
DeepSQA: Understanding Sensor Data viaQuestion Answering
Tianwei Xing

University of California, Los Angeles
twxing@ucla.edu

Luis Garcia
University of Southern California ISI

lgarcia@isi.edu

Federico Cerutti
University of Brescia

federico.cerutti@unibs.it

Lance Kaplan
CCDC Army Research Lab, Adelphi

lance.m.kaplan.civ@mail.mil

Alun Preece
Cardiff University

PreeceAD@cardiff.ac.uk

Mani Srivastava
University of California, Los Angeles

mbs@ucla.edu

ABSTRACT

The ubiquity of mobile, wearable, and IoT devices enhances humans
with a network of environmental sensors. These devices capture
raw, time-series measurements of scalar physical phenomena. To
transform the data into human-digestible representations, deep
learning methods have enabled high-level interpretations of the
opaque raw sensory data. However, interfacing models with hu-
mans requires flexibility to support the vast database of human in-
quiries about sensor data. Deep learning models are usually trained
to perform fixed tasks, limiting the inference outputs to a predefined
set of high-level labels.

To enable flexible inference, we introduce DeepSQA, a gener-
alized Sensory Question Answering (SQA) framework that aims
to enable natural language questions about raw sensory data in
distributed and heterogeneous IoT networks. Given a sensory data
context and a natural language question about the data, the task
is to provide an accurate natural language answer. In addition to
the DeepSQA, we create SQA-Gen, a software framework for gen-
erating SQA datasets using labeled source sensory data, and also
generate OppQA with SQA-Gen for benchmarking different SQA
models. We evaluate DeepSQA across several state-of-the-art QA
models and lay the foundation and challenges for future SQA re-
search. We further provide open-source implementations of the
framework, the dataset generation tool, and access to the generated
dataset, to help facilitate research on the SQA problem.

CCS CONCEPTS

•Computingmethodologies→Machine learning;Neural net-
works;Natural language processing; • Computer systems or-

ganization → Sensor networks; • Human-centered comput-

ing → Human computer interaction (HCI).

KEYWORDS

Question answering, Neural networks, Sensor data processing
ACM Reference Format:

Tianwei Xing, Luis Garcia, Federico Cerutti, Lance Kaplan, Alun Preece,
and Mani Srivastava. 2021. DeepSQA: Understanding Sensor Data via Ques-
tion Answering. In International Conference on Internet-of-Things Design and

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8354-7/21/05.
https://doi.org/10.1145/3450268.3453529

Implementation (IoTDI ’21), May 18–21, 2021, Charlottesvle, VA, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3450268.3453529

1 INTRODUCTION

Sensors in various embedded, wearable, and mobile IoT devices
produce enormous amounts of data, which algorithms help trans-
form into actionable insights and predictions that guide decisions
and interventions at various scales. While recent years have seen
the emergence of powerful deep-learning-based neural network
models, capable of making rich and complex inferences from large
amounts of sensory data, current data-to-decision pipelines are
highly constrained as they employ specialized models for specific
tasks such as detecting a set of events and activities.

Imagine instead a future where a human decision-maker is not
limited to a fixed set of inferences computed from sensory data, and
could instead ask flexible natural language questions about events
and activities present in the data and get answers. For example,
instead of a processing pipeline extracting fixed information about
various activities of daily living from a user’s wearable and ambient
sensors, imagine the user being able to ask “How long did I exercise
between lunch and dinner yesterday?” and “How many times did I
drink water yesterday?” Or, imagine that instead of being presented
with a fixed set of traffic events and statistics derived from time-
series data from traffic sensors, a city manager could ask questions
such as “How long did the congestion on Highway 99 last?” and
“Was there an accident during the hour preceding the congestion?”

Our research is inspired by a vision of providing users with the
ability to extract a variety of inferences from sensory data, by asking
flexible natural language questions instead of being limited to the
rigid outputs of a fixed set of classification and regression models.
To achieve such a capability, one needs a framework that can formu-
late answers to novel and arbitrary questions about an underlying
sensor dataset without requiring a new model to be trained for each
question, and also be able to incorporate new knowledge efficiently.
Recent advances in deep-learning-based natural language process-
ing and its use for tasks such as asking questions about images[3],
texts[28], and databases[11] suggest that restricted forms of such
a capability are certainly possible for spatiotemporal sensor data
as well. This paper presents the results of our exploration of this
problem.

In this work, we propose the DeepSQA, a generalized frame-
work to address the Sensor Question Answering (SQA) problem of
answering natural language questions about raw sensory data in
distributed and heterogeneous IoT networks. Figure 1 illustrates
some exemplar questions that DeepSQA can solve. Suppose a user
interfaces with a set of IoT devices, e.g., a smartphone and a smart

106

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3450268.3453529
https://doi.org/10.1145/3450268.3453529
https://creativecommons.org/licenses/by/4.0/

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Tianwei Xing, Luis Garcia, Federico Cerutti, Lance Kaplan, Alun Preece, and Mani Srivastava

Figure 1: Examples of open-ended natural language ques-

tions supported by our proposed Sensor Question Answer-

ing model.

band to keep track of their daily activities. With multimodal data
collected by wearable devices, they may want to query their behav-
iors from different perspectives. For example, the user could ask
"How many times did I send an MSM while driving?" or "How long
did I exercise between lunch and dinner?" Based on the collected
sensory data, the SQA system should answer each of these ques-
tions accordingly with the correct natural language answer, e.g.,
“three times” or “1.5 hours”.

In addition to DeepSQA, we also introduce SQA-Gen, a software
framework for generating SQA datasets from underlying labeled
sensory data. To evaluate DeepSQA, OppQA dataset is created with
SQA-Gen for complex human activity question answering. This
dataset focuses on spatial-temporal relationships across different
sensors, and it contains over 1K sensory contexts and 91K ques-
tions. A detailed analysis is performed on this dataset with various
modern baseline models, providing insights into the SQA task. We
provide open-source implementations of the DeepSQA framework,
SQA-Gen data generation tool, and access to the OppQA dataset1.
We believe this will benefit the community of sensory question
answering research.
Contributions. Our contributions are enumerated as follows.

• Firstly, we introduce the DeepSQA framework, the general-
ized QA framework to address the SQA problem by enabling
natural language questions about raw sensory data in dis-
tributed and heterogeneous IoT networks.

• Secondly, we propose SQA-Gen, a software framework to
generate SQA data using labeled source sensory datasets.
Based on SQA-Gen, we create the first SQA dataset on com-
plex human activity question answering, to benchmark SQA
models’ performance on natural language QA about spatial
and temporal properties of raw sensory data streams.

11The data and codes of DeepSQA are available at https://github.com/NESL/DeepSQA.

• Thirdly, we evaluateDeepSQA across several state-of-the-art
QA models on OppQA, and enumerate the challenges at the
frontier of SQA.

• Lastly, We provide an open-source implementation of Deep-
SQA, SQA-Gen, as well as the access to the OppQA dataset.

2 RELATEDWORK

In this section, we review the related works on sensory data pro-
cessing and question answering in different domains.
Machine Learning for Sensory Data. Sensory data processing
is not only a critical problem in the signal processing field, but
also a hot topic for machine learning applications. Vibrant research
has been performed in the field like visual and acoustic domains.
However, in this research, we are interested in sensory data that
humans cannot easily understand, i.e., sensory data from devices
like inertial sensors that are nothing more than a series of scalar
physical phenomena. Due to the lack of senses or a standard vocab-
ulary, humans would have a hard time associating these time-series
values with the high-level symbolic concepts.

