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ABSTRACT

In recent years, deep learning algorithms are increasingly adopted

by a wide range of data-intensive and time-critical Internet of Things

(IoT) applications. As a result, several new approaches, including

model partition/offloading and progressive neural architecture, have

been proposed to address the challenge of deploying the computation-

intensive deep neural network (DNN) models on resource-constrained

edge devices. However, the performance of existing approaches is

highly affected by runtime dynamics. For example, offloading work-

load from edge to cloud suffers from communication delays and the

efficiency of progressive neural architecture supporting early-exit

DNN executions relies on input characteristics. In this paper, we in-

troduce EdgeML, an AutoML framework that provides flexible and

fine-grained DNN model execution control by combining workload

offloading mechanism and dynamic progressive neural architecture.

To achieve desirable latency-accuracy-energy system performance

on edge platforms, EdgeML adopts reinforcement learning to au-

tomatically update model execution policy in response to runtime

dynamics in real-time. We implement EdgeML for several widely

used DNN models on the latest edge devices. Comparing to existing

approaches, our experiments show that EdgeML achieves up to 8×

performance improvement under dynamic environments.

CCS CONCEPTS

• Computer systems organization → Real-time system architec-

ture; • Computing methodologies → Neural networks.
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1 INTRODUCTION

The recent advances of Internet of Things (IoT) technologies have

enabled a wide range of data-intensive and time-critical applications

such as autonomous driving [25], embedded computer vision [1], and

virtual reality [34]. These applications often require sophisticated

processing of large amount of sensor data within stringent time

constraints, which motivates the emerging trend of applying Deep

Neural Network (DNN) algorithms on edge and IoT devices [24].

In practice, state-of-the-art DNN models [39] incur significant

compute overhead, which imposes barrier for deploying them on

resource-limited edge and IoT platforms. Moreover, several afore-

mentioned applications are mission-critical in nature, and hence

must maintain a high level of model inference accuracy. Recently,

a few approaches have been proposed to address these challenges.

Model compression aims at accelerating the execution of a DNN

model locally. For example, filter pruning [23] accelerates the model

*Corresponding author.

execution via reducing the convolution calculation, and quantization

techniques adopted in [10, 36] use low-precision data representation

to speed up the model inference. In progressive neural architecture

[33], branches are inserted across the layers of the original model

such that different input data can exit at different branches during

DNN inference, leading to reduced compute workload. In addition

to these techniques focused on the optimization of local DNN exe-

cution, several approaches are proposed to accelerate the inference

through collaboration between edge and cloud. Specifically, part of

DNN compute workload can be offloaded to the cloud [17] and such

offloading decision can be dynamically adjusted [20, 22] .

However, the above approaches face several major challenges

when being applied in real-world applications. First, their perfor-

mance including timeliness and accuracy is inherently affected by

runtime dynamics. For instance, the fluctuations on communication

bandwidth between edge and cloud may make the workload offload-

ing strategy sub-optimal, incurring additional inference delay. The

changes of data characteristics, e.g., switching from bright scene to

dark scene for an image object detector, will cause dynamic end-to-

end delays in the progressive neural architecture since the inference

path may exit at different branches. Second, existing approaches

usually require careful consideration of model architecture as well

as optimization of a large set of model parameters, e.g., the model

partition point in workload offloading mechanism and compression

level in model compression approach. In order to maintain a de-

sirable trade-off between high-level model accuracy and bounded

inference latency in the presence of runtime dynamics, such opti-

mization decisions must be made in an online manner, which incurs

significant compute overhead.

In this paper, we propose a new automated machine learning (Au-

toML) [9, 38] approach called EdgeML to address these challenges.

AutoML is an emerging paradigm that aims to automate the pipeline

of DNN design, which has shown promise in several problems such

as automated model compression [14] and neural architecture search

[41]. Current AutoML solutions are largely focused on automated

model design and training on heterogeneous embedded platforms.

In this paper, we apply the principle of AutoML to address the

challenge of dynamic adaptation of model inference between the

edge and cloud. Specifically, EdgeML integrates model partition and

progressive neural architecture, which allows to explore the optimal

model execution policy that consists of branch thresholds in execu-

tion control of progressive neural architecture and the model partition

point in compute workload offloading mechanism. However, provid-

ing a fine-grained model execution control, such an approach leads

to a huge design space. Taking DNN model VGG16 as an example,

there can be up to 17 candidate model partition point choices, 3

branches and a threshold value at each branch ranging continuously

between 0 and 1. An exhaustive search of optimal execution policy
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To avoid inefficient optimization caused by the discrete properties

of action space, we consider continuous action space and round down

the floating values of partition point �: and time ): into integers to

generate actions.

