices, is complementary
to the large body of existing works in understanding and
improving the pressing IoT security problem.

Record and replay is a classical technique for automatic test-
ing of blackbox systems. PANDA is a reverse engineering tool

that adds record and replay capabilities at the instruction level
to the QEMU whole-system emulator for shareable and repeat-
able system diagnosis [10]. Malrec is malware sandbox system
that takes advantage of PANDA’s system-wide record and
replay capability for fine-grained malware analysis with low
computational overhead [26]. ReVirt is a system that applies
virtual-machine logging and replay to improve the integrity
and completeness of audit loggers in environments with non-
deterministic attacks and executions [11]. OFRewind, which
is built upon the split forwarding architecture of OpenFlow,
enables record and replay debugging for large operational
networks [30]. Targeting web applications, Warr is a high-
fidelity tool that extends WebKit to record a user’s actions such
as mouse clicks and keystrokes and replays the interactions
between the user and a web application [5]. Mahimahi is
a set of composable shells that enables accurate record and
replay for HTTP by emulating the multi-server nature of Web
applications and using traffic isolation to minimize mutual
interference across different instances [21].

More relevant to IoTReplay are those targeting Android
applications. RERAN records and replays low-level events
available as the /dev/input/event* device files on an Android
device but is unable to deal with events available only through
system APIs such as GPS locations and sensor data [14].
MobiPlay allows record and replay of not only UI events but
also sensor data inputs by forwarding them to a server through
a high-speed network connection, where the app is actually
executed [23]. Motivated by fragmentation of the Android
ecosystem, Mosaic is a system designed for cross-platform
user-interaction record and replay through a human-readable
platform-neutral intermediate representation [16]. VALERA
is a stream-oriented record and replay system focused on
comprehensive events on a smart phone, such as sensor and
network inputs, event schedules, and inter-app communica-
tions based on intents [17]. Although our implementations
of IoTReplay have been inspired by many previous record
and replay techniques for Android systems, to the best of our
knowledge, IoTReplay is the first of its kind in applying record
and replay to troubleshoot COTS IoT devices.

VII. CONCLUSIONS

Numerous IoT devices shipped with weak security protec-
tion call for effective yet efficient methods for troubleshooting
their problems encountered in the real world. This work
presents the rationale, design, and implementation details of
an edge-assisted system called IoTReplay, which uses record
and replay to debug COTS IoT devices. Using four types
of COTS IoT devices, we perform extensive experiments
to show that IoTReplay is able to record and replay the
execution sequences and behavior of the IoT devices with high
fidelity. Our experimental results have also demonstrated that
IoTReplay incurs negligible UI performance degradation to
the IoT users and can be scaled to support parallel diagnosis
of multiple COTS IoT devices.

ACKNOWLEDGMENTS

We acknowledge the support of Critical Infrastructure Re-
silience Institute, a US Department of Homeland Security
Center of Excellence, for this work. We also thank anonymous
reviewers for their valuable comments.

REFERENCES

[1] What Makes IoT so Vulnerable to Attack?
https://outpost24.com/blog/what-makes-the-iot-so-vulnerable-to-attack,
2020.

[2] Nmap: the network mapper - free security scanner. https://nmap.org,
Accessed in April 2020.

[3] Virtualxposed. In https://github.com/android-hacker/VirtualXposed, Ac-
cessed in April 2020.

[4] UI/Application Exerciser Monkey. https://developer.android.com/studio/
test/monkey, Accessed in June 2020.

[5] S. Andrica and G. Candea. WaRR: A tool for high-fidelity web
application record and replay. In 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN), pages 403–410.
IEEE, 2011.

[6] Android developers. Understand the activity lifecycle.
https://developer.android.com/guide/components/activities/activity-
lifecycle, Accessed in April 2020.

[7] Z. B. Celik, G. Tan, and P. McDaniel. Iotguard: Dynamic enforcement
of security and safety policy in commodity iot. In Proceedings of the
Network and Distributed System Security Symposium (NDSS’19), 2019.

