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Abstract—With the rapid growth of IoT devices, the tra-
ditional cloud computing scheme is inefficient for many IoT
based applications, mainly due to network data flood, long
latency, and privacy issues. To this end, the edge computing
scheme is proposed to mitigate these problems. However, in an
edge computing system, the application development becomes
more complicated as it involves increasing levels of edge nodes.
Although some efforts have been introduced, existing edge
computing frameworks still have some limitations in various
application scenarios. To overcome these limitations, we propose
a new programming model called Edge-Stream. It is a simple and
programmer-friendly model, which can cover typical scenarios
in edge-computing. Besides, we address several new issues, such
as data sharing and area awareness, in this model. We also
implement a prototype of edge-computing framework based on
the Edge-Stream model. A comprehensive evaluation is provided
based on the prototype. Experimental results demonstrate the
effectiveness of the model.

Index Terms—edge computing; programming model;

I. INTRODUCTION

Internet of Things (IoT) devices have experienced expo-
nential growth in recent years. Applications based on IoT
technology have been widely employed in various fields, such
as healthcare, transportation, and manufacturing. Traditionally,
data collected by those geo-distributed devices are processed
centrally in a data-center. However, such a solution may flood
the network with heavy data traffic due to the rapid increase of
connected IoT devices. Also, when endpoint users are sensitive
to the latency, it is neither efficient nor necessary to deliver all
raw data into a remote data-center for computing. More im-
portantly, many modern applications raise the requirements of
data-location awareness and privacy protection, which cannot
be satisfied by traditional cloud computing.

The concept of edge computing has been introduced as a
promising scheme to solve these issues. The basic idea is to
offload processing tasks close to those IoT devices, exploring
the computing capability of nodes nearby. Furthermore, the
advance of 5G communication technique involves the deploy-
ment of powerful servers with a normal operating system
and adequate storage space throughout the network, such as
macro-cell base stations, small-cell base stations, Cloudlet
servers, and access points [26]. Therefore, the edge computing
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scheme is able to improve the utilization of those resources
and avoid overwhelming the network with heavy data traffic.
As illustrated in Figure 1, all the participants throughout the
network are normally organized in a hierarchical structure. The
data-center is located at the root, while those IoT devices form
the leaves. The computing nodes in between comprise those
internal nodes. All those nodes in the structure have varying
degrees of computing and storage capabilities, which are rather
considerable when accumulated together. Recently, extensive
approaches of edge computing are proposed in the industry
and academia [5] [20] [26]. They have well demonstrated the
advantages of edge computing systems, in respect of latency,
energy consumption, and privacy-preserving, etc.

However, in an edge computing system, the application
development efficiency still remains as an critical issue. Com-
pared to the two-tier cloud computing architecture, an edge
computing framework is normally more complicated due to
new participants (i.e. edge nodes). Therefore, it will be too
sophisticated for developers to manage low-level parallelism
and resource allocation details manually on such a group
of multi-tier nodes. In order to make the edge computing
scheme practical, a dedicated high-level programming model
is necessary. It is supposed to be independent of the physical
topology of the IoT network, and able to cover most of the
common scenarios for various IoT applications.

Several projects have already noticed such demands, and
focus on the convenience in application development by
providing proper abstraction [27] [18] [12] [42]. They have
explored a lot of techniques from various aspects, making
full use of available resources to maximize their optimization
targets. However, most of the existing approaches have several
common limitations, which affect their efficiency in real
deployment. They are explained in details as follows.

First, some frameworks focus on the case that there is only a
single application running in the network. In multi-task cases,
if the endpoint devices are grouped into isolated sets for each
task, everything just works well as a single-task system. But, if
they share the same set of data sources, each task will request
the same data repeatedly, resulting in redundant data traffic.
Some commercial products [3] [28] [14] [2] and community
projects [10] [11] have tried to solve the problem by involving
a message queue service over IoT devices. It actually provides
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Fig. 1: Illustration of a typical topology of computing re-
sources throughout the network

a publish-subscribe interface for different tasks. However, such
type of abstraction is not friendly to developers. Users have
to manage the data transmission details manually.

Second, data movement among endpoint participants is
complicated in real-world applications. Most research ap-
proaches only focus on optimizations for some special cases,
such as collecting data from IoT sensors towards the cloud, or
reversely, broadcasting data content to endpoint devices. Real-
world applications, however, may require more complicated
data transmission paths.

Third, the collaboration among IoT owners has not been
explored yet. IoT devices are normally deployed separately
for different purposes. As device number keeps increasing, it
is also possible that data collected by different devices are
used together for new tasks. Thus, how to enable data sharing
among users becomes a new challenge.

To overcome these limitations, we propose a new program-
ming model called Edge-Stream. In this model, data flows are
represented as streams so that low level details are hidden from
programmers. In addition, the streams can be shared among
different tasks. Various data movement patterns are supported
in the model to cover common scenarios.

The rest of this paper is organized as follows. In Section
II, we review the basics of edge computing and introduce
four typical scenarios. In addition, the limitations of existing
approaches are also discussed. To overcome these limitations,
the Edge-Stream model is proposed in Section III. Based on
this model, we further discuss several critical implementation
issues in Section IV. Evaluation setup and results are presented
in Section V, followed by a conclusion in Section VI.

II. RELATED WORK

In this section, we first review the basic idea of edge com-
puting and existing frameworks that support edge computing.
Then, we study four typical scenarios of IoT applications
that can leverage edge computing. After that, we summarize
limitations of current approaches, which motivate the proposal
of our Edge-Stream.

A. Edge Computing Basics

With the rapid growth in the number of IoT devices, both
data and communication traffic generated by them have been
increasing exponentially. Although modern cloud systems are
elastic in computing and storage capacity, those embedded
and mobile devices are normally located far from the data-
center. Consequently, traditional cloud computing may suffer
from severe round-trip delay and network jam. To mitigate this
problem, researchers proposed the concept of edge computing.
Its goal is to perform more data processing jobs at the edge
of the network [5] [20], which is closer to IoT devices.
Mahmud et al. [26] presents a detailed survey in this field.
Both challenges and opportunities exist in all aspects [34].

To bring the idea into reality, all types of nodes close
to the IoT devices are involved to share computation and
storage resources. Cloud computing service providers such as
Amazon AWS Greengrass [3], Microsoft Azure IoT Hub [28],
and Google Cloud IoT Edge [14] present the most intuitive
solutions. With the help of special hardware and software
tool-kits, the IoT devices are able to perform some local
inferences and manage the exchange of data with the nearest
data-center. CloudPath [29] supports execution of third-party
applications along a progression of data-centers positioned
along the network path between the client devices and a
traditional wide-area cloud data-center. Cloudlet [32] provides
a small-scale “data-center” called Cloudlet servers located at
the edge of the Internet to reduce the application latency. Early
edge computing system Paradrop [39] leverages the potential
computing capacity of access points, smart routers and other
existing components of the network. Generally speaking, these
infrastructures are geographically next to IoT devices, and are
equipped with considerable computing and storage capability.

