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Abstract—
Elasticity is a fundamental property required for Mobile Edge

Clouds (MECs) to become mature computing platforms hosting
software applications. However, MECs must cope with several
challenges that do not arise in the context of conventional
cloud platforms. These include the potentially highly distributed
geographical deployment, heterogeneity, and limited resource
capacity of Edge Data Centers (EDCs), and end-user mobility.

In this paper, we present an elasticity controller to help
MECs overcome these challenges by automatic proactive resource
scaling. The controller utilizes information on the physical
locations of EDCs and the correlation of workload changes in
physically neighboring EDCs to predict request arrival rates
at EDCs. These predictions are used as inputs for a queueing
theory-driven performance model that estimates the number of
resources that should be provisioned to EDCs in order to meet
predefined Service Level Objectives (SLOs) while maximizing
resource utilization. The controller also incorporates a group-
level load balancer that is responsible for redirecting requests
among EDCs during runtime so as to minimize the request
rejection rate.

We evaluate our approach by performing simulations with
an emulated MEC deployed over a metropolitan area and a
simulated application workload using a real-world user mobility
trace. The results show that our proposed pro-active controller
exhibits better scaling behavior than a state-of-the-art re-active
controller and increases the efficiency of resource provisioning,
thereby helping MECs to sustain resource utilization and rejec-
tion rates that satisfy predefined SLOs while maintaining system
stability.

Index Terms—Resource Provisioning, Elasticity, Auto Scaling,
Edge Data Center, Workload Prediction, Location-aware, Ma-
chine Learning.

I. INTRODUCTION

The explosion of Internet of Things (IoT) deployments
and advances in 5G networking technology have enabled the
emergence of many new applications and services in domains
as varied as everyday leisure [1], mission critical health [2],
and industrial process control [3]. These disruptive appli-
cations require shorter response times and greater network
bandwidth than can be supported by conventional remote
cloud datacenters, and their computing capacity requirements
put pressure on the limited computing and storage capacity
of end-user devices. To address these challenges, there has
recently been a transition towards a new type of computing
infrastructure known as a Mobile Edge Cloud (MEC), in which
resource capabilities are distributed at the edge of the network,
in close proximity to end-users. MECs provide relatively

high computational capabilities and processing power at the
network edge by exploiting the compute capacity of small
servers or datacenters with heterogeneous capacity. These
so-called Edge Data Centers (EDCs) are envisioned to be
collocated with network base stations. This wide geographical
distribution of resources allows MECs to provide services
with higher bandwidth and lower latency than current cloud
computing platforms can deliver.

The modern centralized cloud platform is a well-established
paradigm defined by an on-demand service provisioning model
in which elasticity is a key feature [4]. In essence, elasticity
is the ability of a system to automatically adapt resource
provisioning as required to handle variation in load. Within
each time slot, an elastic controller seeks to provision sufficient
resources such that the current demand is matched as closely
as possible. With this in mind, we argue that elasticity will
also be key to the success of MECs. If anything, MEC
controllers must be even more rigorous in terms of speed and
precision than those in centralized cloud infrastructures for
four reasons: 1) Most applications deployed on MECs will
be latency-intolerant, i.e., they are extremely sensitive to even
very small delays. Sluggishness in resource scale-up or failure
to allocate sufficient resources to meet demand (i.e., under-
provisioning) can cause delays by increasing service waiting
time or, worse, by increasing the service rejection rate, which
results in a bad user experience; 2) The limited availability and
high cost of resources at the network edge mean that allocating
resources exceeding the demand (i.e., over-provisioning) leads
to inefficient operation and costly resource wastage; 3) The
stochastic nature of user mobility means that resource demand
at the network edge is characterized by frequent transient
changes [5]; 4) Resource control actions in cloud datacenters
do not take immediate effect, but are bound by actuation
delays (which can be as long as several minutes) until acquired
resources are ready for use [6]. Acceptable levels of service
cannot be guaranteed if these actuation delays are neglected,
especially when resource usage varies rapidly as is likely in
MECs.

These factors make it impractical for a human operator to
make scale-up and scale-down decisions, so MECs require au-
tonomous elastic controllers. Scaling decisions must be made
quickly enough to capture sudden changes in resource demand
so as to avoid Service Level Objective (SLO) violations, but
they must also be very accurate to reduce the overhead of
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the scaling actions themselves and avoid system oscillation.
To address these challenges, this paper presents an elastic
controller for MECs that aims to flexibly provision resources
where and when needed, matching dynamic workload changes.
The proposed approach helps the system meet SLO targets in
terms of request processing time and service rejection rates
while minimizing over-provisioning of MEC resources and
maximizing system stability.

The authors have previously evaluated the impact of user
mobility behavior on resource demand in MECs [6], showing
that user mobility gives rise to cross-correlation in workload
variation between nearby EDCs. This cross-correlation is a
valuable input for improving the accuracy of workload pre-
dictions, and was therefore exploited to develop a location-
aware workload prediction approach that outperforms previous
state-of-the-art methods. The workload predictions generated
using this approach are in turn valuable inputs for accurate
pro-active estimation of future resource demand, enabling
increased resource provisioning efficiency. Here, we propose
a new location-aware elastic controller for MECs that applies
this predictive approach. In essence, the proposed controller
treats all EDCs located in close physical proximity as a group.
Each group is managed by a group-level controller, which is
responsible for three functions: 1) Predicting workload arrival
at EDCs in the group; 2) Proactively determining how many
resources to allocate at each EDC; and 3) Configuring load-
balancers to direct requests from under-provisioned EDCs to
EDCs within the group that have available resources.

The key contributions of the paper are summarized as
follow:
• We present a location-aware elastic controller for MECs

that accounts for correlations in workload changes of
EDCs located in close physical proximity to one-another.
The controller is responsible for pro-actively scaling
up/down resources at EDCs and for redistributing work-
loads from under-provisioned EDCs to EDCs within the
same group that have available resources (see Section III).