With the advancement of machine learning techniques and com-
pute power, it is possible to make inferences on raw sensory data
using a data-driven approach. [23] presents a survey on using wear-
able sensory data to perform Human Activity Recognition(HAR).
Recent research [10, 30, 33] shows that deep learning techniques can
better infer human activities. [34] uses the WiFi signal to achieve
device-free activity recognition. Besides, time-series sensory data
like EEG [4, 35] or GPS [6, 39], are used to make high-level infer-
ences about different activities and events.

However, all the existing works focus on using sensory data to
perform fixed predefined tasks, e.g., classifying subject behavior or
predicting user sentiment. If the tasks are changed, the data need
to be re-labeled, and the models have to be retrained. Despite the
inefficiency of data labeling and the cost of model training, there’s
still no framework that can provide solutions for arbitrary tasks
within a specific range.
Question Answering. On the other hand, research in the visual
and natural language processing domains propose a framework that
allows task-aware inferencing, in the form of question-answering
(QA). In QA, a model is trained to take both a question and its
context as input, and answer the given question based on the con-
text data. This QA task requires models to be capable of not only
processing raw context data, but understanding natural language
questions as well. The questions asked to the model determine the
tasks that the model performs. Different tasks, based on either the
same or different context data, can be handled by a single QAmodel.
There has been a body of work on question answering applications
in different domains, which can be broadly categorized into two
groups based on context data.

The first group of QA tasks deals with static data, such as texts,
images, charts, and structured data like tables and knowledge bases.
As the main focus of this paper is on the question answering with
multimodal data, we do not discuss the related work of natural
language QA [28] here.

In the Visual Question Answering(VQA) domain, large datasets
[3, 14, 18] have be proposed to give fair benchmarks. [18] creates a
large VQA reasoning dataset using generated images and questions,

107

DeepSQA: Understanding Sensor Data viaQuestion Answering IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

which helps reduce data biases and test model generalization ability.
In [14], questions are synthesized on real-images to extend the do-
mains further. Different methods are proposed to handle the VQA
problem. A major trend is to fuse the image and question features
in different ways, such as combining CNN features of images and
LSTM features of questions together[3]. Models based on attention
mechanism [22, 37] use concatenated feature to first calculate atten-
tion weights of the image, and then predict the answer based on the
attended area. FiLM[27] proposes a model that interleaves standard
CNN layers with linear layers, tilting the layers’ activations to re-
flect the specifics of given questions. More recent work shows that
recurrent approaches like [13] with multiple-step reasoning can
achieve good performance on datasets where complex reasoning
is required. With additional supervision, neural-symbolic methods
show better performance on the VQA task. [12, 19] use modular
approaches to synthesize models that have the same structure as
the questions. [38] uses deep learning model to parse both the im-
age scenes and questions, and then answers different queries in the
semantic space. Instead of using latent feature representations only,
a body of work[2] solves VQA problems using additional object-
level features and achieves excellent performance. However, this
method could not be adapted to the SQA problem, since obtaining
the semantic feature is hard for the opaque sensory data.

There are also emerging domains that ask questions on the con-
text of other modalities, like graphs and tables. [20, 21] propose
the task of question-answering on graphs and diagrams, where
the answer categories are context-dependent, and the answers to
questions are sensitive to small variations in the diagrams. [11]
uses a BERT[9]-like structure to answer questions based on tabular
data.

In summary, all of the work discussed above focus on answering
questions with static data, where complex temporal reasoning is
not required to get the correct answer.

The second group of QA tasks relies on time series data. [16,
17, 24, 31] solve the problem of video QA with video clips as con-
text data. [1] introduces the task of audio question answering, and
uses vision-based models to process the spectrogram features ex-
tracted from audio contexts. Although spatio-temporal reasoning
is performed in these models, they can only handle context data
collected from a single source. Question answering with distributed
sensory data from multiple sources with heterogeneous modali-
ties requires the ability to perform sensory fusion and inter-sensor
spatial reasoning. Also, it is unclear whether these approaches dis-
cussed above are still effective on sensory data that are opaque to
humans, such as the IMU data that humans cannot understand.
Semantic Parsing. An alternative approach to handle flexible nat-
ural language queries is semantic parsing[5]. Semantic parsing is
the process of mapping a natural-language sentence into a logical
form, which is a machine-understandable, formal representation of
its meaning. After this process, the questions in logic form can be
used to query structured or semi-structured knowledge bases. In
our SQA problem, to enable a semantic-parsing-based system, effort
must be first taken to train a model that processes and maps raw
sensory data into a logical semantic space interfacing with logic
queries. However, it is impossible to define such an informative se-
mantic space for opaque and unstructured sensory data, especially
when tasks are not provided yet. Also, preparing the annotated data

for training the sensory model is a huge burden. Therefore, in this
paper, we choose to use an end-to-end approach, which implicitly
parses the natural-language questions using neural networks, to
tackle the SQA problem. Related work in the semantic parsing field
is not discussed here since it is beyond our scope.

3 FORMALIZING SQA PROBLEM AND

DESIGN OF DEEPSQA

In this section, we formally define the problem of Sensory Question
Answering (SQA), and describe the design requirement of SQA
systems. Finally, we propose the generalized DeepSQA framework.

3.1 Sensory Question Answering (SQA)

Unlike visual, acoustic, or textual data, sensory data collected from
sensors, e.g., IMUs and barometers, naturally cannot be understood
by humans. All humans are "sensory impaired" to the sensory data
due to the non-capability of proper sensory abstraction and the
deficiency of a standard vocabulary describing different phenom-
ena and their characteristics. Sensing using state-of-the-art deep
learning models proves to be an effective way to comprehend the
opaque sensory data. However, outputs of deep learning models
are restricted to a pre-defined set of labels, limiting the inferencing
flexibility significantly. Also, in order to make various inferences,
users need to train different models, which requires large amounts
of labeled data and compute power. Based on these limitations, it
is essential to have an intelligent system to help humans under-
stand sensory data in the form of question answering. We envision
a system that gathers all sensory data from distributed hetero-
geneous sources. When the user asks arbitrary natural language
questions, the system processes the received data, reasons about
the spatial-temporal relationships between events, and provides
correct answers in the form of natural language to humans.

Here we formally define the Sensory Question Answering (SQA)
problem as follows. Consider a sensor network where data 𝑑𝑖 of dif-
ferent modalities are continuously collected by a set of 𝑛 distributed
sensors. At some time point 𝑡 , the user asks a question 𝑞 in natural
language format to the system, which is expected to output the
correct answer 𝑎 based on the context data 𝐷 . 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛},
where 𝑑𝑖 = {𝑑𝑡−𝑘+1

𝑖
, ..., 𝑑𝑡−1

𝑖
, 𝑑𝑡

𝑖
} is a sequence of data collected by

the 𝑖-th sensor. The number 𝑘 represents the maximum length of
history considered when answering the question, and it is usually
determined based on different applications and system memory
limitation. So this SQA system learns to model the conditional
probability of 𝑝 (𝑎 |𝑞, 𝐷).

Based on the formulation above, the SQA system needs to satisfy
a set of requirements. Firstly, it should have the ability to process
and fuse raw, multimodal sensory data collected directly from het-
erogeneous sensors. Secondly, the SQA system should be capable of
analyzing natural language questions to understand what the vari-
ous tasks are during the inference time. Thirdly, complex temporal
and spatial dependencies between different sensory modalities, and
more importantly, the correlation between questions and sensory
contexts, need to be explored and captured by the SQA system so
as to answer the question correctly.

108

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Tianwei Xing, Luis Garcia, Federico Cerutti, Lance Kaplan, Alun Preece, and Mani Srivastava

3.2 SQA Architecture Design

As shown in Figure 2, we propose a generalized framework called
DeepSQA. Here, we adopt the idea of question answering in other
domains like VQA to our SQA problem. Basically, questions and
images are first processed by two different paths to get compact
representations, and then an SQA module is applied to analyze
these representations and predict answers.