B. Typical Scenarios in Edge Computing

IoT devices have been applied in a huge number of dif-
ferent applications. These applications vary a lot, in respect
of number of devices, hardware platforms, service types,
communication infrastructures, etc. Thus, it is important to
abstract some common scenarios from these applications to
propose an efficient programming model. To this end, we
introduce four typical abstractions of scenarios, as illustrated
in Figure 2, according to data-flow. They can cover a lot of
representative applications that can leverage edge computing.

The first scenario is called IoT-Edge-Cloud, as shown in
Figure 2 (a). From the data-flow, we can find that the system
gathers data from widespread geo-distributed IoT devices into
several data-centers for processing. In this case, a full path
data delivery from IoT devices towards the data-center is
always necessary. Thus, some pre-computing on edge devices
along the path can help reduce data size or overall latency
significantly. Liu et al. [24] introduces the Markov Decision
Process (MDP) method into the optimization algorithm, thus
reducing the average delay of every task. Edgeflow [43] pro-
vides a method to smooth the data burst problem considering
the constraints of the network. Flask [27] allows programmers
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(d) IoT-Edge(c) IoT-Edge-IoT

(a) IoT-Edge-Cloud (b) Cloud-Edge-IoT

Fig. 2: Four typical scenarios of IoT applications

to describe their dataflow graph in a high-level programmatic
wiring language on a sensor network, based on the functional
language OCaml. Couper [19] focuses on deploying deep
learning algorithms on a three-tier edge computing system.
It supports quick creation of slices of production DNNs for
visual analytics, and enables their deployment in contemporary
container-based edge software stacks.

The second scenario is called Cloud-Edge-IoT, as illus-
trated in Figure 2 (b). It is common for applications like
live-streaming. In this case, data are pushed down from data-
centers towards a large group of endpoint devices. The key
idea is to cache the hot content at the edge of the network, and
thus reduce the transmission delay of contents and relieve the
bandwidth pressure for data-centers. The content delivery net-
work [36] has already become a mature approach for Internet-
based caching by deploying cache servers at the edge of
Internet. Information-centric networking [1] provides content
distribution services to mobile users with a wireless cache
infrastructure. Femtocaching [13] studies a wireless distributed
caching network. It assists the macro base station by handling
requests of popular files that have been cached. Xing et al. [40]
proposes a distributed multi-level storage model to provide
storage and computing services for IoT devices with limited
storage capacity and poor network stability.

The third scenario is named as IoT-Edge-IoT in this work,
as shown in Figure 2 (c). It refers to those applications that
both data producers and consumers are endpoint IoT devices.
When tracing the data-flow, we can find that data requests
usually come from devices, which are close to the data source
devices geographically. A straightforward method of edge
processing for this scenario relies on an interconnected local
network, such as the Wireless Sensor Networks (WSN) [30].
DDF [12] introduces an approach to develop programs using
a dataflow model. This scenario is common for applications,
such as smart transportation and smart manufacturing. In fact,
Amazon AWS Greengrass [3], Microsoft Azure IoT Hub [28]
and Google Cloud IoT Edge [14] have provided their archi-
tectures, where sensors collect data to analyze and actors react

to the result. To the best of our knowledge, there are seldom
frameworks that are able to provide range-based data aggre-
gation. For example, EdgeX [10] and AWS Greengrass [3]
allow users to create topics to collect data from sources and
let sinks to subscribe. However, those topics are mostly defined
in advance, instead of dynamically following the data sink. If a
vehicle wants to know the number of cars around it, it is hard
to select a proper topic to accumulate. A detailed description
of the case is introduced in Subsection III-D.

The last type called IoT-Edge focuses on a special scenario,
in which data processing results are collected by the same data
source device. Such case is common in mobile applications,
such as gaming, VR, and AR. If the IoT or mobile devices
are not able to complete the computation all by themselves,
they have to borrow computing resources from other powerful
nodes nearby. Cloudlet [32] allows devices to discover nearby
Cloudlet servers to help them with the workload. Mobile
Fog [18] proposes a Platform-as-a-Service (PaaS) model to
provide developers with a simplified programming interface.
Paradrop [39] serves the endpoint users with a multi-tenant
platform. Chen et al. [8] demonstrates the multi-user compu-
tation offloading procedure as a game. The scheduling problem
is transformed into reaching a Nash Equilibrium.

C. Motivation of Our Approach

From the discussion in the last subsection, we can find that
most edge-computing applications can be categorized into one
aforementioned scenario or a combination of multiple ones,
such as a complex smart city system [44]. Unfortunately, most
state-of-art edge-computing systems/infrastructures only focus
on a single scenario. There still lacks a unified programming
model that can support all the scenarios. In addition, the low-
level design details are not well hidden in some of edge-
computing systems. Moreover, special hardware support is
required for some of edge-computing infrastructures, such as
Amazon AWS Greengrass [3], Microsoft Azure IoT Hub [28],
and Google Cloud IoT Edge [14]. Thus, the development of
edge computing on a real-world application is inefficient, espe-
cially when multiple scenarios are involved in one application.

Traditional distributed computation frameworks in data-
centers, including Flink [6] and Storm [35], are designed
to deal with continuous data packages generated from IoT
devices, web applications and social media. The stream pro-
cessing model is adopted to describe the jobs. The endless
sequence of data packages of the same type are abstracted as a
stream. Developers apply a series of operators to process each
element in the stream. Such high-level abstraction is friendly
to programmers, and is expressive to describe different types
of jobs in data-centers.

Inspired by the method, we introduce a new stream pro-
cessing model, Edge-Stream, for edge computing scenarios. It
is rather simple and easy to program, but is general enough
to cover the typical scenarios mentioned above. At the same
time, we implement a prototype of edge-computing framework
based on Edge-Stream model on commodity hardware. Details
are introduced in following sections.
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Fig. 3: Different views for a license plate recognition job

III. EDGE-STREAM MODEL

In this section, we mainly introduce the components of the
Edge-Stream model. First, we provide a case study in order
to facilitate the explanation. Then we describe the stream
abstraction from the perspective of each basic components.
As the Edge-Stream model borrows some concepts from the
traditional file system, we also compare some coincident part
between them, and emphasize the specific features for streams.

