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Abstract—Mobile Augmented Reality (MAR) is going to play
an important role in industrial automation. In order to tag a
physical object in the MAR world, a smart phone running MAR-
based applications must know the precise location of an object in
the real world. Tracking and localizing a large number of objects
in an industrial environment can become a huge burden for the
smart phone due to compute and battery requirements. In this
paper we propose GLAMAR, a novel framework that leverages
externally provided geo-location of the objects and IMU sensor
information (both of which can be noisy) from the objects to lo-
cate them precisely in the MAR world. GLAMAR offloads heavy-
duty computation to the edge and supports building MAR-based
applications using commercial development packages. We develop
a regenerative particle filter and a continuously improving
transformation matrix computation methodology to dramatically
improve the positional accuracy of objects in the real and the
AR world. Our prototype implementation on Android platform
using ARCore shows the practicality of GLAMAR in developing
MAR-based applications with high precision, efficiency, and more
realistic experience. GLAMAR is able to achieve less then 10cm
error compared to the ground truth for both stationary and
moving objects and reduces the CPU overhead by 83% and
battery consumption by 80% for mobile devices.

Index Terms—Mobile Augmented Reality, Localization, Track-
ing

I. INTRODUCTION

The next wave of digitization promises to revolutionize

the future industry, ushering in widespread automation and

augmented intelligence in the manufacturing and service

sectors [1, 2]. Augmented reality (AR) is going to play a

significant role in this transformation [3, 4, 5]. An application

built using AR enhances the perception of the real world view

of a user by overlaying virtual information on real objects of

interest that are within the field of view (FoV) of the user when

seen through an AR-enabled device. AR-based applications

require large amount of image and sensory data gathering

and manipulation by the device in real-time. This severely

limits their adoption in the industry floor as special purpose

and expensive devices are needed. For widespread adoption

of such applications, it is desirable to have them run on

popular devices such as smart phones so that anyone carrying a

phone can use such applications. However, smart phone based

AR, popularly known as mobile augmented reality (MAR) [6,

7, 8], has some practical limitations due to the constrained

§This manuscript was submitted while the author was with Nokia Bell Labs.
Currently the author is affiliated with Facebook Inc.

capabilities of the devices. This paper proposes a framework

for efficient support of MAR on smart phones by leveraging

the enhanced facilities installed in future industry environment.

A. Motivating Use Cases

MAR-based applications for industrial automation will open

the door for large scale application development and adoption.

These applications will allow a user to observe the physical

environment through the camera of the smart phone. Images of

physical objects of interest (we refer to them as target objects

in this paper) will be augmented on the screen to help the user

identify them, inspect and control them in the virtual world and

the effect of which will be carried out in the physical world

in real-time. Below we provide a few simple, but illustrative,

use cases that can be used in future industry:

In a digital warehouse shipping and receiving items in

boxes are sorted using smart conveyor belts as shown in

Figure 1. Automation in warehousing and logistics requires a

mission-critical system that allows high-fidelity digital repre-

sentations of the physical world and the ability to dynamically

control physical assets for improving safety, productivity, and

efficiency. MAR can help in this process by identifying a box

(a target object) on the belt. When the object is viewed through

the camera of the phone, the image of the box is augmented

with labels and internal contents displayed on the screen in

real-time (as shown in Figure 1).

Fig. 1: Digital warehouse with on premise edge computation

and per box sensory tags. In addition, MAR view of the

warehouse conveyor belt with boxes tagged/classified using

color.

On an indoor industrial floor, an operator looking at a

swarm of identical robots wants to identify a robot that is
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performing a certain task of interest. The robot’s image is

marked up with identifiable information when it comes in the

view finder of the camera of the operator’s phone. It displays

controlling information about the robot for the operator to

control the same in real-time (e.g., move the robot to a

particular place on the factory floor by dragging its image

on the phone’s screen).

In an outdoor mining industry there are a number of

autonomous trucks that carry ore from the pit to the train track.

If any truck in the convoy stops, the whole pipeline may come

to a standstill, till the problem is addressed and the stalled

truck starts moving. Therefore, real-time health checking of

the trucks is needed for efficient operation. Using a MAR-

based application, when a smart phone is held up, the trucks

in the view are tagged with information about their health and

various other vital readings.

B. Challenges in Supporting MAR for Industrial Automation

In order to support the above use cases, a MAR-based

application must render virtual content attached with a target

object when the object appears in the device’s FoV. This

requires the application to be aware of the precise position

and stable position update of the target object in the real world

so that the user gets realistic AR experience on interactions

with the virtual content. AR applications typically use state-

of-the-art vision based techniques to recognize and track target

objects (both static and moving) in camera’s FoV [9, 10, 8,

11, 12, 13]. Such techniques require recognition of objects

appearing in camera frame and tracking procedures running at

the user AR device. As these procedures are compute intensive

and put huge demand on battery, they are not suitable to run

on commercial smart phones for MAR applications. Therefore,

they are not able to accurately position the target objects

in real-world. A recent work [14] developed a scheme to

infer 3D position of the target object from the recognized 2D

view frame. However, such techniques are restricted to only

planar objects (e.g., Jaguar [14]), which most of the real-world

objects of interest are not. On the other-hand feature-based

techniques (i.e., 2D-to-3D correspondences) [15, 16, 17] have

been used for estimating the position of regular objects, but

it requires actual 3D model of the target objects. Therefore, a

repository of models have to be created and maintained in the

device, which is not very practical for MAR.

Another approach is to leverage 3D point cloud, extracted

using a depth sensing camera or a stereo camera, to recognize

the target objects [18, 19]. Depth sensing cameras are rare in

smart phones today, and when available in expensive models,

become a drain on the battery due to heavy computation needs.

Furthermore 3D points are limited by certain range as well [20,

21, 22].