Figure 2: The Generalized DeepSQA Framework

Sensory and Question Representations The question 𝑞 with𝑀
words in natural language form is first embedded into a sequence of
𝑀 embedding vectors using an embedding matrix, which is either
pre-trained on a large text corpus, or learned together with other
parameters during the training time. The embedding sequence is
then processed by a recurrent-based structure, such as a multi-
layer LSTM or bidirectional-LSTM network, to get the question
representation.

In order to calculate the sensory representation, sensory pro-
cessing modules are required to extract informative features from
multimodal raw sensory data.

In the visual domain, a variety of pre-trained models are off-the-
shelf. Thesemodels are trained on population-scale data of immense
size, like the ImageNe[8] and Microsoft COCO[25] datasets. They
are capable of processing and extracting informative visual features
that can be used to perform a bunch of different downstream tasks,
e.g., image classification, object detection, semantic segmentation,
etc. As a result, in the task of visual Q & A, these pre-trained models
can be used to obtain visual representations at both image-level
and object-level directly.

However, for sensory question answering, such a general-purpose
model pre-trained on population-scale data is not available, given
the absence of a enough large-scale sensory dataset in both the
sensing and machine learning communities. Because of the hetero-
geneity, data from different sensors have different modalities and
sampling rates, and data collected in different locations, on different
users, might vary significantly. As well-studied in prior work [7], a
machine learning model trained on one sensory dataset would not
perform well with other sensory data. This makes it impossible for
us to use pre-trained models to get sensory representations.

Consequently, inDeepSQA, we use data-specific sensory process-
ing modules instead. The sensory processing modules are designed
based on the size and modality of raw sensor data. A popular struc-
ture is the Convolutional LSTM network (ConvLSTM), which can

be used for extracting relevant sensory features and reasoning
about their long-term temporal dependencies. An effective sensory
processing module is crucial in the DeepSQA framework, as the
downstream question answering task requires accurate context
information to make correct predictions.

We also investigate using an auto-encoder-based approach to
extract sensory features. The auto-encoders can be trained in a self-
supervised manner with no annotation required. The intermediate
bottleneck layer, which squeezes the original high-dimensional
time-series sensory data into low-dimensional vectors, can be used
as the sensory representations. However, because of the lack of
training guidance, the sensory representations generated by the
auto-encoders are not informative enough and can lead to huge
performance sacrifice. Therefore, in this paper, we omit this method,
and focus on the ConvLSTM based sensory processing module.
Reasoning with SQA Module In the DeepSQA, an SQA module
is designed to find the inter-correlation between sensory and ques-
tion data, perform reasoning, and predict final answers to complex
compositional questions. Instead of explicitly decomposing the rea-
soning into multiple semantic sub-tasks as humans do, we adopt
a neural-network-based approach to perform complex reasoning
implicitly. This choice is motivated by QA research in other do-
mains, which showed that neural network models perform better
when they use deep, extracted features rather than using human-
engineered features. Different techniques can be used in this SQA
module, such as the simple convolutional RNN with multimodal
data fusion, bi-linear pooling, and the attention mechanism.We will
detail different models based on DeepSQA framework in Section 5.

Although there are some other techniques [2] that show superior
performance than the purely neural approach in the VQA domain,
they either require object-level or semantic features as input, or
need additional supervision to decompose questions into semantic
sub-tasks. These methods are not suitable in our case of SQA, simply
because sensory data are not human-understandable, and the usage
of semantic knowledge is not an option.

All the different modules in DeepSQA are stacked and connected
together, and the entire system can be trained in an end-to-end
fashion.

To train and evaluate different SQA systems along with a set of
baselines, a large and diverse SQA dataset is required. However,
because of the opacity of sensory data, humans cannot provide
answers to question based on sensory contexts directly, and hence
it is impossible to create an SQA dataset using the crowd-sourcing
method as the VQA does. In this work, we propose a method SQA-
Gen, which can generate SQA data based on a labeled source sen-
sory dataset. Using this tool, we generate the OppQA dataset, that
questions human activities and their temporal relationships. In the
next section, we detail our tool for transforming a sensory dataset
into an SQA dataset.

4 SQA-GEN: SQA DATASET GENERATION

TOOL

In this work, we introduce a tool SQA-Gen for creating SQA data
from a source sensory dataset. Using SQA-Gen, we generate the
OppQA, a human activity sensory question answering dataset, based
on the OPPORTUNITY [29] data. In this section, we first describe

109

DeepSQA: Understanding Sensor Data viaQuestion Answering IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

the data generation method we use in SQA-Gen, and then show
the statistics about our generated OppQA dataset. We also need to
mention that this generalized tool SQA-Gen can also be used to
create new SQA datasets with other labeled source sensor data. We
make the OppQA dataset and SQA data generation tool SQA-Gen
available online to facilitate future research in the SQA field.

The context of the SQA dataset needs to have the characteristics
of regular sensory data, showing the necessity of being multimodal,
and involving multiple users with multiple devices. Besides, the
sensory context needs to be real time-series data collected by sen-
sors. Synthesized context data are unrealistic [1, 18], and the SQA
models trained on that would not have satisfactory performance
when deployed in real scenarios. Because of sensory data’s opacity
to humans, it is difficult to ask a human generator to create ques-
tions and answers based on sensory context manually. Therefore, in
this work, we are using an automatic approach to generate sensory
questions and answers.

Although the automatic generation may not provide many lin-
guistic variations on natural language questions and answers, it
has several other benefits. Firstly, it always provides objective and
correct answers to even complex and compositional questions. In
comparison, humans sometimes fail to give right answers [18], espe-
cially to complicated questions. Secondly, automatic generation is a
scalable approach that can be applied to different source datasets at
a minimal cost. In Section 6, we use SQA-Gen to generate multiple
variants of OppQA with different parameter configurations, and
also apply SQA-Gen to a new sensory dataset, ExtraSensory [32],
to obtain new SQA data in a different domain. The scalability of
SQA-Gen helps evaluate and train SQA models efficiently. It allows
us to investigate SQA models’ performance under different settings
and also provides abundant amounts of data for model training.
Thirdly, it is evident that the automatic QA generation shows higher
efficiency with lower costs than human creation.

4.1 Source Data Selection

In this work, we choose the domain of human activity analysis to
evaluate the SQA systems, and select theOPPORTUNITYDataset[29]
as our source sensory dataset. The OPPORTUNITY is a dataset used
for benchmarking human activity recognition (HAR) tasks. The
data are collected with wearable, object, and ambient sensors. Here
we are only using the seven body-worn inertial measurement units
(IMU) sensors to make inference on user activities. These sensors
are located at different parts of the body: Left lower arm (LLA), Left
upper arm (LUA), Right lower arm (RLA), Right Upper arm (RUA),
Back of the torso(BACK), and Left/Right shoes(L-SHOE/R-SHOE).
These inertial measurement units provide readings of: 3D accel-
eration, 3D rate of turn, 3D magnetic field, and orientation of the
sensor with respect to a world coordinate system in quaternions.
The IMU data are collected at a fixed sampling rate of 30Hz.

OPPORTUNITY also provides a rich set of annotations, including
three different hierarchies: high-level activities, modes of locomo-
tion, and low-level activities. Here we are using the two hierarchy of
labels: locomotion activities(sit, stand, walk, lie, other) and low-level
activities, including 17 different micro activities such as opening
and closing doors, shelves, drawers, drinking tea, etc. This enables
us to ask questions that reason about the interactions between

different levels of activities, for example, "Did the user drink tea
while he is standing?". OPPORTUNITY collects data on four distinct
subjects. For each subject, six separate runs were recorded. The
total length of the data is about 8 hours.