A. Basic Components

When we use Edge-Stream model to describe a scenario, it
contains several basic components, including “data-sequence”,
“stream”, and “operator”. Their definitions are introduced as
follows using a simple example of intelligent traffic system
illustrated in Figure 3.

a) Data-sequence: Data-sequence is the basic unit that
can be manipulated by an operator in the model. As shown
in Figure 3 (a), each camera generates a data-sequence of
captured vehicles. These data-sequences are used for data
analysis (e.g. license plate recognition) later in the system.

b) Stream: Stream is a set of data-sequences, which are
processed with the same operator. As shown in Figure 3 (a),
there are four cameras in total. All data-sequences from these
cameras are grouped together as a video stream.

c) Operator: Operator is a user-defined function in an
edge system. It takes one or multiple streams as the input
and generates a single stream as the output. For the example
in Figure 3 (a), there are two operators. The first operator is
License Plate Recognition (Recog). It takes the video stream
from cameras as input and generates a license plate stream,
which contains the license plates of vehicles. The second
operator is Save. It takes the license plate stream as the input
and turns it into a new stream for storage.

cat grep

raw.txt pipe file result.txt

Shell 
commands

Files

Lines

cat raw.txt | grep "hello" > result.txt

Fig. 4: An analogy with Linux shell script example

The abstract view of this example is illustrated in Fig-
ure 3 (b). It contains three streams and two operators. In each
abstract view, we put operators on the top and allocate all
streams in the bottom. In the rest of this paper, we will use
abstract views to introduce more examples. The corresponding
code based on Edge-Stream model is presented in Listing 1.
The first line declares two operators (i.e. Recognition and
Save). The second line imports the video stream. License plate
stream and storage stream are generated using operators in last
two lines, respectively.

require Recog, Save
import VideoStream
PlateStream = Recog VideoStream
StorageStream = Save PlateStream

Listing 1: Code for the license plate recognition job

To provide better understanding of these components in
Edge-Stream model, we use the file system as a close analogy.
A stream in an edge system can be analogous to a file in a file
system. A data-sequence can be analogous to a line in each
file. The operators are analogous to shell commands, such as
tail, grep, cat.

We also provide an example of manipulating files via Linux
shell commands, which is shown in Figure 4, to demonstrate
the similarity. Command cat reads each line in raw.txt, and
pass on them with a pipe. The pipe process will create a
new pipe file in the PipeFS, a special file system mounted
in the kernel. Then command grep reads each line in the
pipe file, and writes the result to result.txt. It is easy to tell
that the example of manipulating file in Figure 4 is quite
similar to that of programming with Edge-Stream model in
Figure 3 (b). Design details of “file (stream)” and “shell
commands (operators)” in Edge-Stream model are introduced
in the following subsections.

B. Stream Design

Besides a set of data-sequences, a stream also maintains a
list of metadata indicating its properties. Operators need to
check those metadata items to determine whether the stream
meets the requirements as an input. The key items of the
stream metadata are listed in Table I. Other minor features,
such as the stream name, are omitted from the list.
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TABLE I: Basic metadata items of a stream

Metadata Meaning
Type Classifying the stream into several categories:

primitive, virtual, generated.
Owner Indicating the user that creates and possesses

the stream.
Window Describing the window type of the stream.
Serializer Indicating the serializing method.

According to the type field in metadata, streams are
categorized into three types, which are introduced as follows.

• A primitive stream is generated directly from end-
point physical devices. Examples include streams gener-
ated by end-point sensors, surveillance cameras, stream-
ing media from the cloud, and so on. Therefore, the video
stream in Figure 5 (a) is a primitive stream.

• A virtual stream introduces another type of data
source. Different from a primitive stream, it does not
rely on any physical devices. Each node in an edge
system may maintain a local replication of an identical
virtual steam. Therefore, it is no necessary to move a
virtual stream among nodes. A timer stream shown in
Figure 5 (b) is a typical virtual stream, which provides
the current time every minute.

• A generated stream is the output generated an opera-
tor, as illustrated in Figure 5 (c). In other words, it always
relies on existing streams (i.e. input of an operator). We
call those streams as the “parent streams” of the generated
stream. For example, the license plate stream mentioned
in Figure 3 is categorized as a generated stream, and the
video stream is its parent stream.

Primitive streams are the original sources of data in the
system. There are basically two kinds of them: device-based
and range-based. They get data-sequences from a list of
physical devices, and a list of areas, respectively. For example,
stream owner X has deployed a bunch of sensors, and is able to
get data-sequence from them. Thus it is device-based stream.
An other case is that stream owner Y wants to provide services
for vehicles but does not possess vehicles. Then Y may create
a range-based primitive stream according to a range of areas.
Any vehicle that enters the area becomes a data source of the
stream automatically, and thus is able to access Y’s service.
More implementation details are introduced in Section IV.

[…, 1:01, 1:02, 1:03...]

Timer Stream

(a) Primitive Stream (b) Virtual Stream

(c) Generated Stream

Video Stream

Fig. 5: Different types of streams

(a) Fixed Window

(b) Sliding Window

Type
Window
Serializer

Stream

Data-Sequence

Metadata

Fig. 6: Two typical types of windows

The following code 2 provides a simplified declaration of
a video stream and a timer stream mentioned in Figure 5.
The video stream is a device-based primitive stream, whose
declaration contains a list of devices. When the stream is
in use, the system will search for those devices and inlet
the data. A virtual stream declaration needs to define the
method of generating the virtual data. Once activated, they
are generated locally by the required nodes in the system. In
contrast, generated streams are defined via operators, such as
the PlateStream in code 1.

<Stream>
<Type>Primitive</Type>
<SourcePool>

<Source>192.168.10.*</Source>
</SourcePool>

</Stream>

<Stream>
<Type>Virtual</Type>
<SourcePool>

<Source>date +%M %S</Source>
</SourcePool>

</Stream>

Listing 2: Stream declaration examples

Since the aggregation on an endless stream would never
return, the concept of window is widely accepted in tradi-
tional stream computing frameworks, such as Flink [6] and
Beam [4]. It indicates the range of data to be aggregated.
In Edge-Stream model, the usage of windows remains the
same. Figure 6 illustrates a stream with four data-sequences,
and we focus on one of them. A fixed window divides up the
sequence into fixed-width and non-overlapping time intervals.
A sliding window only considers the starting point, and allows
overlapping. For example, each window in Figure 6 (b) chunks
3 seconds of data, but a new window starts every 2 seconds.

The Serializer field indicates the serializing method of
data-sequences in a stream. Given a serializer, operators are
able to decode the input data and access the content properly.
Common approaches include JSON, Protobuf, and Kyro.

In order to clarify the usage of a window, we take the
vehicle counting job as an example. Users want to figure out
the number of cars captured by each camera every hour. They
will reuse the PlateStream generated from code 1. As shown
in code listing 3, FWindow generates a new stream with an

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:16:56 UTC from IEEE Xplore.  Restrictions apply. 



one-hour window from the PlateStream. Notice that FWindow
is followed by a pair of parenthesis for non-stream parameters
(i.e. “1h”). It is then piped to ‘VCnt’ operator to perform the
final counting. Obvioulsy, the usage of a pipe is also similar
to that in a file system.

require FWindow, VCnt, Save
import PlateStream
CountingResult =

FWindow("1h") PlateStream | VCnt
StoreResult = Save CountingResult

Listing 3: Code for the vehicle counting job

C. Operator Design

In the Edge-Stream model, there are two types of operators,
namely reshaping and computation. Reshaping operators are
introduced to define how to organize existing data-sequences,
without changing the data inside. For example, a Union
operator collects all the data-sequences from each of the input
streams, and treat them as a new stream. The FWindow
operator in code 3 also belongs to this type. It only changes
how the system treats the data-sequences. Such concept is
similar to the string view method in C++ language.

