
FlexDNN: Input-Adaptive On-Device
Deep Learning for Efficient Mobile Vision

Biyi Fang†, Xiao Zeng†, Faen Zhang∗, Hui Xu∗, Mi Zhang†
†Michigan State University, ∗AInnovation

Abstract—Mobile vision systems powered by the recent ad-
vancement in Deep Neural Networks (DNNs) are enabling a
wide range of on-device video analytics applications. Considering
mobile systems are constrained with limited resources, reducing
resource demands of DNNs is crucial to realizing the full potential
of these applications. In this paper, we present FlexDNN, an
input-adaptive DNN-based framework for efficient on-device
video analytics. To achieve this, FlexDNN takes the intrinsic
dynamics of mobile videos into consideration, and dynamically
adapts its model complexity to the difficulty levels of input video
frames to achieve computation efficiency. FlexDNN addresses the
key drawbacks of existing systems and pushes the state-of-the-
art forward. We use FlexDNN to build three representative on-
device video analytics applications, and evaluate its performance
on both mobile CPU and GPU platforms. Our results show
that FlexDNN significantly outperforms status quo approaches
in accuracy, average CPU/GPU processing time per frame, frame
drop rate, and energy consumption.

Keywords-Mobile Deep Learning Systems, On-Device AI, Dy-
namic Deep Neural Networks, Mobile Vision

I. INTRODUCTION

A. Motivation

Mobile vision systems such as mobile phones, drones,
and augmented reality (AR) headsets are ubiquitous today.
Driven by recent breakthrough in Deep Neural Networks
(DNNs) [19] and the emergence of AI chipsets, state-of-the-
art mobile vision systems start to use DNN-based processing
pipelines [10], [14], [35], [36] and shift from cloud-assisted
processing (e.g., MCDNN [10]) to on-device video analytics.

On-device video analytics requires processing streaming
video frames at high throughput and returning the processing
results with low latency. Unfortunately, DNNs are known to
be computation-expensive [31], and high computation cost
directly translates to high processing latency and energy
consumption. Since mobile systems are constrained by lim-
ited compute resources and battery capacities, reducing the
computation cost of DNN-based pipelines is crucial to any
application built on top of on-device video analytics.

To reduce computation cost, most existing work pursues
model compression techniques [8], [9], [24]. However, model
compression yields an one-size-fits-all network that requires
the same set of features to be extracted for all video frames
agnostic to the content in each frame.

In fact, computation consumed by a DNN-based processing
pipeline is heavily dependent on the content of input video
frames [15]. For video frames with contents that are easy to
recognize, a small low-capacity DNN model is sufficient while
a large high-capacity model is overkill; on the other hand,

FlexDNN
Framework

Regular DNN
(Input-Agnostic)

FlexDNN Model
(Input-Adaptive)

Regular DNN
(e.g., VGG-16)

Dataset

Mobile 
Vision 

Systems

DL Platform
(e.g., TensorFlow)

Non-Expert 
Developer

Resource-
Efficient

On-Device
Video Analytics 

Application

Fig. 1. A high-level view of FlexDNN framework.

for video frames with contents that are hard to recognize,
it is necessary to employ large high-capacity models in the
processing pipeline to ensure the contents to be correctly
recognized. This is very similar to how human vision system
works where a glimpse is sufficient to recognize simple scenes
and objects in ordinary poses, whereas more attention and
efforts are needed to understand complex scenes and objects
that are complicated or partially occluded [34].

B. State-of-the-Arts & Their Limitations

Based on this observation, input-adaptive video analytics
systems such as Chameleon [15] have recently emerged.
Leveraging the easy/hard dynamics of video contents, these
systems effectively reduce the computation cost of DNN-
based processing pipelines by dynamically changing the DNN
models to adapt to the difficulty levels of the video frames.
Unfortunately, as we demonstrate in §II-B, this bag-of-model
approach is a misfit to resource-constrained mobile systems.
This is because it requires all the model variants with various
capacities to be installed in the mobile system, which results in
large memory footprint. More importantly, if a large number
of model variants is incorporated and the content dynamics is
substantial, the overhead of searching for the optimal model
variant and switching models at runtime can be prohibitively
expensive, which considerably dwarfs the benefit brought by
adaptation.

The limitation of Chameleon is rooted in the constraint
where it requires to have multiple independent model variants
with various capacities to adapt to different difficulty levels
of video frames. To address this limitation, BranchyNet [33]
introduces the idea of constructing a single model with early
exit branches inserted at the outputs of convolutional layers of
a regular DNN model for input adaptation. Figure 2 provides a
conceptual illustration of the early exit mechanism. For an easy
frame, it exits at the early exit inserted at an earlier location



Easy
Input

Biking

Final 
Exit

Final 
Exit

Hard
Input

Biking

Base Model Layer Early Exit Data Flow

Saved 
Computation

Saved 
Computation

Fig. 2. Conceptual illustration of the early exit mechanism.

since the extracted features are good enough to correctly
recognize its content. For a hard frame, it proceeds deeper
until the extracted features are good enough. With such early
exit mechanism, easy frames do not need to go through all the
layers and their computation cost is thus reduced.

While the early exit mechanism is promising, the pioneer
work has two key drawbacks:

• First, the early exits themselves also consume computation.
Computation consumed by frames that fail to exit at the
early exits is wasted and becomes the overheads incurred
by the early exit mechanism. Unfortunately, the early exit
architecture of prior work is designed based on heuris-
tics without focusing on the trade-off between early exit
rates and the incurred overheads. Without accounting for
such trade-off, the incurred overheads could considerably
diminish the benefit brought by early exits.
• Second, the number and locations of the inserted early

exits in prior work are also determined based on heuristics.
While effective in comparison against models without
early exits, considering the exponential combinations of
number and locations of early exits, even for developers
with expertise, without considerable efforts on trial and
error, it would be extremely challenging to derive an
early exit insertion plan that can fully leverage the benefit
brought by early exits. Moreover, since early exits incur
overheads, the number and locations of the inserted early
exits play a critical role in determining the amount of
computation that can be saved, making the derivation of
the early exit insertion plan even more challenging.

C. Proposed Approach

In this paper, we present an input-adaptive DNN-based
on-device video analytics framework named FlexDNN that
effectively addresses the aforementioned drawbacks. Similar
to BranchyNet, instead of carrying a bag of model variants,
FlexDNN leverages the early exit mechanism to construct
a single model on top of a regular DNN model (i.e., base
model). As such, it replaces the fixed capacity of the regular
DNN model with flexible capacities. Since only one model
is involved, FlexDNN has a compact memory footprint and

Mode Single
Model

Early Exit
Architecture

Early Exit
Insertion Plan

Chameleon [15] Server No - -
MCDNN [10] Cloud-Assisted No - -
BranchyNet [33] On-Device Yes Heuristics Heuristics
FlexDNN On-Device Yes Optimized Optimized

TABLE I
COMPARISON BETWEEN FLEXDNN AND EXISTING INPUT-ADAPTIVE

VIDEO ANALYTICS FRAMEWORKS.

incurs no model selection and model switching overhead. At
runtime, FlexDNN is input-adaptive: it dynamically adapts its
model capacity to matching the difficulty levels of the input
video frames at the granularity of each frame in real-time.