4.2 SQA Data Generation

With the labeled source sensory data, we are able to generate an
SQA dataset. Inside SQA-Gen, the sensory context, the question,
and the answer are all accompanied with a semantic representation
to enable automatic machine generation. The entire data generation
pipeline is illustrated in Figure 3, which we describe in detail below.

Figure 3: Data generation Pipeline

Sensory Context Generation. The untrimmed source OPPOR-
TUNITY data are first split into data sequences with appropriate
length, which are then used as the sensory scene (context) for the
SQA task. The context length is an adjustable parameter of SQA-
Gen, which determines the maximum length of history considered
when answering the question in real-time. In OppQA, we choose
the context length to be one minute, which means that the past
1800 data samples are used to answer the question. The data split-
ting is performed using a sliding window approach on the original
time-series data. The length of the sliding window is one minute
(1800 timesteps), and we use a stride of 20 seconds (600 timesteps)
to avoid having two consecutive sensory contexts with too much
information in common.
Scene Representation. For each sensory scene, we have its as-
sociate label sequence obtained from OPPORTUNITY’s two hier-
archies of annotations. The label sequence provides information
about what the user is doing at every timestep. Corresponding to
the two-hierarchy annotations, we create two scene lists using the
label sequences as the semantic representation for each sensory
context. A scene list A = {𝐴1, 𝐴2, ..., 𝐴𝑛} contains 𝑛 activities hap-
pening in a sequential order. For each activity 𝐴𝑖 = {𝑦𝑖 , 𝑑𝑖 , 𝑠𝑖 }, the
activity type 𝑦𝑖 , duration 𝑑𝑖 and starting time 𝑠𝑖 is stored.

To create the scene lists, we traverse the label sequences and
aggregate the consecutive data samples with the same label to
a single activity. The "other" activity is omitted here. With the
semantic representation of the sensory scene, we can easily reason

110

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Tianwei Xing, Luis Garcia, Federico Cerutti, Lance Kaplan, Alun Preece, and Mani Srivastava

about the relationships between different activities in an automatic
manner.

We formally define the temporal relationships between different
activities. We say activity 𝐴𝑖 is after/before 𝐴 𝑗 if 𝑖 > 𝑗 or 𝑖 < 𝑗 ,
and 𝐴𝑖 is right after/before 𝐴 𝑗 if 𝑖 = 𝑗 + 1 or 𝑖 = 𝑗 − 1. And for
the "While" relationship: suppose A and B are two scene list of
different hierarchies, then the user did 𝐴𝑖 while doing 𝐵 𝑗 only
when the starting and ending point of 𝐴𝑖 is within the range of
[𝐵 𝑗 .𝑠, 𝐵 𝑗 .𝑠 + 𝐵 𝑗 .𝑑]. We assume that the activities within the same
hierarchy are mutually exclusive, so it is impossible to have users
performing different activities of the same hierarchy at the same
time.
Question Generation. Inspired by [14, 18], SQA questions are
generated automatically using a template-based method. In the
SQA-Gen tool, we create a set of 16 different question families,
covering different question types: Action Query, Time Query, Ex-
istence, Counting, Action Comparison, Value Operation, etc. For
each question family, a functional program template is used for
constructing functional programs. With this program, several text
templates exist for creating questions in different natural language
forms. We need to mention that new question families and text tem-
plates can be easily added to SQA-Gen to generate new questions
based on diverse requirements.

A functional program is composed of a set of functional building
blocks. Similar to [18], we have a function catalog that deals with
different operations for SQA reasoning. These functions can be
combined in different wayswith different input parameters to create
an infinite number of questions with arbitrary complexity.

For example, the question "What did the user do before opening
the fridge and after closing the drawer?" is generated using the text
template "What did the user do [Relation] [Activity] [Combinator]
[Relation] [Activity]", while filling in "before", "after" as relations,
"and" as the Combinator, "open the fridge", "close the drawer" as ac-
tivities. The functional program "query_action_type(AND(relate(
before, open the fridge), relate(after, close the drawer)))" is instan-
tiated using program template "query_action_type(Combination(
relate(Relation, Activity), relate(Relation, Activity)))".

To generate questions using text templates, we need to take care
of the tense, person, and plurality to avoid grammar mistakes. We
take these three elements as additional parameters of the activity
in the text templates. After generating a valid question, we also
apply a synonym change in order to increase language diversity.

The functional program can be directly applied to the scene
lists of the sensory scene to get the correct answer, which is then
translated into natural language. At this stage, the sensory context,
the question, and the answer are all generated.
Question Type and Answer Balancing. We slide the time win-
dow across the untrimmed time-series sensory data to get various
sensory scenes. For each sensory scene, we construct its semantic
representation scene lists, and based on the activities involved in this
scene, we apply all possible functional programs to the scene lists
to get the correct answers. Sometimes the questions are ill-posed,
and the answers could not be obtained. For example, the question
"What did the user do after closing the door?" would be ill-posed if
the user closed the door more than once in the time window, and
we could not identify which "close the door" activity the question
is referring to. These ill-posed questions are rejected.

After traversing all the time-series data and iterating all the
possible functional programs, we generate an initial SQA dataset,
which includes around 35 million question & answer pairs and 1362
sensory contexts. However, the current SQA dataset has an unbal-
anced question type distribution and biased answer distributions.
This would lead to inefficient training and possibly performance
degradation. Therefore, we downsample the questions based on
their types to control the question data type composition.2

More importantly, we balance the global answer distribution of
the dataset, to avoid question-conditional biases, which allow learn-
ers to make educated guesses without understanding the sensory
contexts. To do this, we first calculate the global answer distribution
for each question type, and then downsample the questions with
the most frequent answer to a pre-defined ratio of 80%. We repeat
this operation iteratively, until the stopping criteria are met: the
question numbers, or the ratio of the most frequent answer is below
certain pre-set thresholds.

After question resampling and answer balancing, the SQAdataset
has more balanced answer distributions and question type compo-
sition. Details are illustrated in Figure 4.

Figure 4: Statistics of OppQA dataset. (A):Global answer dis-

tribution of different question types. (B): Question length

distribution compared with other VQA datasets. (C): Ques-

tion type composition. Question type "Time Query" with

non-categorical answers is excluded in this figure.

4.3 Summary of Generated OppQA Dataset.

To create the OppQA dataset, we use a total of 16 question fam-
ilies and more than 110 text templates. Table 1 shows examples
of generated questions for different types, and also their possible
answers.

Table 2 shows the statistics of OppQA dataset. It includes 1362
unique sensory scenes, and a total of 91 thousand questions, 72
thousand of which are unique. Among them, 39 thousand unique
queries are used. The question query represents the functional
program used to generate the question. Diverse questions with the

2We exclude the questions of "Time Query" type in OppQA dataset, since these ques-
tions have non-categorical answers. SQAmodels with regression tasks are left to future
work.

111

DeepSQA: Understanding Sensor Data viaQuestion Answering IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

Q Type Question Example Possible Answer

Existence

Is it true that the user closed
the door after opening the door? Yes, No

Counting

How many times did
the user close the door? <integer >

Action

Query

What did the subject do
after cleaning the table?

open the door,
wash dishes,
drink water, ...

Time

Query

How long did
the user wash dishes? <float >

Action

Compare

Confirm if the user performed
the same action proceeding

and following opening the fridge?
Yes, No

Number

Compare

The user toggled the switch
for the same times before
and after drinking water?