• We evaluate the performance of the proposed approach
using various core elasticity metrics. First, an MEC topol-
ogy is emulated with EDCs geographically distributed
across the San Francisco metropolitan area. An extremely
latency-sensitive application is assumed to be deployed
on the MEC to serve end-users in this area; the applica-
tion’s workload is generated using real mobility traces of
taxis in San Francisco (see Section IV).

The proposed elastic controller outperforms the state-of-
the-art re-active controller and improves the efficiency of
resource provisioning. More specifically, in our experiments
presented in Section V, the elastic controller achieves an
average resource utilization of 85% and a rejection rate of
0.02%, while the corresponding values for the state-of-the-art
re-active controller are 69% and 0.04%, respectively.

II. PROBLEM DEFINITION

Figure 1 depicts an MEC platform with resources distributed
in EDCs and workload variation at each EDC. In this sec-
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Fig. 1: An MEC platform showing the temporal variations in
workload at each EDC.

tion, we first describe the goals of an elastic controller for
managing MEC resources from the perspectives of both the
operator and the end users. We then describe an MEC platform
whose resources are distributed across a metropolitan area,
and a scenario involving deployment of an extremely latency-
sensitive application. Finally, we highlight the challenges of
provisioning resources to such an application in order to
guarantee acceptable levels of service while attempting to
increase resource utilization.

A. Elastic Controller Goals

The overall purpose of the elastic controller is to guar-
antee that the allocated resources match the current demand
as closely as possible. From the end-user’s perspective, the
controller tries to prevent the system from violating SLOs
that are defined (by end-users) in terms of the average request
response time and request rejection rate.

From the operator’s perspective, the controller should focus
on the core elasticity metrics, i.e., average resource utilization
and system stability. These metrics may be in conflict under
certain conditions. For example, increasing resource utiliza-
tion may increase the rejection ratio. Our proposed method
prioritizes reducing the rejection ratio over reducing system
oscillations and maximizing resource utilization.

The metrics considered in this work are:

• Average Rejection Rate. To quantify end-user experi-
ence, we measure the average rejection rate of EDCi

as

RejectEDCi =

∑
Requestrejected∑

Request
(1)

A request is considered rejected if the corresponding SLO
target is violated (e.g., the estimated response time is
greater than the predefined maximum response time).

• Average Resource Utilization. We define the average
resource utilization as

UEDCi
=

∑
pkinEDCi

T pk

busy

T pk

living

(2)
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where T pk

busy is total time that an execution unit pk of
EDCi (e.g., container, VM) is busy to process requests
and T pk

living is total time since pk was invoked.
• Average Resource Lifetime. To quantify system stabil-

ity, we measure the average resource lifetime, i.e., the
difference between the starting and stopping times of an
execution unit pk for the application. Longer lifetimes
imply greater stability.

B. MEC Metropolitan Platform

We consider an MEC platform consisting of n EDCs dis-
tributed over a metropolitan area. The infrastructure may have
tens to thousands of EDCs of various sizes separated by short
distances (e.g., 1 km to 10 km). These EDCs are collocated
with network base stations or access points dispersed across
the area and are connected to one-another via a local network.
The network delay is 5μs/km, which is a typical value for
fiber optic systems [7].

Unlike ”unlimited capacity” cloud datacenters, each EDC is
a micro-server or datacenter with a limited resource capacity
reserved for providing cloud-based services to nearby end-
users. We assume each MEC’s resources are allocated using
the approach typically applied in modern container orches-
tration platforms such as Kubernetes1: each instance of an
application is deployed using an execution unit called a Pod.
Each Pod consists of a container that shares physical resources
with other containers collocated in the same EDC.

C. Latency-Intolerance Application

The explosion of new IoT applications is making the virtues
of proximity increasingly apparent. Jitter is a significant prob-
lem for many applications of this sort, and is highly impacted
by the variation in latency inherent to any multi-hop network.
Clearly, reliance on a centralized cloud datacenter, where
resources are located far from the end-users, is inadvisable
for applications requiring end-to-end delays to be tightly
controlled to less than a few tens of milliseconds.

For example, the quality and effectiveness of Augmented
Reality (AR) systems depends strongly on accurate registra-
tion, which is negatively impacted by latency. High latency
leads to mis-registration and thus breaks the spatial relation-
ships between real and virtual objects, disrupting the illusion
that the virtual objects are part of the physical world [8].
To achieve a good user experience for such applications, the
motion-to-display latency – the total delay from the time a
motion occurs to the time the display is updated to reflect its
results – must be below 2.5 ms [9]. In Section IV we conduct
experiments focused on an AR application. However, other
envisioned extremely latency-sensitive applications such as car
collision warning and emergency stop systems, which require
similar latency requirements [10] are applications that benefit
from MEC deployment, which also motivate our work.

1https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
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Fig. 2: Components of the proposed group controller.

D. Workload Variations

To provide services with an optimal network delay and
a level of jitter compatible with the relevant SLOs, MECs
should ideally connect end users to the nearest EDCs, i.e., one-
hop-away datacenters. Because end-users may move across
a geographic area, individual EDCs will experience tempo-
ral workload variation. These variations in workload pose a
challenge for management operators because they complicate
the process of deciding when and where resources should be
allocated, and in what amount.

III. PROACTIVE ELASTIC CONTROL FRAMEWORK FOR
EDGE DATA CENTERS

This section explains the operating principles of the pro-
posed elasticity controller. As presented in section II, each
EDC in an MEC has a limited number of Pods reserved to
serve end-user requests. In each EDC, we configure a local
load balancer that uses the shortest queue first technique
to balance requests arriving at the EDC and allocate them
to the active Pods that are able to serve requests in the
shortest time. EDCs located within close physical proximity
to one-another are assigned to the same group, and resource
provisioning within each group is controlled by a single group-
level controller.