Moreover, the above computer vision based algorithms are

limited by the distance between the camera and the target

object. Figure 2 shows the accuracy of detecting the position

of a 2D marker as the camera moves away from it. Observe

that for a fixed size marker, after certain distance the accuracy

sharply drops to 0%.
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Fig. 2: Accuracy of pose estimation of a 0.15x0.15m2 marker

object at different perpendicular distance from the camera of

Pixel 4 with an image resolution of 1920x1080.

In addition to the above limitations, vision-based techniques

are prone to object occlusion, and are not able to distinguish

similar looking objects [23]. For instance, for industrial au-

tomation, we need to uniquely identify a target object so

that we can have a specific action (i.e., navigating a robot).

Unfortunately, visual recognition techniques cannot provide

this functionality. Furthermore, vision based object tracking

also require camera calibration which can be erroneous.

C. Our Approach

Our goal is to appropriately leverage the future industry in-

frastructure to support MAR-based application more efficiently

on smart phones. Future industry in the Industry 4.0 era will be

equipped with next generation technology and services, such

as positioning system (indoor or outdoor) to track the objects

of interest, edge cloud to offload computation [24, 25, 26],

low latency networking to edge cloud [27], to name a few.

For example, 5G for enterprise [24], Bluetooth 5 [28], FiRa

(fine-ranging) [29] are geared towards precise asset tracking

and localization in enterprise. Real-time kinematic (RTK) with

Global Navigation Satellite Systems (GNSS) for precise local-

ization in outdoor mining environment is already in use [30].

Private 5G and its precursor private LTE networks [25] are

poised to provide both edge computation and low latency

networking.

For the MAR-based applications described above, we make

use of the external geo-location, instead of on-device target

object location tracking, to offload the burden on the smart

phones. This makes MAR-based applications viable to running

on smart phones without requiring high processing capacity

or draining battery. Despite the requirement of infrastructure

support, there are several other advantages of using an external

geo-location. It can handle both stationary and mobile objects,

and does not suffer from object occlusion. The separation

between the user and the target object can be any arbitrary

distance, and is not constrained by the limitation of the vision-

based algorithms [31]. The location computation is further

offloaded into the edge cloud, and streamed to the smart phone
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in real-time using low latency networking, making it attractive

for MAR-based applications.

While it is possible to get the location of a target object in

real-time, the precision of the object’s position can fluctuate

over time and/or get affected by interference from nearby radio

sources [32] at industrial premise. Figure 5 and 13(b) explain

the scenario for stationary and moving objects, respectively.

Figure 5 shows the variation of error for a stationary object,

and Figure 13(b) shows that the moving object’s trajectory

(green) does not always follow the exact path taken by the

object (red). The fluctuation makes the tagging of a target

object in a MAR-based application inaccurate and its usability

falters.

D. Our Contribution: GLAMAR

In this paper, we design and develop an edge computation

based solution, called Geo-Location Assisted Mobile Aug-

mented Reality (GLAMAR), that provides a runtime frame-

work for supporting AR-based application on commercial

smart phone platform in industrial settings. We use High

Accuracy Indoor Positioning (HAIP) [33] system for locat-

ing and tracking an object. HAIP attaches a sensory tag to

an object to locate it using Bluetooth Low Energy (BLE)

mechanism. We further augment the tag with IMU sensors,

and also stream the IMU sensor data to the edge cloud. The

overall environment with respect to the digital warehouse

use case is shown in Figure 1. We develop a novel event-

triggered, regenerative particle filter-based algorithm with the

sensory data that improves the accuracy of object’s tracking

in real-time. All these computations are carried out at the

edge and final position information is streamed to the user’s

phone, making the overall framework MAR friendly. To the

best of our knowledge, GLAMAR is the first of its kind to

support AR-based application for tracking real-world object

in MAR platform, without using any heavy-duty vision-based

techniques.

GLAMAR supports MAR-applications developed using

ARCore [34] or ARKit [35] (based on the phone platform)

while not performing any extra vision-based computation for

target object recognition and tracking at the phone. This makes

GLAMAR light-weight and scalable for tracking large number

of moving objects in real-time. The MAR application running

on the phone uses its AR coordinate system, while target

object’s positions are based on a coordinate system overlaid

on the industry premise. In order to tag target objects with

virtual content in the phone’s AR coordinate system a trans-

formation matrix is needed. We develop a lightweight method

to run locally in user’s phone to compute such matrix, and

continually improve it during the lifetime of the MAR session.

This makes GLAMAR scalable to support large number of AR

users, which is ideal for industrial settings. It also preserves

the location privacy of the user within the phone.

Most of the recent vision-based edge-assisted MAR system

[36] [37] [9] [8] uses camera pixel position of the target

objects to render the virtual contents. Therefore, such system

cannot understand the depth of the target objects, which makes

rendering confusing for the target objects which are behind

any physical occlusion. GLAMAR allows to render the virtual

contents using MAR SDK (e.g., ARCore, ARKit), which uses

depth map to make virtual objects accurately appear in front of

or behind real world objects, enabling immersive and realistic

user experiences.

For our evaluation, we build the infrastructure for the

GLAMAR framework mimicking an industrial setting. Based

on our evaluation, GLAMAR is able to achieve high accuracy

object tracking (less then 10cm error compared to the ground

truth) for both stationary and moving objects. The result

shows that compared to feature-based vision techniques, the

framework reduces the CPU overhead by 83% and battery con-

sumption by 80% for mobile devices. The major contributions

we made in this paper are:

(a) Show how MAR-based industrial applications can be

made practical and easily adoptable. The application demands

on smart phone resources are kept very low by leveraging the

new industry 4.0 technologies like object localization, edge

computation, low latency networking that are getting deployed

in the industry premises.

(b) Develop an edge computation friendly framework,

GLAMAR, that determines and distributes location of target

objects in real-time to all MAR-based applications. Our edge-

hosted regenerative particle filter-based location estimation,

and on-device continuously improving coordinate transfor-

mation matrix computation (between AR and premise co-

ordinates) ensure accurate image augmentation even in the

presence of errors and fluctuations. While computation heavy

operations are executed at the edge, the lightweight on-

device coordinate transformation keeps user information pri-

vate within the device itself.