4.2.3 Reward Function. For a given action, a reward is calcu-

lated to estimate the performance of the execution policy given by

the action. Accurate performance estimation requires more input

samples that are performed under the current execution policy. How-

ever, in practice, to ensure rapid response to environment change,

the action interval ): is normally small. Therefore, it is reasonable

to calculate the reward based on the tasks executed during the state

interval �: , instead of action interval ): . To simplify the calculation,

in our design, the state interval �: is defined to be the union of the

most @ recent action intervals, i.e. �: = ): ∪):−1 ∪ ...∪):−@+1. With

this design, for any two consecutive states B: , B:+1, the two state

intervals �: , �:+1 will have intersection and hence connected.

The reward ': (B: , 0: ) is calculated based on the average task

accuracy ACC: , average task latency !: and average energy �: ,

measured in state interval �: .

': (B: , 0: ) =




BE:

−W

− 2
c arctan(?=;: )

!: < !DBA , �: < �DBA

!: > !DBA , �: > �DBA

4;B4

(4)

Intuitively, we give positive reward when the performance of the

action (i.e., the current execution policy) satisfies both latency and

energy requirements, and negative reward otherwise. For the first

condition, when latency and energy both meet user requirement, we

aim to optimize the average task accuracy. Due to the fact that it

is difficult to evaluate the actual task accuracy for a real-life input,

we use the index of the exit branch of the input to quantify the

accuracy of the task execution. As shown in our experiments in

Section 4.1.1, the execution of an input that exits from an earlier

branch has a lower accuracy. Formally, ��: indicates the expected

exit branch for a task under the current execution policy, which is

calculated by averaging the indexes of exit branches over interval �:
of the task executions that satisfy the requirements of latency and

energy (i.e., first condition in reward function). Task exit rates from

an earlier branch can be controlled by its threshold, so that the RL

optimizer can make trade-off between accuracy and performance

constraints (i.e. latency and energy). In other words, the reward ��:
will guide the RL optimizer to decrease the threshold value so that

task execution are more likely to exit from a longer branch, under

the premise of satisfying the requirements of latency and energy.

For the second condition where both requirements are not satisfied,

we penalize this incorrect outcome with −W , which we set W = 1 in

order to ensure that the degree of punishment is consistent with the

reward.

For the last condition, when only one user requirement (i.e., la-

tency or energy) is satisfied, we define the reward in this situation as

− 2

c arctan(?=;: ) where ?=;: is defined in Eq. (5) and it represents

the difference between the current latency/energy and the user ex-

pected requirement. We use arctan(·) function to map this difference

to fit the expected varying trend, and then multiply it with 2

c for

normalization. Note that there are no weight coefficients for latency

and energy requirements here, since they share the same order of

magnitude as shown in our experiments. When ?=;: is small, i.e.,

the requirements are nearly satisfied and the penalty is also small.

On the contrary, if ?=;: is large, it is bounded by 1 due to the nature

of arctan(·) function and such a design allows the RL optimizer to

explore Pareto Optimal strategies 1 since one user requirement is

satisfied.

?=;: =

{
!: − !DBA , if !: > !DBA , �: < �DBA
�: − �DBA , if !: < !DBA , �: > �DBA

(5)

4.2.4 RL Agent. Due to the huge action space, we apply a variant

of deep deterministic policy gradient (DDPG) algorithm [26] to

generate action, which is based on the ‘critic-actor’ framework. The

‘actor’ model, combined with a random process (Ornstein-Uhlenbeck

process) to allow action exploration, generates action 0: based on a

given state B: by a policy network ` as follows.

0: ∼ ` (B: ) +$* (h, f2) (6)

Similarly, the ‘critic’ model simulates function & to estimate the

quality of action 0: in form of Bellman function as below.

& (B: , 0: ) = E [' (B: , 0: ) + W& (B:+1, ` (B:+1))] (7)

Action value function & is the expectation over the distribution

of the current reward '(B: , 0: ) and the estimated future reward

by executing the policy ` sequentially over the period episodes.

With the calculated reward '(B: , 0: ) and the observed state B:+1
caused by action 0: , the actor model aims to generate new action

0:+1 = ` (B:+1) such that the new expected reward caused by 0:+1 is

maximized, where the new expected reward & (B: , 0: ) is calculated

by the critical model & according to Eq. (7). With the feedback from

the reward function '(B: , 0: ), both the actor model and the critical

model are trained in a back propagation process from the approach

in [26].