Yes, No

Table 1: QuestionExamples andPossibleAnswers inOppQA.

same semantic meaning share the same query. As shown in Figure
4 (B), OppQA has an average question length of 18 words, and is
complicated enough compared with other popular VQA datasets. It
can be used as a benchmark for evaluating SQA models.

The OppQA data is split into a training set and a testing set. The
training set contains SQA data generated on the first two Activity-
of-Daily-Living (ADL) runs and a drill run of users 1-4, and the
rest of the runs are used to generate testing data. The training
data and testing data do not share sensory context, but they have
overlapping question queries. Table 2 lists the details of OppQA.

Split

Sensory

Contexts

Questions

Unique

Questions

Unique

Queries

Total 1,362 91,412 72,936 38,922
Training 730 74,470 62,789 35,262
Testing 632 16,942 14,643 6,275

Table 2: Statistics for the OppQA dataset.

5 DEEPSQAMODELS AND

IMPLEMENTATIONS

In this section, we describe the structures and implementation
details of the proposed SQA models, along with a set of baselines.

All of the models that process context sensory data first use a
convolutional-LSTM network to get the sensory representations.
The ConvLSTM network is composed of two convolutional mod-
ules(which contain a convolution layer with 1 × 3 kernel, ReLU
activation and a maxpooling layer), followed by an LSTM layer and
a fully-connected layer to generate a 128-dimension dense embed-
ding vector. Both the LSTM layer and fully-connected layer have
128 hidden units. Instead of processing sensory data from differ-
ent sources using different neural networks, we perform an early
fusion on 77 channels of sensory reading from all the seven dis-
tributed sensors, which leads to better performance on this dataset.
Therefore, the size of input sensory data is 77 × 1800, with 1800
specifying the window length of a one-minute window. This pa-
rameter is also changed in later simulations when we evaluate the
SQA performance with respect to the task complexity.

All the models, that process questions, use LSTM-based mod-
els to get question representations. Every word in the question

is first embedded into a 300-dimensional representation using a
pre-trained GloVe[26] word embedding matrix, unless otherwise
noted. The GloVe word vectors are pre-trained with six billion to-
kens with a vocabulary of 400K words. We use in total two different
LSTM-based structures to extract question representations. Details
will be discussed below.

In the evaluation, we exclude the questions asking about the
duration of activities, which give various non-integer numbers as
answers. We then formulate the SQA task as a multi-class classi-
fication problem[3], using the top 27 answers as the classification
labels. Therefore, the output of every model should be a distribution
of predicted scores of these candidate answers.

5.1 Baseline Models

We adopt a representative subset of methods from VQA: baselines
that predict answers based on statistics of training data (Prior and
Prior-Q), baselines using only question data (LSTM), or using only
sensory data as input (ConvLSTM). Since sensory data are opaque
to humans, we cannot use the crowd-sourced method to collect
human answers and evaluate human performance on this task. As
an alternative, we use a Neural-Symbolic approach with pre-trained
native sensory classifiers, and perfect question logic knowledge to
mimic human performance. These methods are described in details
as follow:

• Prior:As [3], this baseline answers themost frequent answer
in the training dataset for all questions, which is ’No’ in
OppQA dataset.

• Prior-Q: Similar to the Prior method, this model predicts
answers based on training data statistics. For each question
type, it predicts the most frequent training-set answer.

• LSTM: Similar to the "LSTM Q" in [3], questions are first
processed with learned word embeddings, and analyzed by
a word-level two-layer LSTM model, where each layer con-
tains 128 hidden units. The output question representation,
which is the final state of LSTM, is then fed into an MLP
network using two hidden layers with 128 units to predict
the distribution over answers. This method uses no context
information as it is "sensory-blind," so it can only model
question-conditional bias.

• ConvLSTM: Inspired by [18] and [3], this "question-blind"
model only uses sensory context. Sensory data are first pro-
cessed using the ConvLSTM network, and then the answer
probability distribution is predicted by an MLP with one hid-
den layer that has 128 units and a softmax output layer. This
baseline model predicts answers by guessing the questions
based on the statistics of QA training data.

• Neural-Symbolic: In this method, we employ two activity
classification models recognizing user activities and locomo-
tion using sensory data at every time step. We then use 100%
correct, hard-coded logic rules to analyze the classification
result and answer the question. These rules are the same
as those used for constructing the SQA dataset. Basically,
they are functional modules in Python, hosting all logic op-
erations, and are selected based on different questions. The
activity classification models are ConvLSTM structures that
contain two convolutional layers, followed by an LSTM layer

112

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Tianwei Xing, Luis Garcia, Federico Cerutti, Lance Kaplan, Alun Preece, and Mani Srivastava

Figure 5: Overview of DeepSQA-CA Model

and a fully-connected layer to map the sensory data to the
predicted activity. The convolutional kernel size is 1× 3, and
two convolutional layers are followed by batch normaliza-
tion layers[15], which address the internal covariate shift
problem of neural networks. Sixty-four feature maps are
used in each convolutional layer, and 32 hidden nodes in the
LSTM layer. The activity classification models are trained
natively on the original OPPORTUNITY dataset, with an ac-
curacy of 80.13% and 74.13% on the activity classification and
locomotion classification tasks, respectively. These numbers
could represent the performance of state-of-the-art sensory
models on this dataset.

5.2 DeepSQA-based models

Based on the DeepSQA framework, we propose and evaluate three
different models that process both sensory contexts and questions
together, analyze and reason about the spatial-temporal relation-
ships, and draw the final answers. These models are chosen as
representatives, as they employ the state-of-the-art mechanisms
and structures in the multimodal deep learning and the question
answering domains. The model DeepSQA-ConvLSTM, uses a sim-
ple but effective elementwise multiplication to fuse the question
and sensory representations together and predict answer based on
it. The model DeepSQA-SA, learns how to search for the features
in sensory contexts that are related to the answer using attention
weights calculated based on the questions. ThemodelDeepSQA-CA,
decomposes the questions into multiple explicit reasoning steps,
customizes the weighting of the context feature vector for each
step, and performs iterative reasoning processes to get the answer.
Details of these models are discussed as follows.
DeepSQA-ConvLSTM: This model combines the ability of both
sensory processing and question reasoning in the LSTM and Con-
vLSTM baselines. Since the representations of both modalities have
the same dimension of 128, the model first fuses the sensory and
question representations using an element-wise multiplication, and
then feeds the combined feature to a two-layer MLP (with 128
hidden nodes) to get the prediction of the answer distribution.
DeepSQA-SA: In this model, we use the Stack Attention(SA) [22,
37] mechanism to fuse the sensory and question information, and
then predict answers based on new attended features.

Specifically, the questions and sensory contexts are first pro-
cessed using an LSTM and a ConvLSTM models to get compact
representations in the latent space. These two representations are
then concatenated together as a combined feature. In the Stack
Attention network, we use a two-layer CNN with 1 × 1 kernels to
calculate the spatial attention weights. The first and second con-
volutional layers’ activation functions are ReLU and Softmax, to
calculate the normalized probabilities over all the spatial locations.

The calculated attention weights are then multiplied with the
sensory representation to get the attended sensory feature, where
the information relevant to the question is highlighted.

We use a glimpse number of two to get two sets of different
attended sensory features. These features are concatenated with
the question representation again and fed to a 2-layer MLP network
with 1024 hidden nodes. The final answer is predicted by the last
softmax layer.
DeepSQA-CA: This method uses the Compositional Attention
(CA) [13] mechanism to perform multi-step reasoning over the
sensory and question data, by employing a recurrent structure
which strings together 𝑝MAC cells, each responsible for performing
one reasoning step. A MAC cell is the basic module in this recurrent
architecture.