To address the drawbacks of BranchyNet, FlexDNN adopts
an architecture search based scheme that is able to find the
optimal architecture for each early exit branch that balances
the trade-off between early exit rate and its computational
overhead. Moreover, FlexDNN is able to derive an early
exit insertion plan which identifies the optimal number and
locations of early exits to be inserted to maximize the benefit
brought by input adaptation. As such, FlexDNN allows de-
velopers with limited deep learning expertise to build efficient
DNN-based on-device video analytics applications with mini-
mum effort. As illustrated in Figure 1, given a dataset that can
be trained, validated, and tested on, FlexDNN automatically
transforms a regular DNN model (e.g., VGG-16) that is input-
agnostic into an input-adaptive DNN model for efficient on-
device video analytics.

Table I provides a comparison between FlexDNN and
existing input-adaptive video analytics frameworks. FlexDNN
differs from Chameleon and MCDNN as it is an on-device
solution that does not require any assist from the cloud.
Compared to BranchyNet, the combination of the optimized
early exit architecture and the early exit insertion plan makes
FlexDNN a superior on-device solution.

We implemented FlexDNN in TensorFlow [4]. To evaluate
its performance, we use it to build three representative on-
device video analytics applications: Activity Recognition,
Scene Understanding, and Traffic Surveillance and deploy
these applications on both mobile CPU and mobile GPU
platforms. Our results show that:

• The generated FlexDNN model has a compact memory
footprint and is able to achieve high early exit rate without
loss of accuracy. With the computation-efficient early exit
design, FlexDNN maximally preserves the high computa-
tion reduction benefit brought by the adaptation.

• At runtime, FlexDNN significantly outperforms both
input-agnostic approach and BranchyNet: Compared to
the input-agnostic approach, FlexDNN achieves as much
as 7% accuracy gain with similar amount of resources, or
achieves the same accuracy with as little as 23.4% of the
computational resources (i.e., 4.3× speedup in processing
time) and up to 4.2× energy consumption reduction.
Compared to BranchyNet, FlexDNN reduces up to 49.8%
computational cost and up to 1.9× energy consumption.



II. BACKGROUND AND MOTIVATION

We begin with illustrating the intrinsic dynamics of videos
taken in real-world mobile settings and demonstrate that con-
siderable resource demand can be reduced by leveraging this
dynamic characteristic (§II-A). We then show that the bag-of-
model approach incurs significant overhead that considerably
dwarfs the benefit brought by the adaptation (§II-B), which
motivates the design of FlexDNN.

A. Dynamics of Mobile Video Contents & Benefit of
Leveraging the Dynamics

Due to mobility of cameras, videos taken in real-world
mobile settings exhibit substantial content dynamics in terms
of difficulty level across frames over time. To illustrate this,
Figure 3 shows four frames of a video clip of biking captured
using a mobile camera in the human activity video dataset
UCF-101 [30]. Among them, since the entirety of both the
biker and her bike is captured, frame (a) and (d) are relatively
easier to recognize as biking activity. In contrast, frame (b) and
(c) capture the biker with only part of the bike, and are thus
relatively harder to recognize. In such case, a smaller model
is sufficient for frame (a) and (d), but a more complex model
is necessary for frame (b) and (c).

(a) (b) (c) (d)

Fig. 3. Illustration of four frames of a video clip of biking captured using a
mobile camera in UCF-101 dataset: (a) and (d) are frames with contents that
are easy to recognize; (b) and (c) are frames with contents that are hard to
recognize.

The intrinsic dynamics of video contents creates an oppor-
tunity to reduce computation cost by matching the capacity of
the DNN model to the difficulty level of each video frame. To
quantify how much computation cost can be reduced, we first
profile the minimum computation cost in terms of the number
of floating point operations (FLOPs) that is needed to correctly
recognize the content in each frame of an 400-frame video
clip. Specifically, we derive ten model variants with different
capacities from VGG-16 by varying its numbers of layers and
filters. For each frame, we select the model variant with the
lowest FLOPs that is able to correctly recognize the content
in that particular frame (optimal model). We then compare
it to the model variant with the lowest FLOPs that is able to
correctly recognize the contents in all 400 frames (one-size-
fits-all model) frame by frame.

Figure 4 shows our profiling result. As shown in the blue
solid curve, the minimum computation consumed to correctly
recognize the content in each frame changes frequently across
frames. This observation strongly reflects the intrinsic dynam-
ics of video contents illustrated in Figure 3. In addition, the
difference between “areas” under the two curves reflects the

One-Size-Fits-All ModelOptimal Model

Fig. 4. Blue solid curve: minimum computation cost to correctly recognize
the content in each frame (optimal model). Red dotted curve: computation
cost of the one-size-fits-all model. (unit: GFLOPs)

One-Size-
Fits-All Model

Optimal Model 
w/o Overhead

(Ideal)

Optimal Model 
w/ Overhead 

(In Reality)

9.4%
42.8%

Fig. 5. Benefit brought by the adaptation vs. model switching overhead of
the bag-of-model approach.

benefit brought by the optimal model. The large difference
indicates that considerable computational consumption can be
reduced by matching the capacity of the model to the difficulty
level of each video frame.

B. Why Bag-of-Model Approach is a Misfit

The benefit of computation reduction motivates to dynam-
ically change the model capacity to adapt to the contents of
video frames. To achieve content adaptation, existing solutions
such as Chameleon [15] use multiple model variants inter-
changeably to achieve content adaptation. While effective as a
solution for resourceful systems, this multi-model-variant ap-
proach is a mismatch to resource-constrained mobile platforms
for the following two reasons.

First, the bag-of-model approach requires all the model
variants with various capacities to be installed in the mobile
system. This, unfortunately, is not a scalable solution and
could lead to large memory footprint. For the example used
in Figure 4, the total memory footprint of 10 model variants
is 513 MB, and the memory footprint would only increase if
the number of model variants increases.

Second, the bag-of-model approach incurs large overheads
on searching for the optimal model variant and model switch-
ing at runtime. Take model switching as an example. Model
switching involves two steps: model initialization (i.e., allocat-
ing memory space for the model to switch to) and parameter
loading (i.e., loading the model parameters into the allocated
memory space). As shown in Figure 4, model switching could
occur very frequently (106 times in 400 frames) because the
contents of videos captured by mobile cameras can change
drastically in a short period of time. To quantify model



Final Exit 
Result

ith

Yes

No

Early Exit Result

Exit?

jth

Yes

No

Early Exit Result

Exit?

1st

Easy
Input

Hard
Input

Base Model Layer Early Exit Branch Decision Module Data Flow (Easy Input)Data Flow (Hard Input)

Nth

Fig. 6. A closer look at the FlexDNN architecture.

switching overhead, we profile the average processing time
of both model initialization and parameter loading of all the
model switching occurred in the same 400-frame video clip on
the Samsung Galaxy S8 smartphone CPU. To make the result
more meaningful, we also profile the average inference time
per frame of the optimal model and one-size-fits-all model.

Figure 5 shows our profiling result. Specifically, the average
inference time per frame of the one-size-fits-all model and
the optimal model is 114.0 ms and 65.2 ms, respectively.
The difference between them measures the benefit brought
by the adaptation: by using the optimal model instead of
the one-size-fits-all model on each frame, we are able to
reduce 42.8% of the computation. Unfortunately, the average
processing time of model initialization and parameter loading
is 13.3 ms and 25.0 ms, which increases 21.8% and 11.6%
of the resource demand, respectively. As a result, the model
switching overhead drops the actual computation reduction to
only 9.4%, which significantly cuts the benefit brought by the
adaptation.