(c) Implement MAR-based applications using commercial

SDKs for demonstrating the significant advantages provided

by GLAMAR compared to legacy vision-based techniques.

For accurate comparison, we develop a novel ground truth

measurement mechanism to track target objects in real world

units (e.g., meter) instead of pixels, which most of the litera-

ture works in MAR use.

II. GLAMAR FRAMEWORK

The framework consists of two main GLAMAR compo-

nents, and an independent Location Service, as shown in

Figure 3: (i) GLAMAR agent running in user mobile device,

and (ii) GLAMAR service running at the industry premise

edge server. There could be one or more user devices with

each device running an agent. Furthermore, each device runs

its own independent AR session (that creates its own AR

coordinate system). The agent helps the AR session to overlay

virtual contents onto the corresponding target objects that are

in the current FoV. The target objects could be stationary or

moving in the physical world. For instance, it could be a

box on a conveyor belt or a robot moving at an industrial

premise. We assume that the target objects are equipped

with battery powered tags for localization and IMU sensors.

The localization tag comes with the HAIP system; however,
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Fig. 3: GLAMAR System Overview.

integration of IMU sensor with the tag and its cost analysis

are beyond the scope of this paper. These tags stream IMU

sensor information to the GLAMAR service in real-time.

GLAMAR service also receives location information, from the

indoor/outdoor localization system, about the user devices and

the target objects of the surroundings. Before we describe the

functionalities of these components, we explain the coordinate

system used by different entities in the GLAMAR framework,

and their inter-relationship so that ultimately target objects and

their corresponding virtual annotations can be displayed on the

user device FoV.

A. Coordinate Systems

We deal with four independent coordinate systems as fol-

lows:

AR coordinate system: As the camera of the user device

moves, it uses the visual features of the surrounding environ-

ment to build an AR coordinate system for the AR session [38,

39]. All objects, real or virtual, must be represented in this

coordinate system for viewing on user device. The origin

of this coordinate system remains at the starting point of

the AR session. Note that, every user device has it’s own

independent AR session, which consists of an AR coordinate

system that has Y-axis along the opposite direction of gravity,

and X,Z-axes create the horizontal plane. As the user device

moves around, the AR session sometimes may readjust it’s

coordinate system based on the updated visual features [40].

Also, long non-presence of visual features forces the user

device to initiate a new AR session with completely new AR

coordinate system.

Phone coordinate system: This is a three dimensional

coordinate system with 6DoF (degree of freedom). All IMU

sensor readings are expressed in this coordinate system [41].

This coordinate system is relative to the device’s screen when

the device is held in its default orientation (i.e., user holding

the phone to see the screen). In its default orientation, the X

axis is horizontal and points to the right, the Y axis is vertical

and points up, and the Z axis points toward the outside of the

screen surface.

Premise coordinate system: In GLAMAR, we get the

location input of a target object based on the positioning

system available at the industry premise. Such positioning

system has its own point of reference or coordinate system,

which we refer to as the premise coordinate system. This

coordinate system helps in representing the location of an

object in 2 or 3 dimension. In 2-dimensional case, both axes

(X and Y) form a horizontal plane, parallel to the earth’s

surface, to represent the location of target objects. In 3-

dimensional case, in addition to the horizontal plane, one axis

(Z) is perpendicular to the horizontal plane (i.e., opposite of

gravity). Any premise coordinate system defined as above can

be considered as an input to the GLAMAR framework.

Reference (Earth) coordinate system: This is a 3 DoF

world coordinate system on earth’s surface plane. In this case,

Y-axis is towards global north, X-axis towards east, and Z-

axis perpendicular to the earth’s surface plane, opposite of

gravity. We use this coordinate system as reference to find the

orientation of the target device in premise coordinate system.

B. GLAMAR Agent

GLAMAR agent continuously receives real-time location

updates of the surrounding target objects from the GLAMAR

service in premise coordinate system and corresponding meta

data information about the target objects. The agent converts

these coordinates to the device’s AR coordinate system. The

agent is responsible for computing the transformation matrix

needed to translate a coordinate from the premise coordinate

system to user device’s AR coordinate system. Finally, based

on the computed AR coordinates it renders the virtual contents

using the meta-data for the corresponding target devices that

are in the current FoV. Note that by not revealing the user

location to the GLAMAR service, the agent preserves the

privacy of the user.

Knowledge of both the origin and the orientation of the two

coordinate systems are needed to compute the transformation

matrix. Even though such information is easily available for

the premise coordinate system, it is non-trivial to know the ori-

gin and orientation of the AR coordinate system. Furthermore,

each agent in user device has different and independent AR

coordinate systems. For computing the transformation matrix,

GLAMAR agent needs to determine both the translation and

rotation matrixes.

Independent of the translation between two coordinate sys-

tems, first, we estimate the rotation matrix by coinciding

the origin of AR and premise coordinate systems as shown

in Figure 4. Both these coordinate systems have one axis

aligned with the gravity, which are Y and Z-axis for AR and

premise coordinate systems, respectively. Rest of the two axes

represent the same horizontal plane. Therefore, GLAMAR

agent only needs to compute the rotation to align the X-Z

plane of AR with the X-Y plane of premise coordinate system.

We derive the rotation by measuring the position of the user

device, both in AR and premise coordinate systems, at two

distinct locations in the plane as illustrated in Figure 4.
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Fig. 4: Rotation estimation between AR and premise coordi-

nate systems.

In Figure 4, Xp-Yp and Xa-Za represent the two horizontal

planes of the premise and AR coordinate systems. In the

horizontal plane, A and B represent two measurement points

of the user device. A and B have the coordinates (xa1, za1)
and (xa2, za2), and (xp1, yp1) and (xp2, yp2), respectively, in

AR and premise coordinate systems. As shown in the figure,

ACa and BCa are parallel to Xa and Za axis, respectively.