4.3 Model Execution

Upon receipt of each RL action from the cloud, the edge updates the

corresponding execution policy of the branched model according

to the action. During model execution, the side branches will be

executed orderly once the input data is fed into the branched model

on the edge, until execution exits at some branch or partition point is

reached. For exit point at each branch, the softmax and entropy of the

output will be calculated based on the method from [33] to measure

the confidence level of the classifier of this exit point on the input. If

the calculated confidence does not exceed the predefined threshold

value (i.e., the result generated at the branch has high probability to

be correct), the execution will be terminated and the output result

from this branch will be returned as the model output. Otherwise, the

execution resumes on main branch and continues to the next branch.

When a partition point is reached and no output is returned, the edge

device then transmits the intermediate inference results from the

partitioned layer to cloud for computing the remaining layers of

the model. The execution in cloud is similar as on the edge device

because they share the same branched model and execution policy,

while the execution time in cloud is much shorter than that on edge

device.

1Here it means the strategy that satisfies one user requirement and meanwhile optimizes

the other user requirement.
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Cross-platform adaptation. When deploying EdgeML to a new

edge device, training the RL optimizer from scratch requires collect-

ing many training samples from the new edge device, which leads to

poor transit performance of EdgeML during this period. To address

this issue, we transfer the trained RL optimizer from an existing

deployed edge device to the new device. Intuitively, directly transfer-

ring the trained RL optimizer onto the new device for automatically

model execution control may cause serious performance drop. This

is because the same generated execution policy from RL optimizer

might yield totally different performance on different edge devices

due to the diversity in computing power and energy consumption

profiles.

To achieve more efficient knowledge transfer, we collect the MDP

traces of state, action, reward, subsequent new state during the

training process of the RL optimizer from the existing deployed

edge device, as described below.

[B: , 0: , '(B: , 0: ), B:+1] (8)

We then mix these (additional) MDP traces with the collected MDP

traces from the new edge device together as training samples to train

the RL optimizer for the new edge device. These additional MDP

traces contain the knowledge of model execution control learned

from the existing deployed edge device, which can be adopted on

the new device and hence speed up the training process of EdgeML.

5 EVALUATION

We demonstrate the effectiveness of EdgeML by comparing with

several baselines and ablated variants of EdgeML. Moreover, we

demonstrate the adaptivity of EdgeML to environment changes,

including bandwidth and input characteristics. Finally, we analyze

the system overhead of EdgeML. The source code of EdgeML is

available at: https://github.com/Kyrie-Zhao/EdgeML.git.

5.1 Experimental Setup

Our edge platforms include NVIDIA Jetson TX2 and NVIDIA

Jetson Nano [31]. A cluster configured with a NVIDIA GeForce

GTX1070 GPU and 8-core 2.80-GHz Intel i7-7700HQ CPU served

as the cloud. To mimic the dynamic edge-cloud communication

channel conditions, we use the network tool wondershaper [3] to

adjust the network bandwidth between the cloud and the edge in

real-time.

We have developed EdgeML on top of TensorFlow. For RL opti-

mizer of EdgeML, we adopt a three-layer neural network architecture

to construct both the actor network and the critic network. For each

RL action, the generated execution policy is executed on the edge

for one epoch, after which a new execution policy is required. The

number of images processed in one epoch is also referred to as the

interval. The RL state is computed at the end of each epoch based

on the measured performance during the most recent 3 epochs, i.e.,

one state interval contains 3 epochs. To evaluate the generality of

EdgeML, we choose two representative DNN models (i.e., VGG16

and ResNet50) as original neural network, and select two datasets

that are widely used for mobile vision (i.e., CIFAR-10 [19] and

CIFAR-100 [19]).

Evaluation Metrics. We use four metrics to evaluate the per-

formance of EdgeML: accuracy, latency, GPU frequency and Sat-

isfaction Rate (SR). Accuracy is the top-1 accuracy of the model

execution and latency is measured as the end-to-end delay in process-

ing an input (e.g., an image). We use GPU frequency to quantify the

power of edge device, which is reasonable because there usually ex-

ists approximately linear correlations between power and frequency

[7, 35]. We use SR to represent the percentage of executions that

satisfy the latency and energy constraints imposed by users. Note

that for all the following experiments, the user bounds on latency

and GPU frequency are set as 0.1s and 1.2 GHz, respectively.