III. FLEXDNN DESIGN

A. Overview and Design Challenges

Overview. In this work, we present, FlexDNN, an input-
adaptive DNN-based framework for efficient on-device video
analytics. At the high level, similar to the bag-of-model
approach, FlexDNN leverages the intrinsic dynamics of video
contents, and is capable of dynamically changing the model
complexity to adapt to the difficulty levels of the input video
frames to reduce computational demand. However, FlexDNN
differs on how the adaptation is realized: instead of carrying
a bag of model variants with different capacities, FlexDNN
leverages the layered architecture of DNNs, and constructs a
single model on top of a regular DNN model with early exits
inserted throughout the layered architecture.

A typical DNN consists of various types of layers, including
convolutional layers, activation layers, pooling layers, and
fully-connected layers. Among them, convolutional layers play
the role of “feature extractors”, which generate sets of features
organized in the form of feature maps. These convolutional
layers are sequentially connected such that the set of features
generated from the early layer is the input of the next con-
volutional layer, which generates a new set of features at the
next level.

The complexity of a DNN is dependent on its depth.
A more complex DNN contains more convolutional layers.
However, as we have shown in Figure 2, not all the inputs
necessarily need to go through every convolutional layer. By
inserting early exits at different convolutional layers of a
given regular DNN model (we refer to it as the base model),
FlexDNN provides a mechanism to let inputs exit as soon as
the features become good enough to them. In doing so, this
single-model architecture becomes input-adaptive, and is able
to dynamically adapt its model complexity to the difficulty
levels of input video frames at the granularity of each frame.

Design Challenges. Figure 6 provides a closer look at the
FlexDNN architecture. As shown, FlexDNN is built on top
of a base model with the addition of early exits inserted
throughout the base model. For each early exit, it consists of
two components – early exit branch and decision module – that
are cascaded together. The early exit branch is essentially a
small-size neural network. Like a regular DNN, it also contains
convolutional, activation, pooling, and fully-connected layers,
but with small sizes. It takes the intermediate features gener-
ated by the internal convolutional layers of the base model and
transforms them into early predictions. The decision module
takes the early prediction results generated by the early exit
branch and makes decision on whether to exit the inference
process and output the early prediction results or to continue
the inference process and pass the generated feature maps to
the next layer.

While such early exit mechanism is promising, it also
introduces two key challenges:

• First, the inserted early exits themselves have overheads.
Take Figure 6 as an example: for the easy frame, the over-
head comes from the computation consumed at the early
exit branch inserted at the ith layer; for the hard frame,
the overhead comes from the computation consumed at the
two early exit branches inserted at both ith and jth layers.
As such, it is necessary to minimize the computational
overheads of the early exits. On the other hand, early exits
with extremely lightweight architecture could exit much
less frames (i.e., low early exit rate), which makes the early
exit mechanism considerably less useful. Therefore, there
exists a trade-off between early exit rate and computational
overhead in the design space of the early exit architecture.

• Second, inserting early exits at all the convolutional layers
of the base model may not be the optimal choice. This is



because for some inserted early exits, their overheads can
be actually higher than the benefits they bring. Therefore,
identifying the number and locations of the early exits to
be inserted that can fully leverage the benefit brought by
early exits represents another challenge.

Addressing these challenges is not trivial. Unfortunately,
the early exit architecture and the early exit insertion of the
prior work are designed based on heuristics. With a careless
design, overheads of early exits can overshadow the benefits
they bring, and early exit rates can be considerably low
unless letting hard frames exit prematurely, which sacrifices
the original accuracy of the base model.

In the following, we describe the techniques we develop in
FlexDNN that effectively address those challenges followed
by a summary of the key characteristics of the input-adaptive
model generated by FlexDNN.

B. Design of Early Exit Branch

The design of early exit branch needs to take the trade-off
between computational overhead and early exit rate into con-
sideration. To achieve this, FlexDNN leverages computation-
efficient operator as the building block, and employs an
architecture search scheme to find the optimal architecture that
optimizes the trade-off between early exit rate and computa-
tional overhead for each early exit branch.

Among all the types of layers that an early exit branch
includes, convolutional layers are the most computation-
intensive. To reduce the overhead, we propose to use depthwise
separable convolution [6], a computation-efficient convolution
operator to replace the standard convolution as the building
block for the design of the early exit branch. Figure 7 illus-
trates the structural differences between standard convolutional
layer and depthwise separable convolutional layer. Let Θj−1 ∈
Rwj−1×hj−1×mj−1 and Θj ∈ Rwj×hj×mj denote the input and
output feature maps for both types of convolutional layers,
respectively. For the standard convolutional layer (Figure 7(a)),
it applies mj 3D filters with size k × k ×mj (k × k is the
size of the 2D kernel) onto the input feature maps Θj−1 to
generate the output feature maps Θj . This process consumes
a total of k2wjhjmj−1mj floating point operations (FLOPs).
In contrast, for the depthwise separable convolutional layer
(Figure 7(b)), it adopts the idea of matrix decomposition, and
reduces the computational cost by decomposing the standard
convolution into two cheap consecutive specialized convolu-
tions: 1) depthwise convolution, and 2) pointwise convolution.
The depthwise convolution applies a k × k × β filter on each
of the mj−1 input feature maps, where β is the channel multi-
plier. The pointwise convolution then applies a 1×1×mj filter
on each channel of the output of the depthwise convolution
to generate Θj . Therefore, via the decomposition trick, the
computational cost of depthwise separable convolutional layer
is reduced to (k2βwjhjmj−1 + βwjhjmj−1mj) FLOPs.

With the depthwise separable convolution as the
computation-efficient building block, FlexDNN employs
an architecture search scheme to find the optimal architecture

𝑚𝑗

𝑚𝑗−1

𝑚𝑗+1

𝑚𝑗

𝑤𝑗−1

ℎ𝑗−1

𝚯𝑗−1

𝑤𝑗

ℎ𝑗

𝚯𝑗𝑐𝑜𝑛𝑣𝑗
Filters

𝑐𝑜𝑛𝑣𝑗+1
Filters

2𝐷
kernel

Feature Maps Feature Maps

𝑤𝑗−1

ℎ𝑗−1

𝚯𝑗−1

𝑓𝑗

1×1
kernel

Depthwise
Convolution

Pointwise
Convolution

𝑘×𝑘
kernel

𝑤𝑗−1

ℎ𝑗−1

𝚯𝑗−1

𝑓𝑗

1×1
kernel

Depthwise
Convolution

Pointwise
Convolution

𝑘×𝑘
kernel

𝛽

Feature Map 𝑘×𝑘 kernel 1×1 kernel

𝑤𝑗

ℎ𝑗

𝚯𝑗

ℎ𝑗

𝑤𝑗 𝑚𝑗

(b) Depthwise Separable Convolution

𝑤𝑗−1

ℎ𝑗−1

𝚯𝑗−1

𝑚𝑗

𝑚𝑗−1

𝑤𝑗

ℎ𝑗

𝚯𝑗
(a) Standard Convolution

Fig. 7. Structural differences between standard convolutional layer and
depthwise separable convolutional layer.