Similarly, ACp and BCp are parallel to Xp and Yp axis,

respectively. Thus, the angle of rotation between AR and

premise coordinate systems can be derived as follows;

α = λ− θ = arctan(
yp2 − yp1
xp2 − xp1

)− arctan(
za2 − za1
xa2 − xa1

) (1)

With the angle of rotation (α) determined, the quaternion

vector, q1 = [0, sinα/2, 0, cosα/2]T aligns the Xa-Za plane

of AR to the Xp-Yp plane of premise coordinate system.

Finally, to align the Za axis of AR with the Yp axis of

premise coordinate, we apply following quaternion vector,

q2 = [sin 45, 0, 0, cos 45]T . We convert the quaternion to the

rotation matrix, and multiply them to derive the rotation matrix

for mapping the AR coordinates to premise coordinates.

With the rotation matrix derived, it is easy to compute the

translation matrix to shift the origin between the coordinate

systems, keeping in consideration of the right-hand rotation

rule, which makes the vertical axes align in the opposite

direction in the two coordinate systems.

For instance, we apply the rotation on point A to convert

its coordinate from AR to premise coordinate (Now assume

3d coordinate). For instance, we can apply following rotation

on point A to align its AR location into premise coordinate

system.

[xp′1, yp
′

1, zp
′

1]
T = Rq1 ×Rq2 × [xa1, ya1, za1]

T (2)

Then, we deduct the translation vector as follows:

[tx, ty, tz] = [xp1, yp1, zp1]
T − [xp′1,−yp′1, zp

′

1]
T (3)

Note that we used negative value for the Y axis, because,

despite having the q2 rotation on Za axis, it remains in the

opposite direction of Yp for right-hand rule rotation.

Ideally both coordinate systems should be fixed, therefore,

one-time measurement should be enough. However, experi-

ments show that as AR session continues, it sometimes re-

adjusts it’s AR coordinate based on the surrounding visual fea-

tures. Further, location measurement (in premise coordinate)

could be erroneous (there could be outlier measurement of

location). In that case multiple estimations help in improving

the accuracy of transformation from one system to another. In

Section IV, we show the importance of continuous estimation

of coordinate transformation matrix.

C. GLAMAR Service

GLAMAR service running at the edge of the premise

is responsible for conducting the background operation of

collecting location and IMU sensor information of the sur-

rounding target objects. However, both the location and IMU

sensor readings could be erroneous as shown in Figure 5 and

6. The following discusses how we accurately estimate the

real-time position of the target objects in premise coordinate

system. GLAMAR service shares the tracking information of

the target objects with the GLAMAR agents.

1) Positional Events in GLAMAR: There are three types of

measurement events that are generated in the framework.

Location Update (L): Location updates give an estimate of

the current location in premise coordinates. If Z is the current

location then its estimate Y ∼ N (Z, σL) where σL is the

covariance matrix and can be estimated from measurements

(Figure 5). (We use N (a, b) to denote a normal distribution

with mean a and covariance b).

Acceleration Update (A): The acceleration update gives

the current acceleration of the target object. We use sensor

fusion technique to measure the orientation of the target

objects with respect to Earth coordinate system. Using the

knowledge of the orientation of the premise coordinate system

with respect to Earth coordinate, we convert the accelerometer

reading of target objects to premise coordinate. As in the case

of the location update, if A is the true acceleration, then the

estimate of the acceleration is N (A, σA) . As in the case of

location update, the covariance matrix can be estimated from

measurements (Figure 6). The acceleration measurement is

noisy and will in general give non-zero values even if the

target object is not moving.

Motion Update (M): Combining the acceleration measure-

ment with gyroscope readings using sensor fusion techniques,

it is possible to derive with an extremely high level of

confidence whether the target object is stationary or not. The

target object sends out a motion update when it detects that

it is not in motion. We assume that the motion updates are

accurate.
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These updates arrive at irregular intervals. Let the times at

which the updates arrive at the edge server be denoted by

t1 ≤ t2 ≤ t3 . . . . Each of these update arrival times tj where

j = 1, 2, 3 . . . is one of these three types of updates. We use

Δj = tj+1 − tj to denote the time between updates j and

j + 1. We use Ztj to denote the location of the target object

at time tj . In order to simplify notation, we use Zj to denote

Ztj and more generally we use the subscript j to denote tj .

We use Vj and Aj to denote the velocity and acceleration of

the target object at time tj . Assume that the initial location Z0

is known and we assume that the target object is stationary,

i.e, V0 = A0 = 0.

2) Regenerative Particle Filter: Particle filter [42, 43, 44]

is a Bayesian update mechanism to track the location of

moving objects. It is a robust alternative to Kalman Filter

based tracking of moving objects. A particle filter represents

the location of the target object using n virtual particles.

Each particle is evolved in time using the update information

received at the edge server. The actual location of the target

object is estimated as the average of the location of the n
particles.

A key component in the particle filter algorithm is the

resampling step that is performed whenever there is a location

update. Resampling the particles eliminates unlikely particles

while reinforcing more likely particles. This controls the

variance of the location estimator. A natural approach when we

get a no motion update is to simply freeze the existing particles

until we get an acceleration update. However, this leads to

poor location estimation, (see Figure 13(b)&(c)). Therefore

we introduce a regeneration step when we get a no motion

update. In the regeneration step, we first determine the current

expected location of the particle and then generate n particles

around the current expected location. This regeneration step

improves the performance of the particle filter algorithm

significantly (see Figure 13(d)). We call this particle filter with

the additional regeneration step, the regenerative particle filter.

We now describe the complete algorithm.

The target object is tracked using a collection of n particles.

Larger number of particles improves tracking accuracy at the

cost of increased computation. We use Xm
j to denote the

estimated location of particle m at time tj . In addition, we

use V m
j and Am

j to denote the velocity and acceleration of

particle m at time tj . At the initial time t0, assume that we

have an estimate X0, V0, A0 of the initial target object location,

initial velocity and acceleration respectively.