Computation operators, on the contrary, generate new data
from input streams. They apply functions on each of the data-
sequences in the input streams. Formally, an operator with
function f operates on a stream with three data-sequences {a,
b, c} is demonstrated in Equation 1. Therefore, functions are
the pivots of designing an operator.

Operatorf ({a, b, c}) = {f(a), f(b), f(c)} (1)

Functions access data packages in each data-sequence
through a standard set of APIs. Two of the most important
APIs are getNext and getWindow. They correspond to two
different types of functions, map and reduce, respectively.
The map function takes in one data-sequence from a stream
and uses getNext to access each data item in the data-
sequence. Then, it generates a new data-sequence for the
output stream. The reduce function involves getWindow to
iterate data packages in each window of the data-sequence. It
waits for all data in a window to accumulate in a physical node
to start processing. They are the basic components adopted
by most of the distributed systems [9] [7] [6]. Those APIs
do not limit the data type of the operator, which support
heterogeneous data sources. The data type of the data packages
in the data-sequence is declared implicitly in the operator,
demonstrated in following examples (listing 4 and 5).

The code snippet in listing 4 provides a simplified imple-
mentation of the function for the Recog operator in Figure 3. It
is a map function. The code starts with an initialization section
in C++ language. The following declaration part describes the
input and output streams. In the example, there is one input
stream S_video consisted of Picture objects. The output
stream S_plate provides std::string objects. The last

section implements the computation logic with C++ code. The
getNext function in the first line pops one element at a time
from the stream. The ‘%%’, ‘%{’ and ‘%}’ are punctuation
to separate the sections.

#include <string>
#include "MyRecogLib"
%%
%in S_video<Picture, null, File>
%out S_plate<std::string, null, JSON>
%%
%{

auto inPicture = S_video.getNext();
auto outPlate = PlateRecog(inPicture);
S_plate.pushItem(outPlate);

%}

Listing 4: Recog function implementation

The code listing 5 implements the vehicle counting operator.
The input stream S_plate has been segmented with a fixed
window. The output stream S_result provides the counting
result without a window. Both of them are serialized in JSON.
The function intends to calculate the total number of plates
in each window. The getWindow function performs in a
reduce-style manner. It collects data in each window and
returns a vector of elements.

#include <string>
%%
%in S_plate<std::string, fixed, JSON>
%out S_result<int, null, JSON>
%%
%{

int counter = 0;
auto plates = S_plate.getWindow();
for (plate : plates) {

counter ++;
}
S_result.pushItem(counter);

%}

Listing 5: Vehicle counting function implementation

The Edge-Stream model also supports operators to maintain
per-data-sequence status for its output stream. For example,
users want to know the total number of cars from now on. They
should replace the local variable counter with a global one
following a status declaration:

%status counter<int, 0>

D. Grouping Method

Typical data processing frameworks in data-centers always
support grouping methods. For example, the keyBy transfor-
mation in Flink [6] logically divides a stream into disjoint
partitions. Records with the same key are assigned to the
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Rd1 Rd2 Rd3

Rd4
C2C1

Fig. 7: Grouping example

same partition. To support various IoT applications, similar
operations are also necessary in the model. In some cases,
users have to recollect the data-streams in a stream on demand.

Consider an example of the IoT-Edge-IoT scenario. A smart
traffic system provides information for each vehicle about its
nearby traffic conditions. The user has already got a license
plate stream from an existing job shown in Figure 3. Code 6
firstly accumulate the number of cars in each area. Then the
results are delivered to nearby vehicles. The LeftUnion oper-
ator unions data-sequences of the second parameter according
to the first one. Three key features, namely areas, keys and
rules, are involved in such procedure.

require LeftUnion, Sum, Deliver
import CountingResult, AreaSet, Vehicles
TrafficPerArea =

LeftUnion AreaSet CountingResult | Sum
SmartTraffic =

LeftUnion Vehicles TrafficPerArea |
Deliver

Listing 6: Code for the smart traffic job

Literally, area indicates where the data-sequence comes
from. By default, the feature for a data sequence generated
by an IoT device is set to the position of it. For generated
operators, the area feature for the output data-sequence
is assigned as the union of all areas of inputs. Primitive
streams from clouds and virtual streams have no area feature.
The key feature is a user-defined string assigned to a data-
sequence. It often tells what the data-sequence is.

The rule feature of each data-sequence tells its listening
range. They are set explicitly by stream owners. Only data-
sequences that follow the rule will be forwarded to it. In the
Edge-Stream model, there are two steps to define a rule.
First, a range parameter is necessary for all rules. A
positive range refers to a circle centered on the geometric
center of its area. Its value is the radius measured in meters.
The range with value ‘0’ means the data-sequence itself. It is
always used in the IoT-Edge scenario. A negative number rep-
resents that all available data-sequences are accepted. Second,
a series of keys are set to further select data-sequences.

Figure 7 provides an illustration about the traffic system.
There are four roads, Rd1˜Rd4, in the system. Each road has
two cameras running vehicle counting jobs. C1 and C2 are
two cars running on road Rd4. Both of them want to figure out

the nearby traffic condition. As shown in Code 6, the first step
is to aggregate the counting result on each road. The AreaSet
indicates the mapping from cameras to roads. Then, cars select
the traffic condition data. Each of them defines a rule according
to its location. As a result, C1 and C2 receive the data from
{Rd1, Rd2, Rd4} and {Rd2, Rd3, Rd4} respectively.

E. Stream Sharing
Similar to a file system, Edge-Stream model also adopts

the idea of permission control. In a typical file system, file
permissions determine the ability of the users to access the
file. Such mechanism enables multiple users to collaborate in
a single system properly.

In Edge-Stream model, each stream has a unique owner.
It refers to the user that creates and possesses the stream.
The owner has full permissions to generate new streams from
it, modify its metadata and delete the stream. For example,
the primitive stream in code 2 has data sources at IP ad-
dresses 192.168.10.*. If the owner deploys a new devices at
192.168.1.100, a corresponding source item will be added in
the SourcePool list.

Owners can also share streams with other users. For exam-
ple, there are two users, A and B, in Figure 8. User B attempts
to build a license plate recognition job mentioned in Figure 3.
However, B does not have enough camera devices, and thus
asks A to share a stream to fertilize the data sources.

Owner B
Union

Video 
Stream

A-shared 
Stream

B-owned 
Stream

Owner A

A-owned 
Stream

Fig. 8: A stream sharing example

When user A starts to share the stream with user B, B will
get a reference of it. Then, B is allowed to build new streams
from it, but cannot modify or delete the stream in the edge
system. The metadata of the stream managed by A should also
record the event, in order to close the sharing afterwards. With
the help of stream sharing, existing streams are not only reused
by creators to build their own jobs, but also shared among
different users. Such progress is similar to creating soft links
of files. The file content appears only once on the disk, but
has multiple entries in the system.