that balances the trade-off between early exit rate and
computational overhead for each early exit branch. In general,
architecture search techniques can be grouped into two
categories: 1) the bottom-up approach that searches for an
optimal cell structure based on reinforcement learning (RL)
or evolutionary algorithms (EA) and stacks cells together to
form a network [22], [42], and 2) the top-down approach
that prunes an over-parameterized network until the optimal
network architecture is found [20], [39]. Although both
approaches are able to find competitive network architectures,
RL and EA are known to be computationally expensive.
Therefore, FlexDNN employs the top-down approach due
to its much more efficient architecture search process.
Specifically, to identify the most efficient architecture of
early exit branch, each early exit branch is initialized with
three depthwise separable convolutional layers (each followed
by one activation layer), two pooling layers, and one fully-
connected layer. During the architecture search process, a
depthwise separable convolutional layer is removed if no
early exit rate drops at that particular early exit branch. This
process terminates after the redundant depthwise separable
convolutional layers at all the early exit branches are removed.

C. Design of Training Scheme

To train the FlexDNN model that is built on top of the
base model with the inserted early exit branches, we need to
combine the loss function of the base model with the loss
functions of the inserted early exit branches.

In our design, we use cross entropy as the loss for both base
model and early exit branches, and design a loss function that
is the weighted sum of the loss of the base model and the loss
of each individual early exit branch:

L = LB +

N∑
i=1

αiLi (1)

where LB is the loss of the base model, Li is the loss of the
ith early exit branch, N is the number of inserted early exit



Higher Confidence Score

ExitProceed
Higher Confidence Score

Confidence Score (Conf)

Fig. 8. Determination of the confidence score threshold.

branches, and αi is the weight of the ith early exit branch,
reflecting its importance within the entire model. Empirically,
we find that setting all αi to 1 works well. Based on this
loss function, we train the FlexDNN model using stochastic
gradient descent.

D. Design of Decision Module
The inserted early exit branches introduce the possibilities

of letting hard frames exit prematurely, which sacrifices the
original accuracy of the base model. To preserve accuracy,
FlexDNN incorporates an entropy-based confidence score,
Conf ∈ [0, 1], in the decision module and uses it to determine
whether the input should be exited or be propagated to
the following layers for further processing. Specifically, the
confidence score is defined as:

Conf(y) = 1 +
1

logC

∑
c∈C

yc log yc (2)

where y = [y1, y2, ..., yc, ..., yC ] is the softmax classification
probability vector generated by the early exit branch, C is the
total number of classes, and

∑
c∈C yc log yc is the negative

entropy of the softmax classification probability distribution
over all the classes.

In essence, Conf measures the confidence level of the early
prediction result generated by the early exit branch. The higher
the Conf is, the higher the confidence level is. The decision
module decides to early exit the input if the value of Conf
exceeds a pre-determined threshold.

Figure 8 illustrates how the threshold of the confidence
score Conf is determined. Specifically, it shows the con-
fidence score distribution of 7, 500 early prediction results,
which are generated by the early exit branch inserted at the
first convolutional layer of the VGG-16 base model trained
on the UCF-15 dataset (§IV-A). As shown, the confidence
score distribution of the correct classification results (marked
in blue) overlaps with the confidence score distribution of
the incorrect classification results (marked in red) when the
value of Conf is in the range of 0.1 to 0.8. This overlapping
range is where hard inputs may exit prematurely. In contrast,
when the value of Conf is in the range of 0.8 to 0.95, the
distributions of the correct and incorrect classification results
do not overlap, and only correct classification results reside
in this range. This is where the early exit branch can make
sufficiently certain classification to early exit the input without
sacrificing the original accuracy of the base model. Therefore,
to preserve accuracy, we use the confidence score value at the
lower bound of the non-overlapping region as the threshold.

Input
ith jth

CEj

Final 
Exit

cri

Base Model Layer

Cost of Early Exit Branch

Cumulative Exit Rate

Cost of Base Model Layer(s)Early Exit Branch

Decision Module

CB

CE

cr

CBj

crj

ri+1

kth

Fig. 9. Illustration of determination on whether to insert an early exit at the
jth convolutional layer.

E. Design of Early Exit Insertion Plan

In theory, early exit can be inserted at every convolutional
layer of the base model. However, since early exits themselves
have overheads, an early exit should not be inserted if its
incurred overhead is higher than the benefit it brings.

To determine if an early exit should be inserted at the jth

convolutional layer of the base model, we define a metric, Rj ,
as the ratio between the benefit Gj that the early exit brings
and the overhead Cj it incurs:

Rj = Gj/Cj (3)

where Cj is the computation consumed by the early exit, and
Gj is the computation avoided due to the existence of the early
exit. Both Cj and Gj are measured by the number of floating
point operations.

Figure 9 illustrates how Gj and Cj are calculated. Specif-
ically, it shows three consecutive early exits inserted at the
ith, jth, and kth convolutional layer (i < j < k). Let N
denote the total number of input frames, cri and crj denote the
cumulative exit rate of the ith and jth early exit, respectively
(0 ≤ cri ≤ crj ≤ 1), CEj denote the computation consumed
by the jth early exit per input frame, and CBj denote the
computational cost of the base model between the jth and kth

convolutional layer per input video frame. The values of cri
and crj are profiled and determined through cross validation.

Since N ∗ cri input frames exit at the ith early exit, there
are N ∗ (1 − cri) input frames going through the jth early
exit. As a result, Cj is calculated as:

Cj = N ∗ (1− cri) ∗ CEj (4)

There are N ∗ (crj − cri) input frames exiting at the jth

early exit. These input frames avoid further computational cost
incurred between the jth and kth convolutional layer of the
base model. Therefore, Gj is calculated as:

Gj = N ∗ (crj − cri) ∗ CBj (5)

Based on its definition in Eq. (3), if Rj is larger than
1, it indicates that the benefit of inserting an early exit at
the jth convolutional layer is larger than the overhead it
incurs. Therefore, we start with the trained FlexDNN model
with early exit inserted at every convolutional layer, and then
remove early exits whose R values are less than or equal to 1
while maintaining those whose R values are larger than 1. In



doing so, we are able to identify the number and locations of
the early exits that can fully leverage the benefit brought by
the early exit mechanism.

F. Characteristics of FlexDNN Model

With our careful design, the input-adaptive model generated
by FlexDNN exhibits a number of key characteristics which
we summarize below.
Single Model with Flexible Complexities. With the in-
serted early exits, FlexDNN is able to provide flexible model
complexities within a single model with compact memory
footprint. This eliminates the necessity of installing potentially
a large number of model variants with different complexities.
Moreover, due to the single-model design, FlexDNN avoids
model selection and model switching overhead at runtime.
Computation-Efficient Early Exit Branches. With the depth-
wise separable convolution operator, the computational cost
of the early exit branches incorporated in FlexDNN is sig-
nificantly reduced. This effectively minimizes the overheads
brought by the early exits.
High Early Exit Rate without Accuracy Loss. With the
optimized early exit branch architecture inserted at the optimal
locations throughout the base model as well as the design of
entropy-based confidence score, FlexDNN is able to achieve
high early exit rate while blocking hard inputs from exiting
prematurely to preserve accuracy.
High Computational Consumption Reduction. Because of
the computation-efficient early exit design and the high early
exit rate, the generated FlexDNN model is able to preserve the
high computation reduction benefit brought by the adaptation.