Baselines. In order to validate the effectiveness of the EdgeML,

we compare the performance of EdgeML with three types of base-

lines: 1) Ablated EdgeML. We consider three ablated variants

of EdgeML, denoted as EdgeML-T1, EdgeML-TL and EdgeML-

NonBranch respectively. Edge-NonBranch refers to EdgeML with-

out an early-exit mechanism, which means that no branch is added

to the original model. In EdgeML-T1, the threshold values at all

side branches are rounded down to be the same as the first branch.

Similarly, for the ablated variant EdgeML-TL, the threshold values

at all the side branches are rounded up to be the same as the last

side branch of EdgeML. EdgeML-T1 and EdgeML-TL represent a

typical static early-exit approach where the decision of exiting differ-

ent layers is controlled by a single threshold [20]. 2) Neurosurgeon.

To reflect the advantage of dynamically adjusting execution policy

in EdgeML, we compare EdgeML with the approach that based

on static workload offloading mechanism (i.e., Neurosurgeon [17]),

which is one of the state-of-the-art DNN offloading frameworks.

Referring to the design of Neurosurgeon, we iterate all the partition

points at run-time and choose the best offloading policy that achieves

a desirable satisfaction rate and overall accuracy for execution. 3)

MOEA. We design a baseline based on multi-objective evolutionary

algorithm (MOEA) to evaluate the effectiveness of RL optimizer

in EdgeML. MOEA baseline adopts the Non-dominated Sorting

Genetic Algorithm III (NSGA-III) [5] to replace the RL optimizer

in EdgeML. NSGA-III has been shown effective in finding efficient

solutions for a wide range of complex nonlinear optimization prob-

lems and has been successfully applied to real-world engineering

problems [30]. To apply NSGA-III in our problem, we transform the

energy and latency constraints into objective function, i.e., minimiz-

ing latency and on-device power consumption while maximizing the

accuracy.

5.2 Overall Performance Analysis

5.2.1 Model and Platform Applicability. In this section, we

demonstrate the effectiveness of EdgeML for different DNN models

and applications scenarios. We choose three applications, each of

which (i.e., VGG16-CIFAR19-TX2) consists of model type, dataset

and edge platform. We compare the overall performance of EdgeML

with baselines introduced in Section 5.1. Each baseline is evaluated

for 5000 epochs, the mean and variance of the experiment results

are presented in Fig. 7.

We observe that compared with baselines Neurosurgeon and

MOEA, EdgeML achieves a satisfaction rate 1.43×, 8× better on

VGG16-CIFAR10-TX2, 4×, 2.62× on ResNet50-CIFAR100-TX2
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5.4 Overhead Analysis

Under all settings of DNNs and datasets, the RL optimizer executes

in average 20 ms/epoch. The execution time includes reading data

from memory buffer in RL, computation of RL inference, storing

MDP trace and returning new action policies found. When the system

performance converges (e.g. at around 450 epoch in Fig. 12), the

interval at that RL optimizer is invoked will increase (i.e., maximum

5 steps/epoch). To further minimize the overhead, we employ multi-

thread programming to parallelize part of the RL calculation with

the DNN inference on server, which reduces the execution time of

RL to 7 ms/epoch. Overall, the optimzer’s execution time is within

2 percent of the system’s end-to-end latency. On the other hand,

EdgeML takes more hard disk space than original DNN models due

to the existence of branches. For example, EdgeML takes 1.2× and

1.365× the storage than those of original ResNet50 and VGG16,

respectively.

6 RELATED WORK

DNN acceleration has attracted significant attention in recent years

due to the growing interests of running deep learning tasks on

resource-constrained platforms. Recent chips like Nervana Neural

Network Processor (NNP) [18] and Tensor Processing Units (TPU)

[16] can accelerate both training and inference process of DNN.

At algorithm level, Winograd Algorithm [21, 37] and FFT based

methods [6, 29] are proposed to accelerate convolution operations

in DNN inference. These solutions are complementary to our work,

which can be integrated in EdgeML design.

Extensive efforts are made on making deep learning tasks afford-

able on IoT and edge platforms. One of the most prevalent methods

is to reduce the resource demand of DNN model via compression,

which usually leads to a modest loss in accuracy. Knowledge Dis-

tillation [4, 15] trains a compact model with information from the

original complex one, effectively reducing the compute overhead.