IV. ESTREAM PLATFORM

Based on the Edge-Stream model, we implement a full-stack
prototype named EStream. In this section, we first discuss the
challenges that the system should take into consideration. Then
we will provide an overview of the EStream architecture, as
well as some low-level design concepts to implement streams
in the system. A case study will be presented in the following
subsection. We address the decentralized scheduling algorithm
design in the last subsection.
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A. Challenges

Stream processing is a typical form of computation jobs in
data-centers. There have been lots of famous frameworks in
use for years, such as Flink [6] and Storm [35]. AStream [22]
provides a practical way to integrate ad-hoc queries with long-
running queries on streams, which enables the sharing of the
computation. However, those models cannot be applied on the
edge computing scenario, due to the following reasons.

First, stream processing frameworks in data-centers are built
on clusters that are connected with each other via a high-
speed wired network infrastructure. Data access latency is
nearly independent of the physical location of the computation
nodes. In comparison, computation nodes in edge computing
systems are no longer connected as a complete graph. For
a particular application, the topology of nodes throughout the
network normally forms a level structure, as shown in Figure 1.
The data-center is situated at the root logically. Those IoT
devices make up the leaves. Computation nodes in between
plays the part of internal nodes. Given the physical schema,
we should figure out how to map the computing paradigm
onward. In other words, determinate how streams are created
and go through those nodes. It is the most important challenge
to bring the Edge-Stream model into reality.

Second, the master-worker architecture of those frameworks
in data-centers becomes inefficient, as the computation net-
work is always larger in edge computing systems. The job
placement becomes more difficult because of the large num-
ber of computation nodes. Furthermore, the communication
overhead among computation nodes is significant. Thus, it is
difficult to adjust the scheduling policy timely according to
real-time changes in the remote edge network. If there are
multiple users sharing data streams, it is also hard to select the
maintainer of master nodes. Traditional resource management
algorithms, such as Yarn [38], Mesos [17] and Omega [33],
cannot work properly in this scenario. Therefore, a practical
scheduling method is necessary for the EStream platform.

Third, we argue that the sharing of streams becomes more
and more important for edge computing applications. In this
scheme, multiple jobs are able to share their common parts
of the computation graphs, and thus reduce the replicated
computation and data transmission overhead in the system.
Traditional stream processing frameworks cannot share a part
of the existing job dynamically, because their scheduling unit
is a job instead of a stream. In order to achieve the goal,
they should stop the existing job, modify the computation
graph, and restart the new one. This method is acceptable in
data-centers. But, the cost becomes larger in edge computing
systems with a huge number of remote nodes. Thus, it is also
significant to provide a practical way to support the stream
sharing feature in the EStream system.

In the following subsections, we will discuss how to solve
those problems.

B. System Overview

In this subsection, we provide an overview of the EStream
architecture, and describe how streams are created in it.

Owner B
O1 O2

S4S1 S2 S2

Owner A

S3

(a) Job description

Monitor Node-B

Endpoint Node

Endpoint Node

Computation Node

Node 1

Node 2

Node 3

Node 4

A#1

A#2

A#3

B#1

B-Cloud

Monitor Node-A

(b) Three kinds of nodes in EStream

Metadata of Stream S1~S4
Endpoint nodes

Computation nodes

Monitor nodes

Data-sequences in Stream S1~S4

Fig. 9: Streams passing by EStream nodes

There are basically three kinds of devices in the EStream
system: endpoint nodes that produce data-sequences, compu-
tation nodes that provide computation and storage resources,
and monitor nodes that maintain the metadata of streams.
Figure 9 illustrates an example for them. Part (a) describes
the components of jobs for two owners, A and B. Owner A
imposes an operator O1 on the stream S1. The result stream
S2 is then shared to B, together with S3, as the input of O2.
The output of B’s job is S4. Part (b) illustrates the overall
system topology for those nodes and streams.

The endpoint nodes include IoT devices and data-
centers in the cloud. They provide the source of primitive
streams in the system. In comparison, virtual streams come
from device-independent algorithms, and generated streams
are outputs of operators that take existing streams as in-
puts. They always start from computation nodes. Four
hexagons on the left in Figure 9 (b) are endpoint nodes. The
green one belongs to Owner B for stream S3. The orange ones
belong to Owner A, generating three data-sequences for S1.
The red hexagon on the right side, B-Cloud, shows another
endpoint node of Owner B. It is the data sink of stream
S4. Gray squares in the middle represent four computation
nodes in the system. Lines passing through them illustrate the
data-sequences in each stream. As shown in the figure, the
primitive stream S1 starts from endpoint nodes A#1˜#3, while
a generated stream S2 (the blue line) starts from Node 1.

Besides endpoint and computation nodes, EStream incor-
porates some special monitor nodes to maintain the nec-
essary information streams. They provide services to interact
with streams, such as creating, deleting, and sharing. In Fig-
ure 9 (b), there are two monitor nodes, belonging to Owner A
and B respectively. Monitor Node-A maintains the information
of S1 and S2, while Monitor Node-B maintains S3 and S4, as
well as the shared stream S2.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:16:56 UTC from IEEE Xplore.  Restrictions apply. 



C. Stream Creation

Once a stream is created, it is registered in a monitor node
provided by its owner. For primitive streams, the monitor
maintains a list of endpoint devices for device-based streams,
or a list of areas for range-based ones. Neither data transmis-
sion nor computation is triggered in this stage. Similarly, as
virtual streams are built on demand, the monitor node only
records the algorithm to generate them.

In comparison, creating generated streams is more compli-
cated, as illustrated in Figure 10. In the example, Stream S
has one parent stream named T. Initially, the monitor Node-B
maintains the metadata of Stream T. 1 After the registration
procedure, Node-A has to ask Node-B for Stream T. 2
Then Node-B performs an authentication verification about the
event. If the verification is successful, it will help to figure out
the current location of T. In the meantime, Node-A registers
a shared stream T locally. In return, Node-B also records
the information of Node-A, so as to end the sharing in the
future. 3 At last, EStream triggers the data transmission and
computation for S. In this way, the same primitive or generated
stream in different jobs appears only once in the physical
system. Therefore, this mechanism realizes the feature of
stream sharing among owners.

According to the procedure, when creating streams from
existing ones, their monitors are supposed to locate them in the
system. There are three types of streams, which are primitive
streams, virtual streams, and generated streams. (1) To find a
primitive stream, the most intuitive way is to access the list
of endpoint nodes maintained in the monitor node. A better
way is to make use of the topology illustrated in Figure 1 to
minimize the communication overhead. The basic idea is to
treat the monitor node of a stream as the root, and endpoint
nodes make up the leaves. The monitor node is able to reach all
leaves through a breadth-first search on the graph. To support
the searching procedure, internal computation nodes caches the
list of neighbors to search. For example, in Figure 10, Node 2
maintains a list of {4, 5} as the children set for the breadth-first
search of Stream T, and Node 1 will make the list as {2, 4}
for Stream S. (2) Virtual streams are created on demand, and
thus their monitor nodes do not have to find existing ones in

Monitor Node-A Monitor Node-B

S

S

T

T

S TT

T

Node 1 2

Node 3
4 5

Fig. 10: Create a generated stream S from stream T

the system. (3) Generated streams are constructed on data-
sequences from existing streams. In order to find a generated
stream, its monitor node recursively finds all its parent streams
in the system. Once all the original data-sources are found, it
is easy to find the target stream following the direction of data
transmission.