IV. EVALUATION

A. Base Models and Applications

Base Models. We select Inception-V3 [32] and VGG-16 [29]
as our base models to evaluate FlexDNN. We select Inception-
V3 due to its superior accuracy-computation efficiency ra-
tio compared to other popular DNN models such as Mo-
bileNets [12], [27] and ResNet [11]. To demonstrate the
generability across DNN models and to investigate the benefit
FlexDNN brings to resource-demanding base models, we
select VGG-16 as another base model.
On-Device Video Analytics Applications. To demonstrate
the generability of FlexDNN across applications, we use
FlexDNN to build three representative on-device video an-
alytics applications for three different mobile platforms:

Application#1: Activity Recognition on Mobile Phones.
Automatic labeling human activities in videos is becoming
a very attractive feature for smartphones. This application
aims to recognize activities performed by an individual from
video streams captured by mobile phone cameras. To build
this application, we use UCF-101 human activity dataset [17],
which contains video clips of 101 human activity classes
captured by either fixed or mobile cameras in the wild. We
selected video clips of 15 activities (e.g., biking and skiing)

captured by mobile cameras as our dataset (named UCF-15).
We split training and test videos by following the original
paper [30]. Example video frames of UCF-15 are shown in
Figure 10 (a).

Application#2: Scene Understanding for Mobile Aug-
mented Reality. Scene understanding is one of the core
capabilities of augmented reality. This application aims to rec-
ognize places from video streams captured by head-mounted
cameras. Due to lack of publicly available datasets, we col-
lected our own video clips in the wild with IRB approval.
During data collection, participants were instructed to collect
first-person view video footage from diverse places by wearing
the ORDRO EP5 head-mounted camera [3]. Frames in all the
video clips are manually labelled. From the labeled video
clips, we selected 8 most common places that participants
visited (e.g., parking lot, kitchen) as our dataset (named Place-
8) to build and evaluate this application. To avoid model
overfitting, we use the same 8 places from Places-365 [41]
as our training set, and our self-collected video frames as the
test set. Illustration of data collection using the head-mounted
camera and one example video frame of Place-8 are shown
in Figure 10 (b).

Application#3: Drone-based Traffic Surveillance. Due to
its mobility, a traffic surveillance drone is able to track traffic
conditions in a large area with a low cost that traditional
fixed video camera-based traffic surveillance systems could
not provide [18]. This application aims to detect vehicles
from video streams captured by drone cameras. Due to lack
of publicly available datasets, we use the commercial drone,
DJI Mavic Pro [1], to collect our own traffic surveillance
video clips in the wild with IRB approval. To ensure diversity,
videos were recorded under various drone camera angles
(25°to 90°), flying heights (2.5m to 51.2m), speeds (1m/s to
11.2m/s), weather conditions (cloudy, sunny), and road types
(residential, urban, highway). Frames in all video clips are
manually labelled. We split the dataset into 15% and 85%
for training and testing. Illustration of data collection using
drone and one example video frame of VeDrone are shown
in Figure 10 (c).

For each of the three applications, we use FlexDNN to
generate a input-adaptive computation-efficient model from
Inception-V3 and VGG-16 for our evaluation. The applica-
tions, base models, and models generated by FlexDNN are
listed in Table II.

B. Model Performance

In this section, we focus on profiling the models generated
by FlexDNN with the goal to quantify the characteristics
summarized in §III-F.

High Early Exit Rate without Accuracy Loss. The model
generated by FlexDNN is able to achieve high exit rates
through its early exits without loss of accuracy. To quantify
this characteristic, we profile each of the six models on the
test set, and measure the cumulative exit rate at each early exit
when the same accuracy is maintained as the base model.



(a) UCF-15 (b) Place-8 (c) VeDrone

Fig. 10. (a) UCF-15: example video frame of biking (left) and skiing (right). (b) Place-8: illustration of data collection using a ORDRO EP5 head-mounted
camera (left); example video frame of parking lot (right). (c) VeDrone: illustration of data collection using a DJI Mavic Pro drone (left); example video
frame of traffic surveillance in the residential area (right).

Application Target
Mobile Platform Dataset Total Length

(min)
Number of
Video Clips Base Model FlexDNN Model

Activity Recognition Mobile Phone UCF-15 240 1,863 Inception-V3, VGG-16 I-UCF, V-UCF
Scene Understanding AR Headset Place-8 46 165 Inception-V3, VGG-16 I-Place, V-Place

Traffic Surveillance Drone VeDrone 81 40 Inception-V3, VGG-16 I-VeDrone, V-VeDrone

TABLE II
SUMMARY OF THREE APPLICATIONS, TWO BASE MODELS, AND SIX GENERATED FLEXDNN MODELS.

(a) V-UCF

E1 E2 E3 E4 E5 E6 E7 FE

(b) I-UCF

E1 E2 E3 E4 E5 E6 E7 FE

(f) I-VeDrone

E1 E2 E3 E4 E5 E6 E7 FE

(e) V-VeDrone

E1 E2 E3 E4 E5 E6 FE

(d) I-Place 

E1 E2 E3 E4 E5 E6 FE

(c) V-Place

E1 E2 E3 E4 E5 E6 E7 E8 FE

Fig. 11. The cumulative exit rate at each early exit without loss of accuracy. Early exits (marked as E1, E2, ...) are ordered based on their distances to the
input layer (i.e., E1 is the earliest exit). FE denotes the regular exit of the base model.

Figure 11 shows the cumulative exit rate at each early
exit. As shown, for each of the six models, the increasing
cumulative exit rates imply the significance of each inserted
early exit. Accumulatively, these early exits are able to exit
95.6%, 96.6%, 76.8%, 90.3%, 78.5%, and 96.8% of the input
frames on V-UCF, I-UCF, V-Place, I-Place, V-VeDrone, and
I-VeDrone, respectively. This result indicates that FlexDNN
is effective at identifying efficient early exits while pruning
less efficient ones.

Compact Memory Footprint. The model generated by
FlexDNN has a compact memory footprint. To quantify this
characteristic, we compare its model size with its bag-of-
model counterpart whose number of model variants equals the
number of exits (early exits plus the regular exit of the base
model) in the FlexDNN model.

As shown in Figure 12, FlexDNN is able to reduce the
memory footprint for 7.8×, 3.2×, 7.9×, 2.8×, 7.8×, and
3.0× on V-UCF, I-UCF, V-Place, I-Place, V-VeDrone, and
I-VeDrone, respectively. This result demonstrates the consid-
erable benefit of FlexDNN on memory footprint reduction.

Computation-Efficient Early Exits. The early exit branches
incorporated in the generated FlexDNN models are
computation-efficient. To quantify this characteristic, we
compare the accumulated computational cost of all the early
exit of the FlexDNN model with the computational cost of
its base model.

As shown in Figure 13, the accumulated computational cost
of all the early exits of the FlexDNN model is only 1.4%,
1.3%, 1.4%, 0.8%, 1.4%, and 1.2% of its own base model
for V-UCF, I-UCF, V-Place, I-Place, V-VeDrone, and I-
VeDrone, respectively. This result demonstrates that even in
the worst case scenario where an input frame goes through all
the inserted early exits, these exits altogether incur marginal
computational overhead compared to the base model.