Acceleration Update: Assume that we get an acceleration

update Aj at time tj . In this case we first update the current

location of the particles[
Xm

j

V m
j

]
=

[
Xm

j−1

V m
j−1

]
+

[
Δj−1

1

2
Δ2

j−1

0 Δj−1

] [
V m
j−1

Am
j−1

]

We then generate Am
j ∼ N (Aj , σA).

Location Update: Assume that we get a location update

Yj at time tj . We first update the particle locations using the
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Fig. 5: Distribution of location error of the indoor localization

system HAIP.
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Fig. 6: Distribution of accelerometer sensor reading while

target object is static.

following update equation.[
Xm

j

V m
j

]
=

[
Xm

j−1

V m
j−1

]
+

[
Δj−1

1

2
Δ2

j−1

0 Δj−1

] [
V m
j−1

Am
j−1

]

Next we compute the conditional probability

wm
j = Pr

[
Yj |X

m
j

]
.

This probability can be computed since given Xm
j , the actual

location of the target object is N
(
Xm

j , σL

)
. Once we have

generated the values of wm
j for all particles m, we draw n

samples with replacement to generate the new Xm
j . We set

Am
j = Am

j−1

Motion Update: When we get a motion update at time j,

we first compute the estimated location of the target object Zj

as the mean of the particle locations

Zj =
1

n

∑
m

Xm
j .

We now generate a new set of m points Xm
j ∼ N (Zj , σL).

We now set V m
j = 0 and Am

j = 0 for all particles m. Note

that the particles are regenerated around the expected location

at this step.
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III. IMPLEMENTATION

We develop a test-bed for experimenting with GLAMAR

in our lab that emulates an industry premise. We equip the

premise with indoor localization system called High Accuracy

Indoor Positioning [33] (HAIP). Figure 5 shows the distri-

bution of location error of HAIP. As shown in the figure

mean error could be close to 1 meter. A number of HAIP

locators are fixed on the ceiling of the premise so that one

or more locators get line-of-sight measurement of the objects.

HAIP is a localization system that provides real-time posi-

tioning data using Bluetooth Low Energy (BLE) technology

leveraging unique Angle-of-Arrival (AoA) signal processing

method. We calibrate HAIP deployment using 2 axes to define

the horizontal plane and a vertical axis, and use this as our

premise coordinate system. We know both the origin and

the orientation of the HAIP, which has 215° azimuth with

respect to global north (in earth coordinate system). HAIP

localization system requires a tag attached to the target object

for location tracking. In our implementation, we attach tags

to all target objects and user devices. The location of all

the tagged target objects in premise coordinate system are

streamed to the GLAMAR edge server in real-time.

Target Object: We attach a HAIP tag at each target object.

For flexibility and ease of experimentation, we also place an

Android phone that plays the role of the IMU sensor with

BLE and WiFi transceivers. In real-world deployment any

battery powered off-the-shelf IoT device with IMU sensor and

BLE/WiFi connectivity can be used. The scope of this paper

is not to design such device, but how the IMU reading from

such devices could be used for GLAMAR. Therefore, We

develop an android application in the phone to emulate the

tag for the target objects that applies sensor fusion technique

using complementary filter [45] on IMU sensors to estimate

the orientation of the target object with respect to reference

coordinate system. With the knowledge of the orientation, the

app converts its motion sensor data from phone’s coordinate

system to Earth coordinate system, and finally projects it

to the premise coordinate system before streaming it to the

GLAMAR edge server.

GLAMAR Agent: We implement the GLAMAR Agent in

the user device as an Android App using the ARCore SDK.

ARCore API helps in creating an AR session, and provides

access to the pose of the user device in AR coordinate. In

addition to running an AR session, the app runs a background

thread to coordinate the calibration that determines the coor-

dinate transformation matrix from premise to AR coordinate

system. Note that, we ignore the vertical axis during the

calculation as it is aligned in both coordinate systems.

For coordinate transformation matrix calculation, we need

at least 2 recent position measurements of the user device at

two distinct locations. In our implementation, we measure the

position when the user device is stationary. We use threshold

based technique on gyrosscope sensor data to determine if the

user device is stationary. If so, the app starts collecting HAIP

location data of the user device for 5 seconds. This eliminates

any random fluctuation in HAIP location measurement. If the

user device moves before 5 seconds, the measurement is dis-

carded. In addition to HAIP data, the app collects the location

of user device in AR coordinate. A coordinate calibration

thread keeps updating the coordinate transformation matrix

whenever it has a new measurement.

The app’s activity class also runs a background thread that

receives estimated real-time position of the target objects in

premise coordinate system from the GLAMAR edge server.

The app converts the location from premise to AR coordinate

system, except for the vertical axis, using the currently com-

puted coordinate transformation matrix. If the target object

falls in the current FoV of the user device, the app renders the

virtual content at the target object’s AR coordinate location

(keeping the absolute value of the vertical axis the same as

the premise coordinate system).

GLAMAR Edge Server: We use a Dell server with In-

tel Core i-7-8700 CPU 3.2GHz, and 64GB memory as our

GLAMAR edge server. We use python for implementing

edge service, which consists of three independent processes.

They use producer-consumer ring queue for each target object.

We use a single variable lock per ring queue to synchronize

the access among the three processes. One producer process

is responsible for enqueueing HAIP location information of

the target object in the ring queue. Another producer process

uses gyroscope data from the target object to determine its

state: stationary or in-motion. This process enqueues the state

of the target object with the accelerometer sensor reading. In

stationary case, it enters zero values for accelerometer reading.

For in-motion, it enqueues motion state with the accelerometer

data. The final consumer process runs a particle filter that

dequeues all events sequentially from the ring queue. Based

on the dequeued event, particle filter updates the particles

(see Section II-C2). We use 4096 particles for the particle

filter implementation. GLAMAR server runs separate thread

for each particle filter corresponding to the target object.