However, the need of pre-training makes it less applicable to dy-

namic environments. A number of pruning methods [12, 28] over-

come the issue of pre-training. Although they can reduce the model

size through selectively removing neurons, they do not usually lead

to lower compute overhead. Filter pruning [23] can effectively re-

duce the computation cost by pruning the whole filter set based on

the importance. Although above techniques reduce the overhead of

DNN execution, they are not designed to optimize the performance

of DNN in the presence of dynamics of input data and resource

budget. Extending the static model compression approach, several

efforts [7, 8, 27] proposed dynamic neural networks that allow se-

lective execution to improve DNN compute efficiency. D2NN [27]

optimizes dynamic resource-accuracy trade-offs, while its compli-

cated network structure incurs significant memory overhead, making

it ill-suited for resource-constrained platforms. BranchyNet [33]

proposed a dynamic neural network architecture with added blocks

and branches. EdgeML leverages this approach to achieve dynamic

selective execution of DNN via proper early-exit control. In [11], dy-

namic workload offloading polices are proposed for executing DNN

models either on cloud or locally, which do not account for dynamic

communication delay. Neurosurgeon [17] predicts the latency and

power consumption of each layer, and automatically partitions DNN

at the layer granularity for workload offloading. EdgeML adopts a

similar idea as Neurosurgeon to dynamically partition DNN model

based on its hierarchical architecture. Different from the heuristic

partition approach in Neurosurgeon, EdgeML searches for the opti-

mal joint partition and early-exit control decisions, using a principled

reinforcement learning algorithm, which addresses unpredictable

communication delay and dynamics in data input.

AutoML is an emerging paradigm that aims to automate the

pipeline of DNN design. He et al. [14] applies AutoML approach to

achieve fully automated model compression, by searching and pre-

dicting the layer redundancy. Zoph and Le [41] introduce AutoML

approach for neural architecture search, maximizing the average

accuracy of the generated neural architectures. Similar to several ex-

isting AutoML solutions, EdgeML also adopts reinforcement learn-

ing for automated decision making. However, different from current

works on AutoML that focus on automated model design, EdgeML

applies the principle of AutoML to dynamically optimize the model

execution policy and in real-time.

Similar to our work, Edgent [22] integrates the workload of-

floading and progressive neural architecture. However, it is based

on simplistic system models, e.g., only a single branch is allowed,

which cannot fully exploit the benefit of progressive neural archi-

tecture. Most recently, SPINN [20] also adopted this combined ap-

proach and considered multiple early-exit branches to allow flexible

model inference. Compared to SPINN, EdgeML presents two major

novel designs. First, SPINN uses a single threshold for all inserted

branches in the progressive neural architecture, while each branch is

assigned with an independent threshold in EdgeML, which leads to

substantial performance improvement as shown in our experiments

(Fig. 9). Second, SPINN employs a multi-objective optimization

approach for generating execution policy, which may not be effi-

cient for coping with huge solution space incurred by the continuous

threshold values and model partition points. In contrast, EdgeML

adopts reinforcement learning-based AutoML framework to dynam-

ically optimize the execution policy, which not only enables more

flexible adaptation of model inference between the edge and cloud in

dynamic environments, but also accommodates different platforms

via knowledge transfer. We validated these advantages of EdgeML

in our experiments, in comparison with a baseline solution MOEA

that is designed based on a multi-objective optimization approach

similar to SPINN.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose EdgeML, an AutoML framework that

accelerates deep learning tasks on edge devices so as to fulfil user

requirements on task latency, accuracy and edge device energy con-

sumption. EdgeML combines the workload offloading mechanism

and the progressive neural architecture to support flexible DNN

model execution policies on the edge. The RL-based framework can

allow EdgeML to automatically adapt to the environmental varia-

tions such as communication channel conditions between the cloud

and edge devices, as well as dynamic input characteristics.

EdgeML represents the first framework that supports online Au-

toML framework for edge computing applications. It allows adap-

tive environment-aware network structures that can run with limited

resources on edge and IoT devices. In our experiments, we eval-

uate two widely studied DNN models VGG-16 and ResNet-50 in

143



IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Zhihe Zhao†,§, Kai Wang†, Neiwen Ling† and Guoliang Xing†,∗

EdgeML. However, EdgeML can also be integrated with many other

DNN models.

As illustrated in Section 5.4, the early-exit mechanism can bring

high compute overhead, especially when there are more exit paths

in the DNN models. A possible improvement is to parallelize the

computation of branch execution, allowing the model inference to

continue at the cross of side branch and main branch. However, this

solution may incur more memory and storage space.

In the design of RL optimizer, we make the assumption that the

DDPG algorithm will learn the inner transition knowledge under

the dynamic environment (e.g., network bandwidth variations). Al-

though DDPG is known to have strong mathematical guarantees

regarding fast convergence to the optimal policy, its stability in a

dynamic environment has not been well understood, which will be

investigated in our future work.
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