High Computational Consumption Reduction. The com-
putation saved by early exited input frames reflects benefit
brought by the adaptation. The computational cost of the
early exit branches reflects the overhead brought by our
FlexDNN design. Because of the high early exit rate and
the computation-efficient early exit design, the generated



V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone

Fig. 12. Memory footprint comparison be-
tween the FlexDNN model and its bag-of-model
counterpart.

V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone

Fig. 13. Comparison between the accumu-
lated computational cost of all the early exit
branches and the computational cost of the
base model.

V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone V-UCF I-UCF V-Place I-Place V-VeDrone I-VeDrone

Fig. 14. Comparison between benefit (the
average computation saving per input) and
overhead (the average computational cost in-
curred by the early exit branches each input
goes through).

FlexDNN model is able to preserve the high computation
reduction benefit brought by the adaptation. To quantify this
characteristic, we use the average computation saved from
early exits per input frame to quantify the benefit, and use the
average computation consumed by the early exits each input
frame goes through but fails to exit to quantify the overhead.

Figure 14 compares the benefit and overhead of each
model. As shown, the overhead is substantially lower than
the benefit for each model. Specifically, the benefit-overhead-
ratio is 51×, 78×, 41×, 84×, 37×, and 44× for V-UCF,
I-UCF, V-Place, I-Place, V-VeDrone, and I-VeDrone, re-
spectively. The benefit-overhead-ratio achieved by FlexDNN is
significantly higher than the one achieved by the bag-of-model
approach illustrated in Figure 5. As we will show in §IV-C,
the achieved high benefit-overhead-ratio is directly translated
into various system performance improvement at runtime.

C. Runtime Performance

In this section, we focus on evaluating the runtime perfor-
mance of the models generated by FlexDNN when deployed
on different mobile platforms and comparing them with the
status quo approaches.

Deployment Platforms. To match the three applications to
their target mobile platforms, we deploy V-UCF and I-UCF
of the Activity Recognition application on a Samsung Galaxy
S8 smartphone and run them on the smartphone CPU; we
deploy V-Place and I-Place of the Scene Understanding
application as well as V-VeDrone and I-VeDrone of the
Traffic Surveillance application on a NVIDIA Jetson Xavier
development board [2] and run them on the onboard GPU.
We choose NVIDIA Xavier because it is the mobile GPU
designed for DNN-based intelligent mobile systems such as
AR headsets, drones, and robots.
Baselines. We compare FlexDNN with three baselines: 1)
Input-Agnostic-Lossless: this is essentially the base model
that the FlexDNN model is built upon. This baseline has the
best inference accuracy that FlexDNN model aims to match
to but is expensive in computational cost; 2) Input-Agnostic-
Lossy: the computational cost of the base model can be
reduced via model compression techniques but with a modest
loss in accuracy as trade-off. Since it is practically difficult to
generate a model variant of the base model that has exactly the
same computational cost of the FlexDNN model, we generate

a set of model variants with similar computational cost of the
FlexDNN model as our second baseline. Note that we do not
use the bag-of-model approach used in prior work [10], [15],
[40] as baseline because of its drawbacks explained in §II-B;
3) BranchyNet [33]: To make fair comparisons, we use the
same base models used in FlexDNN for BranchyNet, and
train the BranchyNet to achieve the same inference accuracy
as Input-Agnostic-Lossless.

Evaluation Metrics. We use four metrics to evaluate the
runtime performance: 1) inference accuracy: we use Top-1
accuracy of all the video frames in the test set as the metric
of inference accuracy; 2) computational cost: we use average
CPU/GPU processing time (with 100% CPU/GPU utilization)
per frame as the metric of computational cost; 3) frame drop
rate: computational cost translates into the number of frames
that can be processed per time unit. A frame is dropped when
its estimated processing completion time is over the maximum
latency required by the video analytics application. We thus
measure the frame drop rate and calculate the frame drop rate
reduction percentage; 4) energy consumption: computational
cost also translates into energy consumption. We thus measure
the average energy consumption per frame and calculate the
energy consumption reduction percentage.

Inference Accuracy vs. Computational Cost. Figure 15
compares FlexDNN with the baselines in the accuracy-
computational cost space. We make three main observations.

First, compared to Input-Agnostic-Lossless, FlexDNN is
able to achieve the same inference accuracy with a signifi-
cant reduction on computational cost. Specifically, FlexDNN
only uses 51.3%, 25.6%, 60.5%, 36.2%, 44.2%, and 23.4%
computational resources on V-UCF, I-UCF, V-Place, I-Place,
V-VeDrone, and I-VeDrone, respectively. This is equivalent
to 2.0×, 3.9×, 1.7×, 2.8×, 2.3×, and 4.3× speedup in
CPU/GPU processing time.

Second, compared to Input-Agnostic-Lossy, FlexDNN is
able to achieve a large gain in inference accuracy with similar
computational cost. Specifically, FlexDNN achieves an aver-
age 7%, 3%, 6%, 3%, 3%, and 2% gain in inference accuracy
on V-UCF, I-UCF, V-Place, I-Place, V-VeDrone, and I-
VeDrone, respectively. It is important to note that in computer
vision community, these accuracy gains are considered to be
fairly significant, especially for I-UCF, V-VeDrone, and I-
VeDrone which have high absolute accuracies.



FlexDNN
Model

IFR
(FPS)

MTL
(ms)

Platform Frame Drop Rate

FlexDNN Input-Agnostic
-Lossless BranchyNet

V-UCF 2 2000 S8 10.0% 48.1% 37.2%
I-UCF 10 1000 S8 6.1% 75.1% 28.6%

V-Place 30 50 Xavier 7.4% 50.0% 32.1%
I-Place 30 50 Xavier 3.5% 50.0% 26.7%

V-VeDrone 30 50 Xavier 1.5% 50.0% 21.5%
I-VeDrone 30 50 Xavier 0.0% 50.0% 19.5%

TABLE III
FRAME DROP RATE COMPARISON BETWEEN FLEXDNN (INPUT-ADAPTIVE) AND INPUT-AGNOSTIC-LOSSLESS AND BRANCHYNET.

FlexDNN
Model

IFR
(FPS)

MTL
(ms)

Platform Energy Consumption
(J/frame)

FlexDNN input-Agnostic
-Lossless BranchyNet

V-UCF 2 2000 S8 2.36 4.81 3.19
I-UCF 10 1000 S8 0.51 1.89 0.89

V-Place 30 50 Xavier 0.40 0.63 0.49
I-Place 30 50 Xavier 0.27 0.68 0.41

V-VeDrone 30 50 Xavier 0.32 0.61 0.42
I-VeDrone 30 50 Xavier 0.17 0.71 0.32

TABLE IV
ENERGY CONSUMPTION COMPARISON BETWEEN FLEXDNN (INPUT-ADAPTIVE) AND INPUT-AGNOSTIC-LOSSLESS AND BRANCHYNET.