For example, Stream S in Figure 10 is a generated stream
with one parent stream named T. In order to locate Stream
S in the system, the monitor Node-A has to ask Node-B for
nodes that provide data for Stream T (Node 2, 3, 4, 5). Then
the searching procedure starts from those nodes. Following the
data streams, it is easy to find the offspring nodes 1, 2, 4 that
generates data for Stream S.

D. Request Propagation

The previous subsection answers what happens when own-
ers create new streams. However, for any pairs of nodes in
the system, there are lots of possible routing paths for data
transmission. We should clarify how data-sequences in those
streams choose their way to go through the computation nodes
in the system. The problem is divided into two parts: the
direction for each data-sequence to go, and the location where
it is generated.

First of all, EStream defines a target node for each data-
sequence in streams. The data-sequence ought to find the
shortest way towards its target. In other words, the target is the
direction to deliver the data-sequence. Some of the streams are
created to be sinked to somewhere, such as the data-center for
StoreResult in Code 3, the endpoint vehicles for SmartTraffic
in Code 6 and B-cloud for S4 in Figure 9. Those nodes are
just the targets for data-sequences inside the streams. Other
streams have no intuitive destinations, such as the temporary
stream TrafficPerArea in Code 6 and S2 in Figure 9. For data-
sequences in such kind of streams, the target nodes are set as
the monitor node. As we introduced previously, each stream
has only one monitor node in the cloud, so the target is still
unique. If a stream is shared to another owner, its target nodes
will not get changed. For example, although T in Figure 10
is shared from monitor Node-B to Node-A, its target node is
still Monitor Node-A.

Besides the direction, it is also important to decide on where
each data-sequence first appears in the system. Obviously,
data-sequences in primitive streams are launched from par-
ticular endpoint nodes. In virtual streams, they only appear
in computation nodes on demand. For generated streams, the
question is equivalent to determining where the computation
starts, as those streams are generated from operators.

For computation operators, the input data-sequences are
processed as soon as possible. The difference between map-
style and reduce-style functions is that the latter one should
wait for data in a window to accumulate. For reshaping
operators, there are two possible cases. If the operator does not
involve any grouping method, it only affects how users treat
those data-sequences. So the underlying system will ignore it.
For example, the Union operator unifies two or more streams
into one. It only leaves a record in the metadata maintained
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Algorithm 1: Pseudo code for AreaFinding
Input: Area, Node, Stream
Output: The node to collect data-sequences
if Area �⊂ Node[Stream].area then

return Node[Stream].parent
end
foreach node ∈ Node[Stream].children do

Result = AreaFinding(Area, node, Stream)
if Result �= Node then

return Result
end

end
return Node

by the stream owner, without changing the existing data-
sequences. In comparison, grouping operators are involved
to collect a bunch of input data-sequences together into one
physical node. In this case, EStream uses the nearest common
ancestor node of their target nodes to collect them. Therefore,
the key point of such procedure is to select the proper data-
sequences according to the rule feature. As introduced in
Subsection III-D, each rule consists of a range parameter
and a series of keys. From the perspective of EStream system,
the range parameter delimits a list of areas. Input data-
sequences in each area are collected together.

In order to find matching areas quickly, EStream system
introduces the area feature for those internal computation
nodes as well. The area and related data structures are per-
stream information. The mechanism reuses the parent-children
relationship in the per-stream tree structure defined in Sub-
section IV-C. For a device-based primitive stream, the parent
node of the endpoint node collects the positions of them, and
calculates a smallest convex polygon to cover all of them as
its own area. Recursively, the parent of the computation nodes
records its area as the smallest convex k-gon to cover all of its
children. In order to control the space overhead of the auxiliary
data, we limit the polygon to at most m sides. Therefore, the
space overhead for the area information in each computation
node is at most O(m*N), where N denotes the number of
streams. The idea is similar to the interval tree, which is a
popular data structure to find all intervals that overlap with
any given interval or point.

To find the matching area in the system, the target node
will firstly ask all nodes connected to it. If the area of this
node is able to cover, it will propagate the request among
its children. Otherwise, it will ask its parent for help. The
procedure continues recursively, until the system is able to
find the proper node with the smallest area. Notice that the
area refers to the smallest convex polygon that is able to
cover all the areas of its children. Therefore, this node has
the property that all data sources of data-sequences following
the rule come from its children. EStream just use this node
to start the collection job. The whole procedure is shown in
Algorithm 1.

E. Case study

In this subsection, we provide a simplified case study,
following stream owners A and B in Figure 9, and see what
happens when they publish their jobs step by step. We select
several physical nodes from Figure 9, providing a detailed
illustration in Figure 11. It shows how data-sequences and
operators are organized in those nodes. Circles and diamonds
stand for streams and operators respectively. Squares in gray
represent several endpoint and computation nodes.

Initially, there is no streams for both A and B. Each
computation node will set its area as an empty set, indicating
that it has not yet connected with any devices. When owner
A and B publish primitive streams with endpoint IoT devices
A#1˜A#3 and B#1, those sensors are registered in primitive
stream objects S1 and S3 respectively. Each IoT devices will
report its parent computation node about its area. Then the
computation node will calculate the smallest polygon to cover
all those areas and use it as its current area. Recursively, the
parent nodes of computation nodes will also update their area
following the same method. That is, for Node 1, its area should
cover both A#2 and A#3, while Node 2 should cover both A#1,
B#1 and Node 1. Until then, no data packages generated by
endpoint devices are transmitted yet, as there are no generated
streams that need the data.

Then A creates a new stream S2 with operator O1. As S1
is its parent stream, the monitor has to find the location of S1
first. In Figure 9 (b), the searching procedure begins at Node
4 and ends at Node A#1˜3. Both of the nearest computation
nodes, Node 1 and Node 2, will register S1 and S2 streams
inside, and link them with O1. Still, the calculation hasn’t
happened yet. After that, A shares S2 to B. According to the
discussion previously, nothing happens in those computation
nodes, but B is now able to access the stream S2. At last, B
builds the stream S4 with operator O2, which intakes both
S2 and S3 as its inputs. Assume that O2 is an operator
with side effects, such as dumping the result to a database.
Therefore, data transmission and computation in each nodes
are triggered.
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O1

S1
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O2

Node 2

Node 1
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Fig. 11: Operators in computation nodes
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F. Decentralized Scheduling

We have already known which nodes to perform the opera-
tors, but how to divide the workload among them still remains
unclear. This requires some practical scheduling algorithms.