In this model, the sensory contexts are processed using the same
ConvLSTM network, while the question data are processed differ-
ently. The original question with word tokens is first converted
into a sequence of word embeddings. Instead of using pre-trained
GloVe word embeddings, we learn the embedding matrix with other
network parameters during the training time. The embedding se-
quence is then processed by a bidirectional LSTM network, which
trains two instead of one LSTMs on the input sequence in two
opposite directions. The question representation is then the final
hidden states’ concatenation from the forward and backward LSTM
passes. In addition to the question representation, we also generate
a contextual word sequence, by storing the sequence of output
states for each word in the biLSTM network.

After getting the sensory and question representations, we feed
them to the recurrent MAC structure to perform multi-step rea-
soning. Each MAC cell is composed of a control, read, and write
unit, which operate over control and memory hidden states. The
control unit attends to different parts of the question, to update
the control state that represents the reasoning operation at each

113

DeepSQA: Understanding Sensor Data viaQuestion Answering IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

Baselines DeepSQA

Prior PriorQ Neural Symbolic ConvLSTM LSTM SA ConvLSTM CA

Overall 41.57% 54.82% 42.75% 44.92% 65.04% 59.74% 67.63% 72.38%

Binary 53.27% 65.26% 51.10% 57.56% 68.33% 61.78% 71.81% 76.51%

Open 0.00% 17.74% 13.09% 0.00% 53.35% 52.49% 52.78% 57.67%

Existence 66.63% 66.34% 46.15% 39.97% 66.99% 67.20% 69.76% 72.69%

Counting 0.00% 35.99% 30.86% 0.00% 60.71% 58.94% 59.06% 63.31%

Action Query 0.00% 4.29% 0.00% 0.00% 47.92% 47.74% 48.16% 53.52%

Num Comparison 53.59% 72.45% 66.61% 63.21% 70.73% 63.57% 71.91% 76.61%

Act Comparison 37.99% 37.99% 0.00% 55.64% 61.02% 49.57% 73.62% 80.21%

Table 3: Overall results of models trained and tested on OppQA dataset

time step. The read unit extracts relevant information out of the
sensory context with the guidance of the control state. The write
unit integrates extracted information into a memory state, which
becomes the input of the next MAC cell.

The input of a MAC cell are the previous control and memory
states, together with the sensory context representation, question
representation, and contextual words. The initial control and mem-
ory states are initialized learned parameters.

At last, the final memory and question representation are con-
catenated and fed to a 2-layer MLP with a softmax classifier to
predict the distribution over candidate answers. An overview of
this model is demonstrated in Figure 5.

In our implementation, we set the reasoning step value 𝑝 as 12,
which means that the recurrent structure has 12 MAC cells. The
dimension of hidden states (control and memory) is 512, and the
final MLP network has two layers with 1536 and 512 hidden nodes.

6 EVALUATION

In this section, we empirically evaluate the proposed DeepSQA
framework by comparing the model performance with baseline
methods. We use the created OppQA dataset and its variants to test
the effectiveness and robustness of SQA models on reasoning about
the spatial-temporal dependencies of human activities.

6.1 Implementation Details

In our experiment, the DeepSQA-CA model is implemented in
Pytorch, and the other models are implemented with TensorFlow
and Keras frameworks. Although different frameworks are used, the
learning settings have been made consistent for a fair comparison.
All the models are trained and tested on a desktop machine with
two Nvidia RTX Titan GPUs. During the training, a 0.15 dropout
rate is applied to the convolutional, dense, and LSTM-based layers
for the ConvLSTM and MLP models, and a 1𝑒 − 4 weight decay is
applied to the DeepSQA-CA model to avoid overfitting. We train
all the models for 40 epochs using Adam optimizer with a learning
rate equal to 1𝑒 − 4 and a batch size of 64.

6.2 General Observations

Wefirst evaluate theDeepSQAmodels and baselines on the standard
OppQA dataset, which covers questions of 15 types, and reasons
about human activities over a time window of one minute (1800

samples). The maximum question length is 31 words, and the num-
ber of unique candidate answer is 27, with non-integer answers
excluded. The overall performance of each method is shown in Ta-
ble 3. We break down the performance based on different question
types: existence, counting, action query, number comparison, and
action comparison. Among them, counting and query are further
classified into open-ended questions and the remaining into binary
questions.

The Prior method in the first column predicts "No" for all the
questions, and gets a 0% accuracy on open-ended questions and
53.27% on binary questions, which is a little bit higher than 50%
of a random guess. This indicates that the answer distribution in
the OppQA dataset is balanced with minimum global bias. Taking
question types into consideration, the PriorQ method gets better
performance, but it still could not predict answers to open-ended
questions well. On the "Action Query" question type, PriorQ can
only get an accuracy of 4.29%, proving that it is indeed a challenging
task to predict the correct answer out of 27 candidate answers.

Albeit using pre-trained activity classification networks and
perfect reasoning logic, the Neural Symbolic method shows bad
performance on OppQA. This is because the logical rules do not
anticipate the inaccurate primitive events, as humans are bad at
generating logic rules that work with noisy or even erroneous data.
On the other hand, the deep learning models cannot make accu-
rate inferences about the primitive activities for the Opportunity
dataset (with an accuracy of around 70-80%). The errors in the noisy
inferences accumulate and then dramatically reduce the answer
correctness. Conversely, the end-to-end neural network approaches
do not suffer from this problem. One possible explanation is that the
neural network could learn to use reliable features, and compensate
for the possible error to make the right prediction.

Generally, the models with DeepSQA framework show better
performance than the baselines, especially the DeepSQA-CA model,
which uses the compositional attention mechanism, gets the best
performance on all of the question types, with an overall accuracy
of 72.38%. TheDeepSQA-SAmodel based on stacked attention shows
inferior performance than some of the baselines. This proves that,
although demonstrating good performance on visual QA tasks, the
stacked attention does not work well on reasoning about temporal
dependencies between human activities.

It’s worth noting that the LSTM model can achieve similar per-
formance to some of the DeepSQA models with over 60% overall
accuracy without using any sensory context data. This is due to the

114

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Tianwei Xing, Luis Garcia, Federico Cerutti, Lance Kaplan, Alun Preece, and Mani Srivastava

fact that for some particular questions, the local bias still exists. For
example, when the question is "What did the user do after opening
the door?" the answer would be "Close the door" with a 90% proba-
bility. We also notice that this is a common case of many existing
QA work in other domains[3]. Since we are using real data, it is
inevitable to contain bias induced by predictable human behavior
patterns.

Performance on Prime Dataset. Because of the unavoidable
local bias in the dataset, we construct a "Prime Testing Set" based
on the original testing data. In this prime dataset, we abandon the
questions with only a single answer, and all the questions have
more than one answer. This makes it impossible for the models to
predict answers using only question data and without sensory con-
text. This prime set is actually more challenging than the original
testing set. In our experiment, among all SQA data samples, about
half of them are prime data. In Table 4, we list the performance
comparison of all the deep-learning-based models on the testing
dataset and prime dataset. Generally, the accuracies on the prime
dataset are lower than those on the testing set. DeepSQA-CA has
the minimum performance degradation while maintaining good
accuracy. Its accuracy loss is less than 2%. The baseline ConvLSTM
model observes a performance improvement on the prime dataset.
It is because that the non-prime questions with a single answer are
answered incorrectly by this model, and removing those questions
could passively increase the accuracy.