Figure 2 shows the main components of the proposed
controller, which are a location-aware workload predictor, a
performance modeler, a resource provisioner, and a group
load balancer. In each time interval, the group controller
performs 4 sub-tasks: i) The controller queries the historical
data repository to obtain historical data for a time-window
of predefined length (e.g., the workload history of the last 5
days), which is saved as a time series. ii) The time series data is
forwarded directly to the location-aware workload predictor,
which then predicts the workload arrival rate for the next
interval. iii) The predicted workload arrival rate, the current
resource utilization, and the predefined SLO thresholds are
then sent to the performance modeler, which estimates the
number of desired Pods to be provisioned in the next interval
for each EDC. iv) Finally, the current number of Pods on each
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EDC and the estimated number of Pods required in the next
interval for each EDC are sent to the resource provisioner,
which determines the final desired number of Pods for each
EDC. At running time, the group load-balancer is responsible
for redirecting requests from under-provisioned EDCs to EDCs
with available resources so as to minimize the rejection rate.

Having thus established the flow of data within the con-
troller, the following paragraphs describe the individual com-
ponents of the proposed framework:

1) Location-aware Workload Predictor: The workload
predictor predicts workload arrival rates at each EDC in the
group over a configurable interval. It operates at the beginning
of the interval to generate predicted workload arrival rates to
the controller. Because of the rapid workload changes that
occur in MECs and the delay time due to boosting and starting
up provisioned resources before they actually become available
to end-users, a fast response and highly accurate forecast-
ing are essential. In [6], the authors developed a location-
aware prediction approach using multivariate Long Short-term
Memory networks. Experimental investigations showed that
this approach is efficient in terms of speed and accuracy. The
method leverages the correlation between changes in workload
among EDCs located in close physical proximity to predict
how the workloads of the EDCs in an MEC will evolve
over short periods of time. Given an MEC topology with
geographically distributed EDCs, let Yt = (y1t , y

2
t , ..., y

n+1
t )′

be an ((n+ 1)× 1) dimensional time series vector consisting
of n + 1 individual time series representing the historical
workload of an EDCp under consideration, and its n neigh-
bors. The sampling frequency Wsample, i.e., the time interval
between two adjacent data points in a single time series, is
set based on the fluctuation of the workload. To capture the
rapid changes due to the mobility traces used in the experiment
presented in the following section, we set the sample time to
Wsample = 1 minute. This is sufficient to complete up-/down-
scaling actions for the applications we target, as described
in Section II.

Taking Yt as input, the workload arrival rate at EDCp is
predicted in the k-step-ahead interval t+k, k ≥ 1. As described
above, our aim is to quickly obtain a response prediction for
every interval and also to prevent error accumulation when
making multi-step-ahead predictions. We therefore set k = 5,
meaning that the prediction interval is equal to 5 minutes.

2) Performance Modeler: The performance modeler is
responsible for estimating the number of resources required
at each EDC to meet the SLOs. We assume that all Pods have
the same hardware and host the same software application,
and therefore deliver the same performance. At any given time,
there is only one request being served by a Pod, the subsequent
requests are queued. Each EDC can thus be modeled as a set
of m M/M/1/k/FIFO queues with a local load balancer.
Here, m is the total number of Pods. Let k be the maximum
number of requests that a Pod can accommodate (either in the
queue or under service) to guarantee that admitted requests are
served with an acceptable service time. The value of k can be

computed as:

k =

⌊
Tmax

T

⌋

where Tmax is the negotiated maximum response time defined
by the SLOs and T is the average time required to serve a
single request in a Pod.

The SLOs also define the target rejection rate
max rejectionRate thresh. MEC must guarantee that
its average resource utilization remains above a predefined
avg utilization thresh and that its rejection rate remains
below max rejectionRate thresh. Using these values
together with the predicted workload arrival rate λ̂ and
the monitored average request response time Tcurrent, the
controller can start to estimate the quantities of resources
m that should be provisioned in each time interval using
Algorithm 1. In line 2, mnew is initialized using equation 3.
This guarantees that the new quantity of resources is close to
that needed to meet the SLOs, which reduces the computing
time for the following loop. Then, given mnew and the
predicted workload arrival rate λ̂, the system is modeled
as a network of queues and the expected response time
T̂average and number of jobs in the queue AveJobInQueue
are estimated using the equations for an M/M/1/k queue
from [11]. If the SLOs are not met, m is recalculated and the
process moves once again through the loop between lines 3
and 14.

minit =

⌈
λ̂
(1−max rejectionRate thresh)

avg utilization thresh
Tcurrent

⌉

(3)

3) Resource Provisioner: The resource provisioner is re-
sponsible for determining the number of Pods to be scaled
up/down at each EDC in a group. Unfortunately, it is im-
possible to predict workloads with complete accuracy, so
some EDCs may be under-provisioned while others are over-
provisioned. The idea is that requests arriving at an overloaded
EDC can be redirected to other EDCs in the same group
if doing so will not violate any SLOs. To improve system
stability (i.e., to minimize the number of scale up/down actions
while avoiding SLO violations), the final resource provisioning
decision is made on the basis of the total resource demand
at the group level. In other words, the resource provisioner
is responsible for cross-evaluating the resource requirements
of all EDCs in a group and setting a final number of desired
resources at each EDC based on the current aggregated number
of resources in that particular group.

The method used for group resource provisioning is outlined
in Algorithm 2. It takes as inputs the value of mi, the estimated
number of Pods required at each EDC Ei in the group returned
by Algorithm 1, and micurrent, the current number of Pods at
each EDC in the group. First, it calculates the total required
Pods and the total current Pods of the group, and the difference
between the group’s current and required Pods. If there is a
requirement to scale down (δ < 0), the algorithm scales down
Pods, starting with EDCs having the lowest Pod requirements
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Algorithm 1 Estimating the desired number of Pods at each
EDC

1: Input: SLO metrics: Tmax maximum response time,
max rejectionRate thresh maximum rejection rate
Input: Tcurrent, k, λ̂ � Tcurrent: average
response time of current system. λ̂: predicted arrival rate,
mcurrent: current number of Pods, and k: queue length
Input: mmax � maximum number of Pods in EDC

2: Initialize: mnew= equation(3)
3: do
4: temp = mnew

5: λi =
λ̂

mnew

6: estimate expected response time T̂average in
M/M/1/k queue with λi, Tcurrent

7: estimate AveJobInPod, the average job in an
M/M/1/k queue with λi, Tcurrent

8: if (AveJobInPod > (k − 1))or(T̂average > Tmax)
then

9: mnew = mnew + mnew

2
10: if mnew > mmax then
11: mnew = mmax

12: end if
13: end if
14: while temp! = mnew

15: return mnew

(lines 4 to 15). Conversely, if there is a requirement to scale
up (δ > 0), the algorithm scales up Pods, starting with EDCs
having the highest Pod requirements in the group (lines 16 to
27).