As we analyzed in Section IV-A, scheduling with global
master nodes is inefficient in large-scale edge computing sce-
narios. Edge computing systems based on cloud management
platforms, such as KubeEdge [41], will meet the scalability
problem when the scale of computation network grows. There-
fore, EStream choose to implement a decentralized method to
allocate the computation workload in the system.

In stream processing scenarios, it is rather common that data
accumulate in some nodes unexpectedly. There are many rea-
sons: abrupt data bursts, unstable network conditions, garbage
collections in computation nodes, etc. A possible way is to
tell the previous node to slow down the data transmission
rate, and thus pushes the pressure backwards to the data
source. Such technique is named back-pressure, which has
been adopted by Flink [6], Storm [35] and many other famous
frameworks in data-centers. It occurs that the back-pressure
finally reaches the original data sources. For data-center ap-
plications, they are reliable data stores such as Kafka [23].
In edge computing applications, however, the end-point data
sources are always naı̈ve sensors without capability to store
lots of data. Therefore, the scheduling algorithm in EStream
should choose another direction with abundant computation
and storage resources to push the pressure.

Figure 11 illustrates the job deployment procedure among
several nodes. The data-sequences in S1 come from Sensor
A#1˜A#3, and processed by operator O1. A key observation
is that both of Node 1 and 2 have arrows pointing out of the
node from S1. They indicate that if O1 is not able to finish
all the computation in the current node, the rest of the input
data are forwarded to the next node. The next here refers to
the following node on the way to the target nodes of data-
sequences in S2. The scheduler adjusts the workload for each
node by deciding on the ratio of packages that should be
passed to the next node.

Based on the observation, we adopt a rather simple but
effective scheduling method in our system. All the examples
mentioned in this paragraph refers to the job illustrated in
Figure 11. Briefly, the scheduling algorithm aims to adjust
the workload among nodes until packages in the same data-
sequence spend the same amount of time in each node. For
example, O1 converts data packages in S1 into S2. The lifetime
of packages in S1 includes the total transmission time, the
queuing time in computation nodes and the final computation
time. We denote the average lifetime of packages in Stream i
on Node j as Lj

i . The algorithm tries to balance the value of
L1
S1, L2

S1 and L3
S1 by workload redistribution.

There are several efforts to achieve the goal: First, the
algorithm selects to compute data packages with largest trans-
mission latency in the same stream. For example, if Node
2 receives two data packages from Sensor A#1 and A#2 at
the same time, the latter one is more likely to be executed,

because it is a two-hop package. Second, the algorithm prefers
to push the pressure towards data sources. If L2

S1 > L1
S1 and

L2
S1 > L3

S1, the algorithm tends to make Node 1, instead of
Node 3, compute more. In this way, the data source gains
“attraction” to the computation of the workload. Third, the
generated stream reduces the pressure of its parent streams,
and vice versa. For example, in Node 1, assume the basic
lifetime of packages in S1 and S2 are l1S1 and l1S2. Then both of
L1
S1 and L1

S2 are computed as min
{
l1S1, l

1
S2

}
. It promotes the

fusion of computation, and thus improves the temporal locality
of data packages. Notice that data sinks also gains “attraction”
to the workload, because the lifetime of those packages lasts
until they reaches the sink. Both data sources and sinks pull
the computation towards its own side, so the length of path is
reduced, just like a tug-of-war.

In short, the basic idea of the method is to trigger com-
petitions among nodes, until an approximate balance reaches.
It is a decentralized algorithm without any master nodes, and
avoids the back-pressure problem through the lifetime-based
workload pressure adjustment. Notice that it is just one of the
possible scheduling methods. The EStream framework does
not limit the implementation of other kinds of scheduling
algorithms for it.

V. EVALUATION

In order to evaluate the benefits of EStream and demonstrate
its superiority against baseline systems, we conduct compre-
hensive evaluations. Specifically, we first select a representa-
tive application for edge computing paradigm, namely smart
traffic as our test case. Then we implement both the EStream
system and baseline systems using the popular OMNet++
simulator [37]. To make the estimation more accurate, we also
generate some profiling data, including various latency and
energy consumption of jobs on real hardware platforms. Then
we inject these profiling data to the simulator as the configu-
ration parameters. The details of our evaluation methodology
are introduced as follows.

A. Test Case

For evaluation, we take the smart traffic system to serve as
the test case. Smart traffic system is considered as a corner-
stone of a smart city [16] [21]. In a typical smart traffic system,
there are usually IoT devices, edge servers and cloud servers.
In our test case, the IoT devices can be surveillance cameras
that are deployed along some roads to capture the pictures of
vehicles and send them to edge servers for further analysing.
Besides, the vehicles are also viewed as IoT devices, they
receive messages such as the congestion condition from nearby
edge servers. Edge servers are deployed to collect, process
and distribute data. They interact with near by IoT devices
through low-latency LAN and communicate with remote cloud
servers through a high-latency core network. We introduce
three typical jobs in the smart traffic system:

Job x: Vehicle detection. Vehicle detection is a most basic
job for smart traffic system. The edge servers are used to
detect all of the vehicles within live video frames uploaded by
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the connected surveillance cameras. Basing on these detected
vehicle pictures, we can further conduct several higher-level
analysing. For example, we are able to count the amount
of vehicles to predict traffic congestion, or recognize license
plate numbers of the detected vehicles to locate some wanted
vehicles. We refer vehicle detection as job x.

Job a: Licence plate numbers recognition. Recognizing
Licence plate number is the most straightforward way to
identify a vehicle. We set job a to recognize the licence plate
numbers based on captured vehicle pictures. The recognized
plate numbers are then uploaded to the cloud server for further
analysing, such as comparing them with some wanted hit-and-
run vehicles.

Job b: Vehicle attributes recognition. Besides licence
plate, the vehicle attributes, such as color, logo, model and
even subtle inter-class difference [45] are also of great im-
portance to help do identification and retrieval. Note that in
our case, job b is considered as a emergent task, which is
requested less frequently than job a.

B. Experimental setup

1) Network Topology: The topology of the emulation net-
work includes four layers in general, which are several IoT
devices, access points, network routers, and one data-center,
orderly arranged from bottom to top in the hierarchy. By
default, we have a single data-center connected with 10
routers. Each router is connected with 10 access points. Those
access points form a cellular network, serving IoT devices that
are randomly scattered in the space. From the perspective of an
IoT device, the access latency towards access points, routers
and the data-center is set to 5ms, 15ms and 110ms, following
a previous work [29].

2) Software Setup: To better estimate the latency, energy
consumption and even the start up time of each job, we
choose some real-programs for profiling. To simulate job
x, we adopt the yolo-v3 object detection deployed using
darknet framework [31]. Similarly, we choose some off-the-
shelf programs to serve as job a and job b. Specifically,
we use a popular OCR tool, namely Tesseract [15] to recognize
licence plate numbers. For vehicle attributes recognition, we
follow zhao et al’s practice [45] and choose SSD algorithm
[25] to recognize vehicle attributes, which is deployed using
Caffe framework.