IV. EVALUATION

In order for the GLAMAR framework to be useful in

practice, its accuracy must be comparable to the currently used

vision-based techniques. Moreover, in order to be a more at-

tractive framework of choice than the vision-based techniques,

it must run more efficiently on a user device. Therefore,

to establish the efficacy of the GLAMAR framework, in

the following, we evaluate it for accuracy and efficiency.

The results show that GLAMAR is as accurate as vision-

based techniques with significantly reduced energy usage and

computation overhead.

A. Accuracy:

The accuracy of the GLAMAR framework is measured

based on the positional displacement of objects (physical

or virtual) compared to the “ground truth” in 3D coordi-

nate system. The following factors affect the accuracy in

GLAMAR. Precise computation of coordinate transformation

between premise and AR coordinate systems has direct impact
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Fig. 7: Continuous coordinate calibration helps in reducing the

error of tracking target objects in AR coordinate.

on the accuracy of rendering the virtual contents. However,

coordinate transformation depends heavily on the quality of

the location data, which may fluctuate from time to time.

Therefore, we evaluate the impact of having continuous co-

ordinate conversion on the accuracy of tracking target objects.

Unlike many other edge-assisted MAR systems, GLAMAR

does not share large-size image data with the infrastructure.

Instead, it relies on timely delivery of small amount of text

data. This emphasizes the effect of network jitter on the

accuracy. Finally, we discuss the improvement on accuracy

by using various sensory inputs in our regenerative particle

filter method.

1) Ground Truth Measurement:: For our evaluation, we

need ground truth measurement of tracking target objects.

Despite its popularity, vision-based technique is less reliable in

tracking target objects in industrial premise [46, 47], specially

due to occlusion and range limitation. Therefore, we develop

a novel technique using multi-user AR to collect the ground

truth measurement of tracking target objects. We leverage the

open source code of “Just-a-line” [48], an Android app that

allows two or more phones to sync up their AR coordinates

through a real-time database in Google cloud, called Fire-

base [49]. Using this app, one phone can see the line that

the other phone is drawing in the same physical space. We

integrate the source code of “Just-a-line” with our GLAMAR

agent in user device and place another phone running “Just-a-

line” in the target object. The phone in the target object draws

a line in it’s own position, and uploads the points of the line

to Firebase cloud. On the other hand, the GLAMAR agent

running in user device uses the Google’s cloud anchor APIs

to convert the points of the target phone’s position to its own

AR coordinate. Thus the user device can track the position

of the target objects. Note that, coordinate conversion using

Google’s cloud anchor APIs is closed source.

2) Effect of calibration on accuracy:: The calibration pro-

cess estimates the coordinate transformation matrix between

AR and premise coordinate systems. Any error in estimating

this matrix can result in rendering the virtual contents in

inaccurate positions. Therefore, it is important to have precise

estimation of the coordinate transformation matrix. We find
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Fig. 8: Due to error in location readings, second calibration

step increases the error in tracking target objects in AR

coordinate.

that repeated and frequent estimation helps in improving the

accuracy in estimating the matrix. For instance, Figure 7 shows

three consecutive estimations after every 5 seconds. Here we

keep the target object at a fixed location, and the user device

moves around to do the measurements for coordinate transfor-

mation. Figure 7 shows that multiple coordinate transformation

measurements help improving the accuracy of rendering the

virtual overlays on the target object. Moreover, we observe

that as an AR session runs for longer duration, it may readjust

the frame of reference of the AR coordinate system. However

such changes do not happen often. But repeated estimation

of coordinate transformation helps in readjusting for these

changes.

3) Effect of calibration on accuracy:: The accuracy of

coordinate transformation also depends on the accuracy of

HAIP localization system. We observe that HAIP localization

accuracy may very at different location at different time.

Therefore, it is not always the case that more measurements for

coordinate transformation improves the accuracy. Sometimes

due to inaccurate HAIP location information, our estimated

transformation could degrade. For instance, Figure 8 shows

that the second measurement degrades the accuracy compared

to the first one. However, continuous calibration helps in

readjusting the error. As we see in Figure 8, third measurement

helps in improving the accuracy. Therefore, the GLAMAR

agent in user device runs continuous calibration to keep the

coordinate transformation as accurate as possible.

4) Effect of wireless communication:: In GLAMAR, each

target object sends IMU sensor reading to the edge server.

Similarly, edge server sends HAIP location information to the

user devices. Both communications have very little throughput

requirement (1.6-2.6Kbs). However, delay and especially jitter

affect the accuracy in GLAMAR. To evaluate this we use a

shared WiFi network as our wireless communication medium.

Figure 9 shows the very high jiiter experienced in the WiFi

network (which is typical in industrial settings [50]). In addi-

tion, WiFi is power inefficient for the battery powered IMU

sensor in target objects. Given low throughput requirement,

therefore, as an alternative we choose Bluetooth Low Energy
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Fig. 9: Observed jitter in Wi-Fi and BLE in industrial setting.

(BLE) for the wireless communication in GLAMAR [51, 52].

In order to create a BLE network in industry settings, we

deploy Raspberry Pi’s that are both powered and connected

to the backhaul Ethernet network. We implement a set of

GATT services using the built-in Bluetooth of the Pi’s to

communicate with the user devices and target objects, and

make the Pi’s act as proxies for the edge server.

Figures 10(a) and 10(b), compare the effect of jitter on

the accuracy of estimating the position of a target object.

When there is any sudden movement of the target object

(e.g., positions 1, 2, 3 in Figure 10(a)), GLAMAR falls

behind in tracking the target object due to large jitter in WiFi

network, resulting in rendered virtual content trailing the target

object’s position in the AR frame. However, for the same

scenario with BLE as the network, we see (e.g., positions 1,

2, 3 in Figure 10(b)) more accurate and reliable tracking in

GLAMAR. Furthermore, we observe smoother tracking of the

target object in BLE compared to WiFi.

Relative to the ground truth based on “Just-a-line”, Fig-

ure 11 compares the absolute positioning error between using

WiFi and BLE for the communication. Furthermore, Figure 12

compares the power consumption between using BLE and

WiFi in GLAMAR framework.