4) Group Load-balancer: The load-balancer is responsible
for real-time balancing of requests from under-provisioned
EDCs to over-provisioned EDCs in the same group. It does this
using a weighted round-robin approach. Algorithm 1 computes
the number of Pods required at each EDC in the group before
load-balancing, while Algorithm 2 computes the actual number
of Pods that should be allocated in each EDC to dampen
scaling up and scaling down actions. Algorithm 3 then uses
the outputs of these two algorithms to configure the weight
vector W in which each Wi is the weight assigned to an
over-provisioned EDC EDCi. The weight Wi represents the
proportion of requests redirected to EDCi from each under-
provisioned EDC in the group.

IV. EVALUATION SETUP AND METHODOLOGY

This section presents our simulation-based evaluation pro-
cess. We first explain how we simulate an MEC infrastructure
in a metropolitan area. This is followed by descriptions of the
approaches used to model the application of interest and its
workload. Finally, we describe the implementation and setup
of the tested controller, including both the proposed location-
aware pro-active controller and a baseline re-active controller
that is widely used in modern commercial clouds.

Algorithm 2 Group resource provisioning

1: Input: mi � number of Pods required at each EDC for
the next time step, returned by algorithm 1
Input: micurrent � current number of Pods at each EDC

2: requiredPod =
∑N

i=1 mi � N is the number of EDCs
in the group

3: currentPod =
∑N

i=1 micurrent

4: if requiredPod < currentPod then
5: sort EDCs in the group in increasing order of number

Pods required.
6: δ = currentPod− requiredPod
7: i = 0
8: do
9: k = min(mi, δ)

10: remove k Pods from EDCi

11: δ = δ − k
12: if δ > 0 then
13: i = i+ 1
14: end if
15: while δ! = 0
16: else if requiredPod > currentPod then
17: sort EDCs in the group in decreasing order of number

Pods required.
18: δ = requiredPod− currentPod
19: i = 0
20: do
21: k = min(mi, δ)
22: add k Pods to EDCi

23: δ = δ − k
24: if δ > 0 then
25: i = i+ 1
26: end if
27: while δ! = 0
28: end if

Algorithm 3 Calculating weights for over-provisioned EDCs

1: Input: m1i � number of Pods required at each EDC for
the next time step, returned by Algorithm 1
Input: m2i � number of Pods required at
each EDC for the next time step, returned by Algorithm 2

2: Δ =
∑K

i=1 m2i −m1i �
K is number of EDCs needing to be scaled down in the
next time interval according to Algorithm 1

3: for i ← 1 to K do
4: Wi =

m2i−m1i

Δ � Wi is the weight assigned to EDCi

5: end for
6: return Wi
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Fig. 3: The experimental simulation.

A. Infrastructure: An MEC Distributed Over a Metropolitan
Area

We simulate a single MEC distributed over a metropolitan
area. To model this MEC, we captured real geo-coordinate
information on cellular towers distributed across San Fran-
cisco, US2. Duplicated towers (i.e., towers with geographical
coordinates identical to another tower) were removed, leaving
15 unique cellular towers. The MEC is modeled by supposing
that one EDC is collocated with each unique tower to provide
coverage of the studied area. Figure 4 shows the distribution
of these 15 EDCs in San Francisco. For simplicity, we assume
that the EDCs are connected to a metropolitan area network
with unlimited bandwidth and no delay in the middle layers
(i.e., the routers, switches, and network cards). The network
delay between each pair of EDCs Ep and Eq is thus a function
of the distance between them:

delay(Ep, Eq) = D ∗ distance(EDCp, EDCq)

Here, D is set to 5 μs/km [7] with a positive variation of
10%, uniformly distributed; and distance(EDCp, EDCq) is
the distance between the two EDCs, which is computed from
their geographical coordinates (i.e., longitude and latitude)
using the Haversine formula [12].

We assume that the resources of each EDC are virtualized
according to the Kubernetes model, under which resources are
provisioned and shared flexibly. Each individual instance of a
given application is encapsulated in a manageable disposable
entity called a Pod, which wraps the container and storage
resource together. Horizontal scaling of an application thus
entails increasing or decreasing the number of replicated Pods.

2http://www.city-data.com/towers/cell-San-Francisco-California.html

B. Application: An Extremely Latency-Intolerant AR Applica-
tion

We assume that an AR application is deployed on the
MEC to provide services to end-users in the area. Each end-
user’s request, if admitted, is served by an application instance
running on a Pod allocated by EDCs. Each application instance
serves several requests on a first come first served basis to
avoid unnecessary startup times. The aggregate time of the
Pod startup time, the waiting time, the service time, and the
network communication delay constitutes the final applica-
tion’s response time. As noted in section II, it is important
to maintain a low response time in order to guarantee an
acceptable end-user experience that does not induce motion
sickness or dizziness. Some AR applications (e.g., optical
head-mounted display) require a latency less than 2.5 ms of
motion-to-display lag [9]. We therefore model the application
with the service time is 1 ms with a positive variation of
10%, uniformly distributed; and the maximum response time
of the application is set to 2.5 ms. Since the main objective
is to evaluate the efficiency of the proposed elastic control,
we conduct experiments with a single application. However, it
is worth noting that the experiment can be easily extended
to multiple applications, each of which is modeled with a
different predefined response time requirement. Due to the
large amount of data that must be copied in when creating a
new Pod, we assume that the actuation delay, i.e., the amount
of time a new Pod requires to become ready, is 1 minute with
a positive variation of 10%, uniformly distributed.