(a) V-UCF (b) I-UCF

(f) I-VeDrone(e) V-VeDrone

(d) I-Place (c) V-Place

94 96 98
Inference Accuracy (%)

0

20

40

Av
er

ag
e 

G
PU

 P
ro

ce
ss

in
g

Ti
m

e 
Pe

r F
ra

m
e 

(m
s)

92 94 96
Inference Accuracy (%)

0

10

20

30

40

Av
er

ag
e 

G
PU

 P
ro

ce
ss

in
g

Ti
m

e 
Pe

r F
ra

m
e 

(m
s)

74 76 78 80 82
Inference Accuracy (%)

0

20

40

Av
er

ag
e 

G
PU

 P
ro

ce
ss

in
g

Ti
m

e 
Pe

r F
ra

m
e 

(m
s)

74 76 78 80 82
Inference Accuracy (%)

0

10

20

30

40

Av
er

ag
e 

G
PU

 P
ro

ce
ss

in
g

Ti
m

e 
Pe

r F
ra

m
e 

(m
s)

94 96 98 100
Inference Accuracy (%)

100

200

300

400

Av
er

ag
e 

G
PU

 P
ro

ce
ss

in
g

Ti
m

e 
Pe

r F
ra

m
e 

(m
s)

86 88 90 92 94 96 98
Inference Accuracy (%)

400

600

800

1000

Av
er

ag
e 

G
PU

 P
ro

ce
ss

in
g

Ti
m

e 
Pe

r F
ra

m
e 

(m
s)

86 88 90 92 94 96 98
Inference Accuracy (%)

400

500

600

700

800

900

1000

Av
er

ag
e 

G
PU

 P
ro

ce
ss

in
g

Ti
m

e 
Pe

r F
ra

m
e 

(m
s)

FlexDNN BranchyNet Input-Agnostic-Losselss Input-Agnostic-Lossy

Fig. 15. Comparison between FlexDNN, BranchyNet, Input-Agnostic-
Lossless and Input-Agnostic-Lossy in the inference accuracy-computational
cost space.

Third, compared to BranchyNet that adopts heuristic early
exit design, FlexDNN is able to achieve the same inference
accuracy with much lower computational cost. Specifically,
compared to BranchyNet, FlexDNN reduces 28.4%, 49.3%,
20.5%, 35.2%, 28.0%, 49.8% computational cost on V-UCF,
I-UCF, V-Place, I-Place, V-VeDrone and I-VeDrone respec-
tively, demonstrating its superiority over BranchyNet.

Reduction on Frame Drop Rate. Table III compares the
frame drop rate of FlexDNN to Input-Agnostic-Lossless and
BranchyNet. In our evaluation, we set up a reasonable video
input frame rate (IFR) (in unit of frame per second (FPS))
and maximum tolerable latency (MTL) for the completion of
processing a single frame (in unit of millisecond (ms)) for
each of the three applications. Since the S8 smartphone CPU
is much less powerful than the Xavier mobile GPU, the IFR
is lower and the MTL is higher for V-UCF and I-UCF.

As shown, compared to Input-Agnostic-Lossless,
FlexDNN is able to reduce the frame drop rate by 38.1%,
69.0%, 42.6%, 46.5%, 48.5%, and 50.0% on V-UCF, I-UCF,
V-Place, I-Place, V-VeDrone, and I-VeDrone, respectively.
Such reduction is achieved because FlexDNN continuously
allocates the computation saved by the early exited easy
frames to hard frames, whereas the input-agnostic counterpart
wastes the unnecessary computation spent on the easy frames.
Compared to BranchyNet, FlexDNN is able to reduce the
frame drop rate by 27.2%, 22.5%, 24.7%, 23.2%, 20.0%,
and 19.5%, respectively. Such reduction is achieved because
FlexDNN has more efficient early exit branches inserted at
optimized locations.

Reduction on Energy Consumption. Besides reducing frame
drop rate, FlexDNN also consumes less energy compared to
baselines. Table IV compares the average energy consump-
tion across all the processed frames of FlexDNN to Input-
Agnostic-Lossless and BranchyNet. As shown, compared to
Input-Agnostic-Lossless, FlexDNN consumes 2.0×, 3.7×,
1.6×, 2.5×, 1.9×, and 4.2× less energy on V-UCF, I-UCF,
V-Place, I-Place, V-VeDrone, and I-VeDrone, respectively.
Compared to BranchyNet, FlexDNN consumes 1.4×, 1.7×,
1.3×, 1.5×, 1.3×, and 1.9× less energy, respectively.

Impact of Workload and Real-Time Constraint. At last, we
evaluate the impact of input frame rate (IFR) and maximum
tolerable latency (MTL) on the frame drop rate. IFR reflects



(d) I-VeDrone(c) V-VeDrone

(b) I-Place (a) V-Place

(b) I-Place (a) V-Place

(d) I-VeDrone(c) V-VeDrone

Fig. 16. Impact of workload (IFR) and real-time constraint (MTL) on frame
drop rate.

the workload allocated to the mobile vision system, and MTL
reflects the real-time constraint required by the video analytics
application. We vary IFR from 22 FPS to 30 FPS to create a
wide range of workloads, and we set MTL to 40 ms and 50 ms
to create a tight and less tight real-time constraint, respectively.
We did not evaluate on mobile CPU in this experiment because
of its low IFR.

Figure 16 shows the results. We make two observations.
First, when the real-time constraint is less tight (MTL =
50 ms, solid lines), FlexDNN, Input-Agnostic-Lossless and
BranchyNet achieve similar frame drop rate when the work-
load is small. As the workload increases, the frame drop rate
of FlexDNN remains low, while the frame drop rate of Input-
Agnostic-Lossless and BranchyNet increases significantly.
Second, when the real-time constraint is tight (MTL = 40 ms,
dotted lines), Input-Agnostic-Lossless consistently fails to
catch the deadline and thus drops almost all the frames. For
BranchyNet, the frame drop rate is still quite high and it
increases as the workload increases. In contrast, the frame
drop rate of FlexDNN remains low even when the workload
is heavy.

V. RELATED WORK

Continuous Mobile Vision. Our work is closely related to
continuous mobile vision [5]. Over the past few years, a great
collection of works has been proposed to realize continuous
mobile vision [7], [10], [14], [16], [21], [24]–[26], [28], [37].
One key theme of these works is to improve computational
efficiency for video analytics applications, which is also the
focus of this work. In particular, in [25], the authors pro-
posed a framework named DeepEye that improves resource
efficiency of concurrent DNNs by interleaving the execution
of computation-heavy convolutional layers and loading of

memory-heavy fully-connected layers. In [14], [37], the au-
thors proposed to cache reusable intermediate results between
consecutive video frames to improve computation efficiency.
In [10], the authors proposed a framework named MCDNN,
which uses model compression techniques to generate a cat-
alog of model variants for trading off DNN classification
accuracy for resource use. Similar to [10], the authors in [7]
also use model compression techniques to reduce computation
demand by trading off accuracy, but apply it to generate a
single multi-capacity model instead of a catalog of model
variants. In contrast, our work provides a complementary
approach to achieve computation efficiency. By changing the
model complexity dynamically to match the difficulty levels
of video frames, our approach is able to reduce computation
cost without trading off accuracy.