5) Accuracy of using regenerative particle-filter: Fig-

ures 13(a) through 13(d) show the gradual improvement of

accuracy achieved by our particle filter process in tracking

a moving target object (at 2̃m/s) for rendering the virtual

contents. In these figures, we use “Just-a-line” for tracking

our ground truth (red dots). Note that, we only compare the X

coordinates for easy visualization. Similar plot can be shown

for other coordinates too.

Figure 13(a) shows only the location update, ‘L’ (green),

which fails to track the real-path of the target object (i.e., lot

of red dots are visible). Figure 13(b) depicts the case when

we apply particle filter only on the location update (‘L’). This

case also has a lot of visible red dots.

Figure 13(c) shows how adding acceleration update (‘A’) in

the particle filter process improves the tracking of the target

object. It reduces the number of visible red dots compared

to Figure 13(b). Finally, Figure 13(d) shows the case when

the regenerative particle filter applied on location update (‘L’)

from HAIP, acceleration update (‘A’) from IMU and motion

update (‘M’). This results in practically exact match with

the true trajectory of the target object. Also note that the

regenerative particle filter 13(d) (i.e., GLAMAR) provides

more stable and smooth experience compared to the regular

particle filter 13(c). Finally, Figure 14 shows the absolute error

compared to the ground truth for the above four procedures.

The number of particles used in the particle filter process

has an effect on the accuracy of tracking the target objects.

Figure 15 shows the distribution of location error when dif-

ferent number of particles are used. Large number of particles

shows more stable location measurement. However it increases

overall computation cost and latency. We found 4096 particles

are enough for our particle filter to provide stable location

tracking for the target objects with low latency.

B. Efficiency

In order for GLAMAR framework to be useful in practice,

besides accuracy, it must be more energy efficient and less

computationally involved than legacy solution techniques. In

this subsection, we compare GLAMAR framework with the

feature-based visual tracking in terms of frame rate, energy

consumption, and computational overhead. While comparison

with previously proposed edge-based MAR systems would

have been more appropriate, practical constraints like non-

open-sourced systems, incompatible performance metrics, etc.

prohibit us from doing so.

Vision-based GLAMAR

CPU utilization for stationary
target object (%)

43.1±14 8±3

CPU utilization for in-motion
target object (%)

62.7±7 9.3±4

Average frame rate (fps) 11±1.2 33±2.1

TABLE I: Compute and frame rate comparison between

vision-based techniques and GLAMAR.

1) Effect on Computation: We implement an Android app

using OpenCV [53] for object tracking. The app is a vision-

based approach of mapping features (i.e., ORB) between 2D

image and 3D model for object recognition and tracking. Here

we compare the computation requirement in CPU utilization

between the vision-based and GLAMAR framework. Note

that, we use the CPU in Google Pixel 4, which is Octa-core (1x

2.84 GHz Kryo 485 Gold Prime 3x 2.42 GHz Kryo 485 Gold

4x 1.78 GHz Kryo 485 Silver) [54]. Table I shows the CPU

utilization comparison when the target object is stationary

and in-motion, respectively. Overall, GLAMAR reduces CPU

requirement by 83.3% compared to vision-based techniques.

For rendering, we see average frame rate of 33 and 11 fps in

GLAMAR and vision-based technique, respectively, (Table I),

an increase of about 200%.

2) Effect on Power Usage: Finally, we compare the bat-

tery discharge rate between the vision-based technique and

GLAMAR. We use two Android apps (e.g., GSam Battery

Monitor and AccuBattery) that monitor the power usage of

different applications. Both apps show the estimated average
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Fig. 10: Target object tracking in GLAMAR compared to the ground truth, while using (a) WiFi, and (b) BLE as communication

medium.
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Fig. 11: Position error comparison between using BLE and

Wi-Fi.

�

�$�

�$�

�$�

�$�

�

� � � % � &

)
�

*

9�=���,7�

563
7�*�

Fig. 12: Power consumption measurement using BLE and Wi-

Fi.

battery discharge rate in mAh for different Android applica-

tions. However, the app requires us to run the application

for longer duration for better estimation. Figure 16 shows

the average battery discharge comparison between the vision-

based technique and GLAMAR. GLAMAR reduces the battery

discharge rate by 80% compared to the vision-based technique.

V. PRIOR WORK

In AR application, besides real-time camera pose estima-

tion [37, 55], it is important to accurately render the virtual

content that is aligned with the physical scene for better visual

acceptance. Therefore, real-time detection and tracking of the

physical objects, compared to the pose of the camera, is a

key part of AR applications [56]. Before comparing relevant

work on object detection and tracking in the context of MAR,

we briefly summarize the different techniques used for object

detection and tracking in AR.

For practical deployment, most of the recent focus has been

on developing marker-less object tracking methods [57, 58].

The general idea of marker-less method is to apply feature

matching between the 2D image or 3D point cloud of the

recognized object with the 3D model of the reference object

to estimate the position of the object [59, 60]. But it requires

heavy computation for object detection and tracking [61, 62].