C. Workload: Real Taxi Mobility Traces

To simulate workload arrival at EDCs, we use real mobility
traces for taxis in San Francisco [13]. The main reason we
chose these traces is that they cover the same geographic area
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as the data used to generate the geographic distribution of the
MEC.

The dataset contains information about the mobility behav-
ior of 536 taxi cabs in the San Francisco Bay area over 25 days
starting on May 17th, 2008. The original dataset contains 4
attributes: longitude, latitude, datetime, and number of people
in the car. We preprocess the trace to remove all invalid records
by setting a maximum velocity of Vmax = 115km/h based
on the relevant urban traffic regulations. We then eliminate
records reflecting a velocity greater than Vmax. Since there
are only 536 cabs in the dataset, the generated workload
would be rather sparse and small, and would not represent
a typical throughput for an AR application of the type under
consideration (i.e. the number of requests would be too low
to keep the application busy during the experimental period).
We therefore increase the magnitude of the workload using
the function below to generate a more dense workload for the
EDCs:

newWorkload = (originalWorkload+ t) ∗ k
Here, t, and k are predefined constants. For the experiment, t
is set to 25 and k is set to 160 000. It is worth noting that this
function is linear, so it increases the workload size without
impacting the intrinsic characteristics of the vehicles’ original
mobility behavior.

D. Auto-scaler Setup

To conduct representative experiments, the proposed con-
troller method is configured as follows: We divide the MEC
into 4 groups, with each group consisting of a set of EDCs
located in close proximity to one-another, as shown in Table I.
The system periodically monitors and records request arrival
rate data in the historical dataset for each EDC, aggregated
over 1-minute sampling intervals. The first 17 days of the
historical dataset (starting from May 17th, 2008) are used as
a training set for the predictive model. The trained model is
then used to predict the request arrival rate at each EDC for the
last 7 days covered by the dataset (June 3rd, 2008 to June 9th,
2008) using a 5-minute prediction interval (i.e., the look-ahead
step is set to 5). At runtime, the model is constantly updated by
incorporating newly observed data into the input dataset and
removing the same quantity of old observation data, with the
oldest data being removed first. The training is then repeated
using the updated training set. The predicted arrival rate, the
target SLOs, and the average utilization are used as inputs for
the Pro-active Auto scaler (i.e., the Performance modeler, and
the Resource Provisioner as detailed in Figure 2), which is
used to estimate the number of Pods required in the next time
window. The target average resource utilization at each EDC
is set to avg utilization thresh = 80%, and the upper limit
for the rejection rate is set to max rejectionRate thresh =
1%.

To characterize the performance of the proposed controller
and the impact of its individual components, we perform
experiments using two controller settings:

TABLE I: Group settings.

GroupID EDCs

#1 #1, #2, #3, #5,
#10

#2 #8, #12, #15
#3 #11, #14

#4 #4, #6, #7, #9,
#13

Pro-active AS, in which the controller uses only the pro-
active auto-scaler (i.e., the group load balancer is disabled);
and

Pro-active AS + LB, in which the controller uses both the
pro-active auto-scaler and the group load-balancer.

E. Baseline: Re-active Auto-Scaler

We implement a baseline auto-scaler that mimics the Ku-
bernetes Horizontal Pod Auto-Scaler - a widely-used, battle-
tested, production-ready, re-active auto-scaling tool that Ku-
bernetes deploys for horizontal scaling of its replicas [14].
In this case, the resource utilization at each EDCi in time
window w is:

Utilization(EDCi)w =
n∑
i

Utilization(Podi)w
m

Here, Utilization(Podi)w is the function used to calculate
the utilization of Pod i, which is defined by the percentage
of the total busy time that Pod i spends serving requests
over time window w. m is the total current number of Pods
(including both “ready” and “not-yet-ready” Pods) in all EDCs
at timestamp t.

The other parameter settings used in this case are presented
in Table II. These settings are the defaults for Kubernetes. In
essence, for each period (periodSecond = 15 seconds), the
controller periodically queries the resource utilization of each
EDC in the preceding time window (w = 30 seconds) and
calculates the scale ratio using the logic presented in [14].
If the ratio is within the tolerance (set to 10% by default),
no scaling is performed. Otherwise, if there is a scaling up
signal, the controller will immediately add the number of
replicas desired to make the observed resource utilization
reach or exceed the target specified by the end-users. The
scaleUpLimitFactor and scaleUpLimitMinimum are set to 2.0
and 4.0 respectively to specify how quickly EDCs can scale
up. To smooth out the impact of rapidly fluctuating metric
values (i.e., to prevent rapid fluctuations in the number of
replicas), scale down actions are tuned to occur gradually;
by default, the downscale-stabilization is set to 5 minutes,
meaning that the controller will select the highest desired
number of Pods recommended within the last 5 minutes.

F. Performance Metrics for Comparing Auto Scalers

To meaningfully and quantitatively compare the perfor-
mance of different auto scaling methods, we use the three
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TABLE II: Parameter settings used in the experiments.

MECs
number of EDC 15
maximum Pods at each EDC 300
minimum Pods at each EDC 5
Pod readiness delay 1 minute

Application
average response time 1 ms
maximum response time 2.5 ms

Targeted threshold
avg utilization thresh 80%
max rejectionRate thresh 1%

Proposed Pro-active auto scaler settings
number groups 4
look-ahead arrival rate prediction 5 minutes

Re-active auto scaler setting
downscale-stabilization 5 minutes
periodSeconds 15 seconds
scaleUpLimitFactor 2.0
scaleUpLimitMinimum 4.0
tolerance 10%

Fig. 4: Distribution of EDCs in San Francisco.

main elasticity metrics mentioned in Section II together with
a set of system- and user-oriented metrics recommended by
the research group of the Standard Performance Evaluation
Corporation (SPEC) [15]. Given an experiment duration T ,
we use st and dt to denote the resource supply and resource
demand at each timestamp t ∈ [0, T ] respectively. Below, we
summarize the metrics used to measure aspects of elasticity
suggested in [15].