Our work is particularly inspired by [26], [28]. In [28], the
authors proposed a highly efficient continuous mobile vision
framework by leveraging the highly skewed class distributions
in real-world videos. In [26], the authors proposed a continu-
ous mobile vision system named Glimpse that supports “early
discarding” uninteresting video frames. Our work is similar to
them in the sense that we all exploit the characteristics in video
inputs to reduce the computation cost of video analytics appli-
cations. Different from them, FlexDNN exploits the easy/hard
dynamics in real-world videos and reduces the computation
cost by dynamically adapting its model complexity to the
difficulty levels of the input video frames.

Dynamic DNN. Our work is also related to the concept of
dynamic DNN in the deep learning literature. Dynamic DNN
is a type of DNN that is able to adjust the inference pathway
based on inputs. It has attracted a lot of attentions in recent
years due to the demand of improving computational efficiency
of DNNs [13], [23], [33], [38]. In [23], the authors proposed
a dynamic DNN named D2NN that consists of multiple
subnetworks and uses control modules to determine which
subnetwork to execute at runtime. However, the concatenation
of multiple subnetworks makes D2NN extremely resource
demanding, which is not suitable for mobile systems which
have constrained resources. Our work is similar to [33], where
the authors proposed BranchyNet, a dynamic DNN that adds
early exit branches on top of a regular DNN for fast inference.
However, the early exit architecture and the insertion plan
of BranchyNet are designed based on heuristics with trial
and error. In contrast, FlexDNN effectively addresses these
drawbacks with automatically derived optimized early exit
architecture and the insertion plan that fully realize the benefit
brought by the early exit mechanism.

VI. CONCLUSION

In this paper, we presented the design, implementation
and evaluation of FlexDNN, an input-adaptive deep learning
framework for resource-efficient on-device video analytics.
FlexDNN allows developers with limited deep learning ex-
pertise to build resource-efficient DNN-based video analytics
applications that can efficiently run on mobile vision systems



with minimum effort. We evaluated FlexDNN using three
representative video analytics applications. Our results show
that FlexDNN significantly outperforms status quo input-
agnostic approaches and BranchyNet. We believe our work
represents a significant step towards turning the envisioned
continuous mobile vision into reality.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable feed-
back. This work was partially supported by NSF Awards CNS-
1617627, CNS-1814551, and PFI:BIC-1632051.

REFERENCES

[1] DJI Mavic Pro. https://www.dji.com/mavic, 2018.
[2] NVIDIA Jetson AGX Xavier Developer Kit. https://developer.nvidia.

com/embedded/buy/jetson-xavier-devkit, 2018.
[3] ORDRO EP5 Head-Mounted Camera. http://www.ordro.com.cn/

product detail/204, 2018.
[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: a system for large-
scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[5] P. Bahl, M. Philipose, and L. Zhong. Vision: cloud-powered sight for
all: showing the cloud what you see. In Proceedings of the third ACM
workshop on Mobile cloud computing and services, pages 53–60, 2012.

[6] F. Chollet. Xception: Deep learning with depthwise separable convolu-
tions. arXiv preprint, pages 1610–02357, 2017.

[7] B. Fang, X. Zeng, and M. Zhang. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In MobiCom,
2018.

[8] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[9] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In Advances in Neural
Information Processing Systems, pages 1135–1143, 2015.

[10] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Kr-
ishnamurthy. Mcdnn: An approximation-based execution framework for
deep stream processing under resource constraints. In MobiSys, 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[13] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q.
Weinberger. Multi-scale dense networks for resource efficient image
classification. arXiv preprint arXiv:1703.09844, 2017.

[14] L. N. Huynh, Y. Lee, and R. K. Balan. Deepmon: Mobile gpu-based
deep learning framework for continuous vision applications. In MobiSys,
2017.

[15] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica.
Chameleon: scalable adaptation of video analytics. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 253–266. ACM, 2018.

[16] S. Jiang, Z. Ma, X. Zeng, C. Xu, M. Zhang, C. Zhang, and Y. Liu.
Scylla: Qoe-aware continuous mobile vision with fpga-based dynamic
deep neural network reconfiguration. In IEEE Conference on Computer
Communications (INFOCOM), pages 1369–1378. IEEE, 2020.

[17] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei. Large-scale video classification with convolutional neural networks.
In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1725–1732, 2014.

[18] M. A. Khan, W. Ectors, T. Bellemans, D. Janssens, and G. Wets. Uav-
based traffic analysis: a universal guiding framework based on literature
survey. ELSEVIER SCIENCE BV, 2017.

[19] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[20] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[21] R. LiKamWa and L. Zhong. Starfish: Efficient concurrency support
for computer vision applications. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services,
pages 213–226. ACM, 2015.

[22] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy. Progressive neural architecture
search. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 19–34, 2018.

[23] L. Liu and J. Deng. Dynamic deep neural networks: Optimizing
accuracy-efficiency trade-offs by selective execution. arXiv preprint
arXiv:1701.00299, 2017.

[24] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du. On-demand deep
model compression for mobile devices: A usage-driven model selection
framework. 2018.

[25] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and
F. Kawsar. Deepeye: Resource efficient local execution of multiple deep
vision models using wearable commodity hardware. In Proceedings of
the 15th Annual International Conference on Mobile Systems, Applica-
tions, and Services, pages 68–81. ACM, 2017.

[26] S. Naderiparizi, P. Zhang, M. Philipose, B. Priyantha, J. Liu, and
D. Ganesan. Glimpse: A programmable early-discard camera archi-
tecture for continuous mobile vision. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
pages 292–305. ACM, 2017.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In IEEE CVPR,
pages 4510–4520, 2018.

[28] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy. Fast video
classification via adaptive cascading of deep models. In CVPR, 2017.

[29] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[30] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv:1212.0402, 2012.

[31] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, 2017.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
2818–2826, 2016.

[33] S. Teerapittayanon, B. McDanel, and H. Kung. Branchynet: Fast
inference via early exiting from deep neural networks. In ICPR, pages
2464–2469. IEEE, 2016.

[34] D. B. Walther, B. Chai, E. Caddigan, D. M. Beck, and L. Fei-Fei.
Simple line drawings suffice for functional mri decoding of natural
scene categories. Proceedings of the National Academy of Sciences,
108(23):9661–9666, 2011.

[35] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,
and M. Satyanarayanan. Bandwidth-efficient live video analytics for
drones via edge computing. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 159–173. IEEE, 2018.

[36] J. Wang, Z. Feng, Z. Chen, S. A. George, M. Bala, P. Pillai, S.-W. Yang,
and M. Satyanarayanan. Edge-based live video analytics for drones.
IEEE Internet Computing, 23(4):27–34, 2019.

[37] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu. Deepcache: Principled
cache for mobile deep vision. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, pages
129–144. ACM, 2018.

[38] T. Yang, S. Zhu, C. Chen, S. Yan, M. Zhang, and A. Willis. Mutu-
alnet: Adaptive convnet via mutual learning from network width and
resolution. In European Conference on Computer Vision (ECCV), 2020.

[39] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,
and H. Adam. Netadapt: Platform-aware neural network adaptation for
mobile applications. In Proceedings of ECCV, pages 285–300, 2018.

[40] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman. Live video analytics at scale with approximation and
delay-tolerance. In NSDI, volume 9, page 1, 2017.

[41] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places:
A 10 million image database for scene recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017.

[42] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable
architectures for scalable image recognition. In IEEE CVPR, pages
8697–8710, 2018.