Baselines DeepSQA

ConLSTM LSTM SA ConvLSTM CA

Testing 44.92% 65.04% 59.74% 67.63% 72.38%

Prime 56.56% 60.39% 53.46% 64.90% 70.48%

Table 4: Overall performance on prime testing set

Robustness Against Linguistic Variations. The key motiva-
tion of proposing the sensory question answering task is to improve
the inferencing flexibility of sensing systems, in a way that users
can make arbitrary inferences during the run time in the form of
natural language. However, for questions with the same semantic
meanings, the natural language representations might be dramat-
ically different. In order to test the robustness against linguistic
variations of SQA systems, we create a "Rephrasing Testing set."
This dataset contains different rephrasings for all the questions
in the original testing set, generated using our question genera-
tion tool. We evaluate the four Deep-Learning-based models which
take natural language question as input on the rephrasing dataset,
and list the corresponding accuracies in Table 5. Basically, the per-
formance on the rephrasing set is similar to the testing accuracy,
indicating that Deep-Learning-based SQA models are robust to
question rephrasing. In addition, we define a consistency score to
further measure the model robustness on every query:

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =

∑𝑚
𝑖=1 1(𝑎𝑖 = 𝑎𝑚𝑎𝑗𝑜𝑟)

𝑚

The 𝑚 represents the number of rephrasings for each question
query, and 𝑎𝑚𝑎𝑗𝑜𝑟 is the majority answer predicted by the SQA
model. Table 5 shows that the consistency scores for all the models
are greater than 95%, which proves their robustness to linguistic
variations.

LSTM

DeepSQA

SA

DeepSQA

ConvLSTM

DeepSQA

CA

Testing Acc 65.03% 59.73% 67.63% 72.38%

Rephrasing Acc 65.86% 60.51% 68.56% 72.86%

Consistency 99.13% 98.97% 99.06% 96.28%
Table 5: SQA robustness to linguistic variations

6.3 Analysis by Question Complexity

To access the SQA model performance with respect to question
complexity, we analyze the evaluation result of deep learning mod-
els by the question length, as shown in Figure 6. The models that do
not take the question as input are omitted here. Intuitively, longer
questions should contain more query information, and would be
more challenging to answer than shorter ones. Surprisingly, we
do not see a clear correlation between question length and SQA
performance. One possible reason is that the number of words in
questions cannot effectively reflect the questions’ complexity. Some
questions are more verbose than the others, and contain redundant
or even useless information, while representing simple queries. This
would lead to the result that SQA models have better accuracies on
some longer questions than those on shorter questions.

Figure 6: Models performance w.r.t. question length.

Instead of using the number of words as a question complexity
measure, we use the number of required query operations to an-
swer the questions to better capture the complexity. For example,
questions like "What did the user do after washing dishes?" can be
answered using three operations: 1. detect and localize the "wash-
ing dishes" activity; 2.Filter the activities after the "washing dishes";
3. Query the type of filtered activity.

Since the binary and open-ended questions have different com-
plexity, we first categorize the questions into two groups, and an-
alyze them separately. As shown in Figure 7 (A), for binary ques-
tions, there is a linear decrease in SQA model performance with the
number of operations increasing from one to three. However, the
accuracies of questions requiring seven query operations are pretty
high. It is probably because the number of this type of question is
larger than others in the training dataset. Models trained on this
training dataset learn to perform well on this type of questions.

Figure 7 (B) shows the SQA model performance changes on
open-ended questions. Specifically, the accuracy of the DeepSQA-
CA model decreases with the required query operations increasing.
However, the other models show poor performance on questions

115

DeepSQA: Understanding Sensor Data viaQuestion Answering IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

Test-Familiar Test-Novel

Binary Open Overall Binary Open Overall

Prior 46.90% 0.00% 36.64% 46.55% 0.00% 36.28%
PriorQ 70.11% 18.51% 58.82% 68.86% 19.02% 57.87%
Neural Symbolic 51.12% 12.69% 42.71% 51.08% 13.51% 42.80%
CNN 58.09% 0.00% 45.38% 58.01% 0.00% 45.22%
LSTM 67.80% 53.54% 64.68% 66.91% 46.86% 62.49%
DeepSQA(san) 69.89% 53.38% 66.28% 67.72% 49.01% 63.60%
DeepSQA(convlstm) 71.96% 53.49% 67.92% 71.71% 48.90% 66.68%
DeepSQA(mac) 73.03% 58.42% 69.83% 72.70% 54.30% 68.64%

Table 6: Model performance generalization to novel questions

Figure 7:Models performancew.r.t. question complexity: (A)

Binary and (B) Open-ended.

requiring two operations. We notice that the SQA models are sen-
sitive to the amount of training data. A larger training dataset
would generally lead to a better performance. Apart from these, we
can find that the DeepSQA-CA model shows the best performance
consistently regardless of the complexity of input questions.

6.4 Analysis by Context Complexity

We also perform a set of experiments using new datasets generated
in the same way as the original OppQA, but with different context
window lengths. Here, we generate four variant datasets, using a
window length of 500, 750, 1000, and 1500 time steps.

Apparently, the SQA task with shorter context length would
be simpler, since fewer activities are involved in the scene, and
reasoning about them is easier. In Figure 8, we plot the bar chart of
performance for all SQA models that take the sensory context as
input. When the sensor context window is only 500-time-step long,
the models like DeepSQA-CA and DeepSQA-ConvLSTM could get
excellent performance with over 90% accuracies. The performance
of DeepSQA-ConvLSTM is even slightly better than DeepSQA-CA.
It is because within a short period, the complex SQA reasoning

module is not necessary. With the length of sensory context win-
dow increasing, the accuracy of SQA models keeps decreasing,
which means that the length of sensory context is a crucial factor
affecting the SQA task’s complexity. Generally, the DeepSQA-CA
model shows the best performance consistently, especially when
the sensory context is long and the task is challenging. This illus-
trates the effectiveness of the compositional attention mechanism
in processing complex spatial-temporal dependencies on human
activity reasoning.

Figure 8: Model performance w.r.t. SQA task complexity.

6.5 Generalization to new questions

Another interesting characteristic of sensory question answering
is its data-efficient training and generalization ability to new data.
During the training, instead of learning to answer each specific
question, SQA models learn to perform basic logical operations
and predict answers based on operation results. At the inference
time, SQA models are able to answer novel questions that they have
never seen in the training dataset, but are composed of familiar
activities and logic operations.

In this evaluation, we construct a new dataset OppQA-generalize
to test the generalization ability of different SQA models. Specif-
ically, this dataset adapts the same configuration as the original
OppQA: with 77-channel data from 7 distributed sensors. We set the
context window length to 1800, and the stride to 600 during genera-
tion. We split the data based on sensory context and question query
to construct the training and testing set. The training set covers 80%
of the sensory contexts, and 50% of all the unique question queries.
The testing set contains the rest 20% of the sensory contexts, and

116

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Tianwei Xing, Luis Garcia, Federico Cerutti, Lance Kaplan, Alun Preece, and Mani Srivastava

all the unique question queries. The testing set is further divided
into Test-familiar and Test-novel sets. The Test-familiar has ques-
tion queries overlapping with the training set, and Test-novel has
queries different from the training set. The details of this dataset
are described in Table 7.

Split

Sensory

Contexts

Questions

Unique

Queries

Train 726 38,121 17,587
Test-Familiar 625 8,715 3,420
Test-Novel 627 8,227 3,305

Table 7: Statistics for the OppQA-generalize dataset.

We train different SQA models on the training set, and then
test the model performance on Test-familiar and Test-novel sets
separately. The accuracies are listed in Table 6.

As shown in the table, most models have a performance degra-
dation when facing the unseen question queries in the Test-novel
dataset. The degradation is more evident for open-ended questions,
where the accuracies drop by around 4 − 7%, compared with 0 − 2%
for binary questions. The DeepSQA-CA model continues to show
the best performance on both Test-familiar and Test-novel testing
sets, and it has the lowest performance degradation. This result
demonstrates that the DeepSQA model has better generalization
ability to new question queries.