– Two accuracy metrics θU , and θO are introduced to
measure the deviation (in resource units) between resource
demand and the resource supply based on the auto-scaler’s
decisions:

Under-Provisioning accuracy, θU : The number of resource
units that must be added for st to match dt, normalized against
the duration of the experiment, T . In other words, the metric
θU is calculated as the sum of the areas where the resource
demand exceeds the supply.

θU [resource units] =
T∑

t=1

max(dt − st, 0)

T

Over-provisioning accuracy, θO: Analogously, the over-

provisioning accuracy metric θO is the number of resource
units supplied by an auto-scaler in excess of the demand,
normalized against the experiment’s duration.

θO[resource units] =
T∑

t=1

max(st − dt, 0)

T

θU and θO both take values in [0,+∞]; for both metrics,
values closer to 0 are better (values of 0 mean that no under-
provisioning or over-provisioning occurs during the experi-
ment).

– To measure the proportion of the total experimental time
during which the system is under- or over-provisioned, two
timeshare metrics, τU and τO are introduced:

Under-Provisioning timeshare τU : The total amount of
time that the system spends in an under-provisioned state,
normalized against the overall experiment duration T .

τU [%] =

T∑
t=1

max(sgn(dt − st), 0)

T

Over-Provisioning timeshare τO: The total amount of time
that the system spends in an over-provisioned state, normalized
against the experiment duration T .

τO[%] =
T∑

t=1

max(sgn(st − dt), 0)

T

Both τU and τO take percentage values within [0, 100], with
values closer to 0 being better; values of 0 indicate that no
under- or over-provisioning are detected during the experiment
duration T .

– To determine whether the supply curves generated by an
auto-scaler change in the same direction as the demand curve,
we use the instability υ metric:

υ[%] =
100

T − t1

T∑
t=2

min(|sgn(Δst)− sng(Δdt
)|, 1)Δt

υ takes values in the interval [0, 100], with values closer to 0
being better; a value of 0 indicates that the demand and supply
curves always move in the same direction.

V. EXPERIMENTAL RESULT AND DISCUSSION

In this section, we present the experimental results obtained
with the two configurations of the proposed pro-active elastic-
ity controller and the baseline re-active controller.

A. How does the proposed pro-active controller perform
when compared to the re-active controller?

Our objective is to quantify the efficacy of the proposed
controller and compare its scaling behavior to that of the
currently popular re-active controller. To this end, we conduct
experiments with three controller configurations as described
in the preceding section. Table III summarizes the quantitative
results for each controller configuration with respect to the
elasticity metrics discussed in the previous section.
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(b) Pro-active AS
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(c) Pro-active AS + LB (the red dashed curve:
the demand before load balancing; the red curve:
the new demand after load balancing)

Fig. 5: The scaling behavior of three controllers on EDC#1 (avg utilization thresh= 80%, max rejectionRate thresh = 1%).
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Fig. 6: Performance of the three controllers based on the main elasticity metrics (avg utilization thresh= 80%,
max rejectionRate thresh = 1%).

When using the Pro-active AS + LB controller configura-
tion, the system maintains an average resource utilization of
85.9%, while the average rejection rate is 0.02%. The Pro-
active AS configuration also helps the system avoid breaching
the predefined thresholds: the average resource utilization in
this case is above 80% and the rejection rate is below 1%.
However, the Pro-active AS configuration creates a total of
4405 Pods with an average lifetime of approximately 35.2
minutes, whereas the Pro-active AS + LB configuration creates
fewer Pods (3154 Pods in total) with a longer average lifetime
(73.3 minutes). Of the three studied controller configurations,
Re-active AS exhibits the worst scaling behavior. Although its
rejection rate does not breach the user-specified threshold, it
yields a low level of resource utilization (68.4%) and creates
more Pods than either of the pro-active controller config-
urations. These results together with the elasticity metrics
(θU , θO, τU , τO) presented in Table III reflect the intrinsic

behavior of the Kubernetes horizontal Pod auto-scaler, which
is designed to compensate for a lack of predictive capacity by
provisioning more resources than currently demanded.

This conclusion is supported by the results presented in
Figure 5, which shows the scaling behavior of the three
controller configurations in EDC#1. The Re-active AS config-
uration clearly causes EDC#1 to be over-provisioned for most
of the experimental period, whereas the two Pro-active AS
configurations yield a better match between resource demand
and supply. The supply curve plotted in Figure 5c also exhibits
fewer oscillations than that in Figure 5b. Additionally, at time
points when EDC#1 is short of resource capacity, the group
load balancer redirects requests arriving at this EDC to other
EDCs (i.e., #2, #3, #5, #10) in the same group. Two demand
curves are plotted in Figure 5c (red dashed curve: the demand
before load balancing; red curve: the new demand after load
balancing) showing that the demand curve obtained with load
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TABLE III: The performance of the three controllers based on the elasticity metrics (avg utilization thresh= 80%,
max rejectionRate thresh = 1%).

Metric Pro-active AS +
LB Pro-active AS Re-active AS

θU 13.6 41.2 5.4
θO 14.2 39.5 305.6
τU 4% 43% 5.3%
τO 2.5% 46.7% 94.1%
υ 2.44% 2.8% 3.9%
Avg. resource uti-
lization 85.9% 80.5% 68.4%

Rejection rate 0.02% 0.26% 0.04%
total Pods 3154 4405 5337
Avg. Pod lifetime
(minute) 73.3 35.2 29.6

balancing matches the supply curve even at time points when
EDC#1 would otherwise be short of capacity.