[8] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang. IoTFuzzer: Discovering memory corruptions
in iot through app-based fuzzing. In Network and Distributed System
Security Symposium, 2018.

[9] Consumers International and Internet Society. The Trust
Opportunity: Exploring Consumer Attitudes to the Internet of Things.
https://www.internetsociety.org/wp-content/uploads/2019/05/CI IS -
Joint Report-EN.pdf, 2019.

[10] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. Re-
peatable reverse engineering with PANDA. In Proceedings of the 5th
Program Protection and Reverse Engineering Workshop, pages 1–11,
2015.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine logging and
replay. ACM SIGOPS Operating Systems Review, 36(SI):211–224, 2002.

[14] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN: Timing-
and touch-sensitive record and replay for Android. In 2013 35th
International Conference on Software Engineering (ICSE), pages 72–
81. IEEE, 2013.

[12] D. Etherington and K. Conger. Large DDoS attacks
cause outages at Twitter, Spotify, and other sites.
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-
spotify-suffering-outage/, 2016.

[13] E. Fernandes, J. Jung, and A. Prakash. Security analysis of emerging
smart home applications. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 636–654. IEEE, 2016.

[15] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek, and
Z. Zhang. R2: An application-level kernel for record and replay. In
USENIX Symposium on Operating Systems Design and Implementation,
volume 8, pages 193–208, 2008.

[16] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi. Mosaic: cross-platform
user-interaction record and replay for the fragmented Android ecosys-
tem. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS’15). IEEE, 2015.

[17] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight record-
and-replay for Android. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2015.

[18] D. Y. Huang, N. Apthorpe, G. Acar, F. Li, and N. Feamster. IoT
inspector: Crowdsourcing labeled network traffic from smart home
devices at scale. arXiv preprint arXiv:1909.09848, 2019.

[19] International Data Corporation. The Growth in Connected IoT Devices Is
Expected to Generate 79.4ZB of Data in 2025, According to a New IDC
Forecast. https://www.idc.com/getdoc.jsp?containerId=prUS45213219,
2019.

[20] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
A. Prakash, and S. Unviersity. Contexlot: towards providing contextual
integrity to appified iot platforms. In Proceedings of the Network and
Distributed System Security Symposium (NDSS’17), 2017.

[21] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan. Mahimahi: Accurate record-and-replay for HTTP.
In 2015 USENIX Annual Technical Conference (ATC’15), pages 417–
429, 2015.

[22] Palo Alto Networks. 2020 Unit 42 IoT Threat Report.
https://unit42.paloaltonetworks.com/iot-threat-report-2020/, 2020.

[23] Z. Qin, Y. Tang, E. Novak, and Q. Li. Mobiplay: A remote execution
based record-and-replay tool for mobile applications. In Proceedings
of the 38th International Conference on Software Engineering, pages
571–582, 2016.

[24] Rapid7. IoTSeeker: Find IoT devices, check for default passwords.
https://information.rapid7.com/iotseeker.html, Accessed in April 2020.

[25] R. Schuster, V. Shmatikov, and E. Tromer. Situational access control
in the internet of things. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 1056–1073, 2018.

[26] G. Severi, T. Leek, and B. Dolan-Gavitt. Malrec: compact full-trace
malware recording for retrospective deep analysis. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2018.

[27] F. Wei, S. Roy, and X. Ou. Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps. In Proceedings of ACM Conference on Computer and
Communications Security, 2014.

[28] Wikipedia. Transport layer security.
https://en.wikipedia.org/wiki/Transport Layer Security, Accessed
in April 2020.

[29] Wikipedia. UDP hole punching — Wikipedia, the free encyclopedia.
In https://en.wikipedia.org/wiki/UDP hole punching, Accessed in April
2020.

[30] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. OFRewind:
Enabling record and replay troubleshooting for networks. In Proceedings
of the USENIX Annual Technical Conference, pages 327–340. USENIX
Association, 2011.