Moreover, due to energy and computation constraints [63],

most of the mobile platforms use monocular vision [64, 65]

instead of stereo [66] vision for creating the virtual world

of 3D point clouds, which is mostly sparse. Therefore, object

detection degrades with the sparse point clouds extracted from

the monocular 2D image [67]. In addition, as the object moves

further away from the camera, the performance of the vision-

based object tracking degrades drastically [68]. In contrast,

GLAMAR shows that without vision, just by using location

and IMU sensors with infrastructure support, it is practical

to accurately track target objects for AR applications. Fur-
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Fig. 13: In-motion target object tracking comparison (X-axis values only) over time between the ground truth and (a) location

update (L) (b) the particle filter applied only on location update (L) (c) the particle filter applied on location update and

acceleration update (L+A) (d) the regenerative particle filter applied on location update, acceleration update, and motion

update (L+A+M) (i.e., GLAMAR).
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Fig. 14: Error (cm) compared to the ground truth for four

procedures, L , particle filter(L), particle filter(L+A), and

regenerative particle filter(L+A+M).
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Fig. 15: Statistical distribution of absolute location error for

different number of particles used in particle filter implemen-

tation.
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Features
MAR System

MARVEL [36] Jaguar [14] [10] MARLIN [9] GLAMAR

Object tracking Stationary Stationary Stationary+Moving Stationary+Moving Stationary+Moving
Detected object type N/A Planar Planar+Non-planar Planar+Non-planar Planar+Non-planar
Detected object position (coordinate) 3D Real-world 3D Real-world 2D Image frame 2D Image frame 3D Real-world
Solution Architecture Edge-assisted Edge-assisted Edge-assisted On-device Edge-assisted
Integrable with external AR platforms No Yes No No Yes
On-device computation Moderate Moderate Moderate High Low
Privacy preservation No No No Yes Yes

TABLE II: Comparison of GLAMAR with recently proposed MAR systems.
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Fig. 16: Battery discharge rate comparison between GLAMAR

framework and vision-based (using features) object tracking.

thermore, not using vision-based techniques makes GLAMAR

more lightweight compared to other proposed solutions.

Mobile Augmented Reality (MAR): Despite the tech-

nological advancement of AR, due to resource constraint,

MAR is still at its early stage [9]. Researchers have pro-

posed different solutions to trade-off computation between

on-device [9] and cloud/edge-server [14, 37, 69, 10, 36, 8,

70]. The basic idea of edge-assisted solutions is to reduce

the on-device energy usage by offloading computation to the

cloud/edge-server without sacrificing latency and accuracy

significantly. Existing commercially available MAR platforms

(i.e., ARCore [34], ARkit [35], Vuforia [71] etc.) are quite

efficient in detecting planar objects (e.g., floor, ceiling, vertical

wall, marker, etc.) at close proximity. However, they are

limited in detecting and tracking the non-planar objects, which

most of the real-world objects are. Furthermore, the accuracy

evaluation of edge-assisted MAR solutions [36, 9, 70, 10, 8] in

literature are based on pixel overlap between the target object

and the detected object. Thefore we are unable to compare

our accuracy detection model with the existing edge-based

MAR solutions in literature. Moreover, most of these systems

are closed source which make it challenging to use them as

baseline for our quantitative comparison.

Table 2 summarizes the comparison among different MAR

systems including GLAMAR. Among the few recently pro-

posed MAR systems, MARVEL [36] and Jaguar [14] can

only track stationary objects, and find their true position

in the AR world. However they are incapable of tracking

moving objects. On the other hand, MARLIN [9] and [10]

can track moving objects. However, they are unable to track

the true position in AR world, and instead they measure the 2D

position of the target object in the camera frame for overlaying

bounding-box. Note that, recognizing and tracking objects

in camera frame (2D) may be enough to render overlaying

information on the object, but they are incapable of rendering

3D virtual objects attached to the real-world position of the

target objects. GLAMAR is the only framework that can track

the real-world position of both stationary and moving target

objects. In addition, GLAMAR is lighter-weight and more

energy efficient compared to the proposed MAR solutions

with vision-based object tracking. Unlike other edge-assisted

MAR solutions, user agent in GLAMAR need not share any

information with the edge server, which makes it protective of

user privacy.

Particle-Filter for location tracking: Particle filter has

been used in many object tracking applications to model

the non-linearity and the non-Gaussianity of a physical

model [72], especially in robotics [73]. There are several

variants of the particle filter that have been introduced for real-

time object tracking [74, 75, 72]. These particle filters consist

of two fundamental steps; prediction and update (correct).

For better visual experience in AR, it is essential to have

more frequent and consistent update steps. However, due to

low frequency and irregular update steps we see a lot more

fluctuation in AR. In GLAMAR, we adapt the particle filter,

where we introduce a new step of particle regeneration, besides

estimating the state pdf for the prediction. Our method reduces

error accumulation and fluctuation in the prediction in between

the sparse location updates. This new action increases the

accuracy of tracking target objects and improves overall user’s

experience.

VI. DISCUSSION AND CONCLUSION

In this paper we propose a practical but lightweight MAR-

based application development framework called GLAMAR.

It leverages the latest infrastructure deployed in an industrial

premise, and uses that very effectively to reduce compute load

and battery consumption on a smart phone without sacrificing

the accuracy of MAR applications.

We conduct comprehensive evaluation of the system in an

indoor industry environment and show the efficacy of the

system. We have also experimented with the system in the

outdoor environment where we used GPS instead of HAIP

for location tracking. We observed that GPS is much more
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erroneous and slower in location updates compared to HAIP.

While this resulted in larger error (4-8m), we believe that

incorporation of RTK in addition to GNSS will significantly

improve the results. Moreover, due to larger size of the outdoor

objects (e.g., vehicle, store front, etc.) compared to indoor

objects, the relative error diminishes and has less impact on

overlaying virtual content over real-world objects. We leave

more detailed study in the outdoor environment as future work.

GLAMAR supports multiple AR users concurrently, where

each user locally computes the coordinate transformation

without revealing it’s own location to the GLAMAR service.

Thus GLAMAR preserves location privacy for each user. On

the other hand, GLAMAR edge service tracks the location of

all target objects, and delivers them to the users. This provides

the opportunity to implement access control policies for each

target object on a per user basis. We intend to explore the

policy implementation challenges in GLAMAR in the future.

In GLAMAR, we attach location tracking tag and IMU

sensor with the target objects. While we recognize this as an

additional deployment cost, we argue that many target objects

in industrial environment are already equipped with motion

sensor and tracking devices. For example, industrial robots are

equipped with IMU sensor and RF tracking [76]. Furthermore,

for inventory management, objects are attached with RFID tags

for tracking [77]. Therefore GLAMAR can leverage existing

and forthcoming industrial infrastructure for deployment of

MAR-based applications.
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