The admitted requests are guaranteed to meet the response
time requirement. Indeed, Figure 7 presents the cumulative
density of the response time of the admitted requests in
experiments with the three different elasticity control settings.
It is easy to observe that, for the system with the Re-active
AS, most admitted requests are served with response times
around 1 ms. This is due to the Re-active AS generously
allocating more resources than the demand. Whereas, due to
maximizing resource utilization, the system with Pro-active AS
and Pro-active AS + LB controllers allocate a number of Pods
which are close to the demand, resulting in some admitted
requests requiring some waiting time before being served.
This leads to a slight increase in the final response times.
In the system employed Pro-active AS + LB, some admitted
requests are redirected among EDCs in a group, hence the
aggregated response time is further increased by the network
delay between the connecting EDC and the serving EDC. As
a result, the average response time of the admitted requests in
this setting is larger than those observed in the system with
the Re-active AS and the Pro-active AS settings. Nonetheless,
with the response time for the admitted requests satisfy the
SLOs, and the low rejection rate, the proposed controller helps
MECs guarantee the user’s experience for the deployed AR
application.

To summarize, of the three studied controller configurations,
Pro-active AS + LB exhibits the best behavior in general,
giving the highest average resource utilization, a low rejection
rate, and high stability.

B. To what degree does location-awareness improve scaling
behavior?

The proposed controller estimates the number of Pods de-
sired at each EDC based on the request arrival rate predicted by
the workload prediction model. Its performance thus depends
strongly on the accuracy of the predictive model. At every
time point, a more accurate arrival rate prediction will lead
to a better estimation of the required number of Pods. The
finding in [6] revealed that the variation in the workloads of
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Fig. 7: Cumulative density of response times of the application
in three elastic control settings.

neighboring EDCs is correlated, which can be exploited to im-
prove the accuracy of workload prediction in MECs. However,
the increase in predictive accuracy becomes saturated once
the number of neighboring EDCs exceeds a certain threshold.
To verify the impact of varying the number of neighbors on
the scaling behavior of the pro-active controller, we conduct
another experiment in which we vary the group size, k. Two
values of k are considered:

k = 1: one pro-active controller is deployed on each EDC,
and each controller is only responsible for estimating the num-
ber of Pods for the EDC on which it is deployed. Additionally,
the only input used by the request arrival rate prediction model
is the historical workload of that EDC. The controllers in
this scenario can be considered location-unaware because
they cannot use information on the correlation of workload
variation between neighboring EDCs. The results obtained
using this controller configuration serve as a baseline for
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comparison to the performance achieved with pro-active auto
scalers of the type used in current cloud computing platforms.

k = 15: all 15 EDCs of the emulated MEC are assigned
to a single group. The prediction model takes historical data
for all 15 EDCs as its input, and the group load balancer
is responsible for balancing loads from overloaded EDCs to
other EDCs in the group. The elastic controller in this case is
therefore referred to as a location-aware controller.

We use three metrics: the rejection rate, the resource utiliza-
tion, and the lifetime of invoked Pods to measure the system’s
scaling behavior when using the proposed controller under
varying conditions and to compare it to that achieved with the
re-active controller. Figure 8 plots the performance of the three
studied controller configurations in the k = 1 and k = 15 cases
as well as the original case where the EDC groups are defined
based on physical proximity. The performance data are plotted
using radar charts with three axes corresponding to the three
elasticity metrics. As shown in Figure 8a, in the k = 1 case, the
system with the pro-active controller only reaches an average
resource utilization of 74%, which is below the predefined
resource utilization threshold. This is because the predictive
model in this case is learned based on the historical workload
of the predicted EDC only, hence it cannot accurately predict
the request arrival rate, leading to inaccurate estimation of
the required number of Pods. For the group including all 15
EDCs (k = 15), the Pro-active + LB controller achieves
the average measured resource utilization (80.2%) exceeds
the target resource utilization, and the rejection rate (0.3%)
less than the maximum rejection rate threshold, as shown in
Figure 8c. However, the performance with respect to all three
metrics is worse than in the case where EDCs are grouped
based on physical proximity. This is because the workload
variation of physically distant EDCs is uncorrelated, causing
”noise” in the training data for learning the predictive model,
which reduces the accuracy of the workload predictions and
thus reduces the accuracy of the estimates of the number of
Pods required to meet future demand.

To summarize, the correlation in workload variation among
EDCs in close physical proximity improves the accuracy of the
location-aware prediction model, which in turn enables more
accurate estimation of the number of Pods required to meet
performance objectives.

C. What is the decision time of the elastic controller?
To verify the applicability of the proposed controller, we

measure its running time on each occasion it is invoked. These
experiments were performed on a PC with an Intel i7-4790
CPU and 32GB RAM using a single thread.

Figure 6c presents decision times for the three controllers
for every 5-minute time window during the experiment’s
duration. Re-active AS is the fastest of the three controller
configurations, with an average decision time of approximately
0.05 seconds for each scaling action. This is understandable
because the re-active controller chooses scaling actions based
on records of the system’s current resource utilization. Con-
versely, the two pro-active configurations require some time

to predict the future workload and estimate the current system
performance. Therefore, the average decision time of the Pro-
active AS controller is approximately 2.84 seconds. The deci-
sion time of the Pro-active AS + LB controller (3.13 seconds)
is slightly higher still because it must perform the additional
task of configuring load balancing. However, recalling that
the scaling actions are implemented at 5-minute intervals, one
can reasonably conclude that the pro-active controllers make
decisions with acceptable speed, leaving ample time for the
newly provisioned resources to be started-up and made ready
to use.

D. What is the impact of the two predefined thresholds on
the controller’s scaling behavior?

Our proposed controller estimates the number of Pods
required in the coming interval based on two predefined
thresholds: the target resource utilization and the target re-
jection rate. To explore the impact of these thresholds on
the final scaling behavior, we conduct experiments in which
their values are varied. In the first experiment, we keep the
target rejection rate constant (i.e., max rejectionRate thresh =
1%) and only change the target resource utilization (gradually
increasing it from 70% to 95%). Conversely, in the second
experiment the target resource utilization is constant (i.e.,
avg utilization thresh = 80%), while the target rejection rate
is decreased from 10% to 1%. Figure 9 shows the controller’s
scaling behavior based on two main metrics: the measured
resource utilization, and the measured rejection rate. Table IV
presents the measured values of the resource utilization, the
rejection rate, and the total number of Pods invoked, which
describes the scaling behavior of the proposed controller.
When the controller tries to improve the average resource
utilization, its scaling decisions are made in part with the aim
of dampening the rate of change in resource supply relative to
the current demand. This makes the system unable to keep the
rejection rate below the target level, as indicated by the bolded
values in Table IV. At the other extreme, when the controller
aims to minimize the rejection rate, it generously provides
more resource than are needed to meet demand, causing a
decline in resource utilization.