3) Profiling Methods: We run the prepared programs on a
real hardware platforms to collect complete the profiling. To
build up the profiling platform, We adopt a desktop PC with
i7-6700K CPU, 32GB RAM and GTX-1080ti GPU to serve
as the edge server. To simulate the cloud, we use a powerful
workstation equipped with Xeon 6148 CPU, 256GB RAM and
4 GTX-2080Ti GPUs. We estimate the energy consumption of
each job through multiplying the processing time by the power
consumption of the machine. Note that, co-locating more than
one jobs in the same edge server may harm the performance,
because these jobs tend to compete for resources. We take this
into consideration and test the latency of concurrent jobs with
various possible combinations.

TABLE II: Latency and energy comparisons.

Flink 0 Flink 1 Flink 2 EStream
Latency x+a (t0) 295 ms 295 ms 295 ms 295 ms
Latency x+a (t1) 341 ms 336 ms 449 ms 305 ms
Latency x+b (t1) 312 ms 307 ms 276 ms 276 ms
Energy (t0) 47 J 47 J 47 J 47 J
Energy (t1) 85 J 67 J 77 J 64 J

C. Benefits of Stream Sharing

The stream sharing mechanism, as introduced in section
III-E enables us to reuse streams with negligible overheads. To
quantify the benefits, we compare EStream system with Flink
like systems by simulating some typical behaviours: at time
point t0, only job x and job a run in the edge system, the
job x+a recognizes the plate numbers of all of the detected
vehicles. Then at time point t1, job b launches to recognize
the vehicle attributes of the detected vehicles, that is to say, we
start a new job x+b. Note that when using Flink to implement
the smart traffic system, there are several ways to deal with
the pop-up Job b:

Flink 0: Compute-twice: Create a new job x+b from
scratch. It does not interrupt the existing job x+a, but
obviously the x part is computed twice in two jobs.

Flink 1: Plan-in-advance: There are two jobs in the
beginning: x and a, and they are linked with message queue
service. When job b comes, it is able to subscribe the result
of job x instead of computing job x twice.

Flink 2: Stop-and-restart: Initially, there is one job x+a.
When the new job b arrives, the system should stop the job
x+a first, and restart a new job x+a&b.

For EStream, we can leverage the stream sharing mecha-
nism, as introduced in section III-E, to reduce both latency
and energy consumption when multiple jobs take as input the
same stream.

As shown in table II, we evaluate both job latency and
energy consumption of processing those jobs. At t0, all models
have the same latency and energy consumption, because only
job x+a exists in the systems. At time step t1, job b
arrives. As we can see, Flink 2 bears the highest latency x+a,
because of the need to stop job x+a and restart a new job
x+a&b. For Flink 0, since it computes job x twice, it poses
unnecessary computational burden to edge servers, which not
only affects latency x+a and x+b, but also increase the energy
consumption. Flink 1 has the most close performance with
EStream. Since it relies on message queue service to share
the data of job x, there is additional overhead.

D. Decentralized Scheduling

In section IV-F, we have introduced the decentralized
scheduling mechanism, which is proposed to solve the scal-
ability problem of distributed edge systems. We compare the
algorithm with a centralized one, which traces the status of the
computation on each nodes periodically, and tries to provide
an optimal scheduling. It suffers from the scale of workloads,
which is an intuitive result and thus not presented in the
evaluation.
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Fig. 12: Decentralized scheduling.

Compared to the basic network topology setup introduced
in Subsection V-B, we improve the number of data-centers
to four. The computation network consists of 50 routers.
The connection among them can be embedded in the plane,
forming a planar graph. Other settings remain the same. On
average, data packages from the IoT should pass one access
points and 2.9 routers before reaching a random data-center.
For the centralized method, we choose one of the data-centers
to schedule the job. Both of the scheduling methods are
evaluated based on the EStream framework.

Initially, each of the data-center runs an x+a job, requiring
data-sequences from all those IoT devices. Around 15s, two
of the data-centers change their job to x+a&b. Around 30s,
we duplicate the number of IoT devices. Around 45s, the jobs
are changed back to x+a, and the number of IoT devices
is restored to the setup value. Figure 12 shows the average
latency of the initial job x+a. According to the evaluation,
decentralized scheduling performs nearly the same as the
centralized one. When the job changes, our method performs
a more timely response. When the workload grows abruptly,
our method is able to reduce the effect of the burst.

E. Scalability in IoT-Edge-IoT scenarios

EStream performs well in IoT-Edge-Cloud, Cloud-Edge-
IoT, IoT-Edge-IoT, and IoT-Edge scenarios. In the IoT-Edge-
Cloud and IoT-Edge scenarios, EStream performs computation
near the data sources, and thus gains more computation
resources and improves the scalability of the system. In the
Cloud-Edge-IoT scenario, it works like a content delivery
network. The same content is delivered at most N times in
a node with N neighbors. These benefits are intuitive and also
work for other edge computing systems, so we only mention
the IoT-Edge-IoT scenario in this subsection.

In IoT-Edge-IoT applications, both data sources and sinks
reside at the edge of the network. We use job x with a
per-sink grouping for comparison, which is the smart traffic
case in Subsection III-D is easy to implement in EStream, but
hard for other platforms. For most of other edge computing
frameworks, data are collected from data sources to the cloud
or a nearby data-center, and the aggregation results are sent
to the sinks afterwards. We call this method as All-Cloud.
We compare it with EStream in terms of job latency and data
traffic that data-center receives. The former metric corresponds
to the performance of the system. The latter one reflects the
scalability of the system, because of the limitation in the
bandwidth and computation capacity of the data-center.
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Fig. 13: IoT-Edge-IoT latency.

According to Figure 13, EStream outperforms the All-Cloud
method in the aspect of latency. The All-Cloud approach has
a static round-trip latency between IoT devices and the cloud,
and furthermore, the queuing latency in the cloud increases
linearly as the number of IoT grows. In contrast, EStream
transmits data from peer to peer, which reduces the overall
latency a lot. Figure 14 shows that EStream merely uses the
computation resource of the remote cloud. Almost all the
transmissions are established from one device towards another,
following the nearest routing path. Most of the packages never
reach the cloud, so the data traffic around the data-center is
reduced to nearly zero.
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Fig. 14: IoT-Edge-IoT data traffic.

VI. CONCLUSION

Due to multiple levels of participants and various scenarios,
application development in edge computing is more compli-
cated than that in traditional cloud computing. In addition, the
new features in these applications further raise more challenges
in programming. We try to address these problems using a
simple programming model called Edge-Stream. It abstracts
data flows as streams to cover different types of scenarios and
hide the low level details from programmers. In addition, the
data sharing and grouping methods are introduced to support
the new features in real deployment. We further discuss
implementation details in a prototype design based on Edge-
Stream model. It covers job deployment, request propagation,
and scheduling, which are critical issues to bring the model
into reality. At last, experimental results demonstrate that the
framework works efficiently.
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