VI. RELATED WORK

Over the last decade, considerable efforts have been invested
into resource management research with the aim of develop-
ing reliable, robust, and cost- and energy-efficient distributed
computing environments. Diverse mechanisms and techniques
have been used to implement elasticity systems, ranging from
reactive statistical approaches to pro-active methods based on
machine learning [16], [17].

The reactive rule-based approach is a resource scaling
method that has become popular among commercial cloud
providers because of its straightforward deployment. This
method requires cloud providers to offer a user interface that
lets clients define performance metric thresholds (based on,
e.g., resource utilization, rejection rates, or service response
times) and scaling plans. Resources are then automatically
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Fig. 8: Performance of the three studied controller configurations based on the three major elasticity metrics when the number
of neighboring EDCs is varied (avg utilization thresh = 80%, max rejectionRate thresh = 1%).
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resource utilization is held constant at 80%.

Fig. 9: The controller’s scaling behavior when varying the threshold settings.

added or removed based on these predefined conditions. Rule-
based auto-scalers of this type are used by Kubernetes and
Amazon AWS [14], [18]. The limitation of these rule-based
approaches is that they are reactive: they only scale resources
after a change in performance metrics has been detected.
Therefore, end-users may experience poor performance until
the extra resources become available.

In contrast to reactive methods, pro-active self-adaptive
mechanisms use various prediction techniques to improve
efficiency. Ali-Eldin et al. [19] proposed a horizontal auto-
scaler that applies control theory and queueing theory to model
system performance and estimate future resource demand.
Their method uses both a reactive and a pro-active controller
that dynamically change the number of virtual machines
allocated to services based on the current performance and the
predicted future demand. Similarly, Bauer et al. [20] introduce
a hybrid pro-active auto-scaler, called Chameleon, with two

sub-functions (one pro-active and one reactive). Chameleon
uses time series analysis to forecast the arriving load intensity
and queue theory to estimate service demand. Extensive ex-
periments using both private and public clouds revealed that
this approach achieves efficient scaling performance.

At the other extreme are approaches that use trial and error
to converge on an optimal policy [21], [22] for making scaling
decisions in specific states. Such approaches require no a priori
knowledge or explicit models of either the system or its current
workload. Grimadi et al. [21] introduced a feedback control
strategy to adaptively allocate cloud resources to users of
public clouds in a way that guarantees that Service Level Ob-
jectives are met. Their approach uses gain scheduling in which
adaptive control is optimized using an automatic optimal
tuning procedure. Similarly, Rao et al. [22] developed VCONF,
a reinforcement learning-based approach for virtual machine
auto-scaling. Experiments on a Xen-based testbed showed that
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TABLE IV: The scaling behavior of the proposed controller with different predefined threshold settings.

Targeted
rejection
rate[%]

Targeted
resource
utilization[%]

Measured
resource
utilization[%]

Measured
rejection
rate[%]

Total Pods

1

70 74.8 0 3812
75 80.2 7e-4 3484
80 85.9 0.02 3154
85 90.6 0.16 2890
90 95.2 0.8 2653
95 98.2 2.7 1995

10

80

93.5 0.44 2753
... ... ... ...
3 87.2 0.05 3065
2 86.3 0.03 3113
1 85.9 0.02 3154

this approach offers good adaptability and scalability. For fine-
grained container-level cloud resource management, Nguyen
et al. [23] proposed MONAD, a self-adaptive micro-service
based framework for scientific workloads. MONAD employs
neural network to predict the performance of the scientific
workflow deployed on cloud resources. A feedback control
mechanism helps the cloud system dynamically scale its
resources, securing the QoS requirement without any advanced
knowledge of workflow structures.

While such approaches have achieved remarkable efficiency
gains when applied to the resource provisioning challenge in
modern clouds, none of them was specifically designed to take
advantage of user mobility-driven workload correlation across
the EDCs of an MEC. Our proposed elasticity controller takes
into consideration the impact of user mobility on the workload
variation in physically neighboring EDCs to build a location-
aware elastic controller for MECs. The controller has two main
functions: a pro-active auto-scaler to determine how many
resources to allocate to each EDC, and a group-level load-
balancer that balances workloads on the fly, reallocating them
from underprovisioned EDCs to nearby EDCs with available
resources.

VII. CONCLUSION AND FUTURE WORK

Because of user mobility and the resulting heterogeneity of
resource distribution, it is very difficult to control resource
allocation in Mobile Edge Clouds in a way that optimizes
resource use efficiency while also delivering expected end-
user QoS. In this paper, we introduce a local-aware pro-active
controller for dynamic provisioning of resources to services
running in MECs. The proposed controller takes advantage of
the correlation of workload variation in physically neighboring
EDCs to predict the request arrival rate at EDCs. These
predictions are then used as inputs to estimate service demand
and the number of resources that will be desired at each
EDC. Additionally, to minimize the request rejection rate, we
develop a group-level load balancer to redirect requests among
EDCs during runtime. Experiments using an emulated MEC
over a metropolitan area, and simulated application workloads
from a real mobility trace, we showed that our proposed

controller delivers significantly better scaling behavior than
a state-of-the-art re-active controller and also improves the
efficiency of resource provisioning. This in turn helps MECs
maintain resource utilization and request rejection rates that
satisfy predefined requirements while maintaining system sta-
bility.

In future, we plan to test our approach on an emulated MEC
using a diverse dataset obtained from mobile network opera-
tors. We see the potential to extend our proposed controller in
different ways: we will work on designing a hybrid controller
that incorporates both pro-active and re-active control together
with an applied control theory technique to help the system
dynamically switch between the controllers so as to further
improve scaling behavior.
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