6.6 Discussion

Generation of Natural Language Answer. In this work, we for-
mulate the SQA problem as a classification problem, where the
output classes are the top 𝐾 answers appearing in the training
dataset. The Deep-Learning-based SQA models predict the answer
distribution on the 𝐾 classes, and the class with the highest proba-
bility is selected as the predicted answer. Several limitations exist in
this approach. Firstly, the regression-type questions, such as Query-
Time, are not enabled by the SQA models. Secondly, although the
SQA models support answering diverse questions of different types
by enumerating the possible answers in the training set, the output
is still constrained to a limited set. In future work, we will augment
the DeepSQA with an answer generator, which takes processed
information from the proceeding reasoning module and creates
natural language answers.
Neural-Symbolic DeepSQA framework. At the current stage,
we use an end-to-end neural network structure for modeling the
SQA task. So the prediction made by the model is not explainable.
A significant drawback of this purely data-driven approach is that
it’s data-intensive during training, and also memory-consuming
for storing the learned dependencies. Based on the evaluation re-
sult, we can observe that model performance degrades when facing
longer sequences (e.g., longer sensory time windows, complex ques-
tion queries). In future work, we would like to introduce the idea
of neural-symbolic system [36, 38] to the SQA task, to get a more
compact symbolic representation, and robustness on complex sce-
narios.
Evaluation on Different Sensory Datasets. In addition to Op-
pQA, we also generated another SQAdataset using ExtraSensory[32]

as source data. This dataset contains multimodal sensory data of
multi-day length collected from 60 various users. It covers more
than 50 labels about human daily activities, like bicycling, computer
work, and sleeping. However, most of the SQA models show less
satisfied performance on it. The poor performance is due to the chal-
lenge of deep learning models extracting useful information from
ExtraSensory data. The model trained on ExtraSensory natively
could only get around < 60% accuracy on the activity classification
task. Consequently, the sensory representation could not provide
much information to the DeepSQA. Admittedly, the vibrancy of
visual question answering research largely depends on the mature
visual information processing ability. We believe that the proposed
DeepSQA framework and SQA-Gen tool in this paper could help
facilitate the SQA research.
Generalization to Complex & Distributed Scenarios. Thus far,
we have only discussed the evaluation on OppQA, where multi-
modal data from different sensors are fused together such that a
single sensory processing module is used in DeepSQA models. We
believe that DeepSQA can be generalized to SQA scenarios with
multimodal data dispersed far apart. The complex spatial-temporal
relationship between sensory data needs to be explored and rea-
soned to get the correct answer. In future work, we will deploy and
evaluate DeepSQA system in real complex sensor network scenar-
ios, with more rising challenges like time synchronization, sensory
fusion, and noisy data annotation.

7 CONCLUSION

In this work, we present DeepSQA, a generalized framework for
sensory question answering. By taking both sensory data and natu-
ral language questions simultaneously, DeepSQA is able to identify
the tasks specified by questions and perform reasoning on sensory
data accordingly. It reduces the laborious work of training new deep
learning models when new tasks are introduced, and improves the
inferencing flexibility. To evaluate SQA models, we introduce SQA-
Gen, which automatically generates SQA datasets using labeled
source sensory data. Based on this tool, we propose the OppQA
dataset for benchmarking SQA model performance. Our work is
the first one to address the SQA problem, and we hope the open-
source tools and datasets can be used for follow up research on
SQA models. Results on OppQA prove the effectiveness, reliability,
and robustness of DeepSQA. Future work will focus on evaluating
DeepSQA in real-world scenarios with distributed and multimodal
sensory data.

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence under Agreement # W911NF-16-
3-0001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments
are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

117

DeepSQA: Understanding Sensor Data viaQuestion Answering IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

REFERENCES

[1] Jerome Abdelnour, Giampiero Salvi, and Jean Rouat. 2018. CLEAR: A Dataset for
Compositional Language and Elementary Acoustic Reasoning. arXiv preprint
arXiv:1811.10561 (2018).

[2] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,
Stephen Gould, and Lei Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 6077–6086.
[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,

C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on computer vision. 2425–2433.

[4] Pouya Bashivan, Irina Rish, Mohammed Yeasin, and Noel Codella. 2015. Learning
representations from EEG with deep recurrent-convolutional neural networks.
arXiv preprint arXiv:1511.06448 (2015).

[5] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Seman-
tic parsing on freebase from question-answer pairs. In Proceedings of the 2013

conference on empirical methods in natural language processing. 1533–1544.
[6] Ella Browning, Mark Bolton, Ellie Owen, Akiko Shoji, Tim Guilford, and Robin

Freeman. 2018. Predicting animal behaviour using deep learning: GPS data alone
accurately predict diving in seabirds. Methods in Ecology and Evolution 9, 3 (2018),
681–692.

[7] Diane Cook, Kyle D Feuz, and Narayanan C Krishnan. 2013. Transfer learning for
activity recognition: A survey. Knowledge and information systems 36, 3 (2013),
537–556.

[8] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition. Ieee, 248–255.
[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Nils Y Hammerla, Shane Halloran, and Thomas Plötz. 2016. Deep, convolutional,
and recurrent models for human activity recognition using wearables. arXiv
preprint arXiv:1604.08880 (2016).

[11] Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. TAPAS: Weakly Supervised Table Parsing
via Pre-training. arXiv preprint arXiv:2004.02349 (2020).

[12] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko.
2017. Learning to reason: End-to-end module networks for visual question
answering. In Proceedings of the IEEE International Conference on Computer Vision.
804–813.

[13] Drew A Hudson and Christopher D Manning. 2018. Compositional attention
networks for machine reasoning. arXiv preprint arXiv:1803.03067 (2018).

[14] Drew A Hudson and Christopher D Manning. 2019. Gqa: A new dataset for real-
world visual reasoning and compositional question answering. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 6700–6709.
[15] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference

on machine learning. PMLR, 448–456.
[16] Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. 2017.

Tgif-qa: Toward spatio-temporal reasoning in visual question answering. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2758–2766.

[17] Lu Jiang, Junwei Liang, Liangliang Cao, Yannis Kalantidis, Sachin Farfade, and
Alexander Hauptmann. 2017. Memexqa: Visual memex question answering.
arXiv preprint arXiv:1708.01336 (2017).

[18] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C
Lawrence Zitnick, and Ross Girshick. 2017. Clevr: A diagnostic dataset for
compositional language and elementary visual reasoning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2901–2910.
[19] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li

Fei-Fei, C Lawrence Zitnick, and Ross Girshick. 2017. Inferring and executing
programs for visual reasoning. In Proceedings of the IEEE International Conference

on Computer Vision. 2989–2998.
[20] Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. 2018. DVQA:

Understanding data visualizations via question answering. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 5648–5656.
[21] Kushal Kafle, Robik Shrestha, Scott Cohen, Brian Price, and Christopher Kanan.

2020. Answering questions about data visualizations using efficient bimodal
fusion. In The IEEE Winter Conference on Applications of Computer Vision. 1498–
1507.

[22] Vahid Kazemi and Ali Elqursh. 2017. Show, ask, attend, and answer: A strong
baseline for visual question answering. arXiv preprint arXiv:1704.03162 (2017).

[23] Oscar D Lara and Miguel A Labrador. 2012. A survey on human activity recog-
nition using wearable sensors. IEEE communications surveys & tutorials 15, 3
(2012), 1192–1209.

[24] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. 2018. Tvqa: Localized,
compositional video question answering. arXiv preprint arXiv:1809.01696 (2018).

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[26] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP). 1532–1543.
[27] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron

Courville. 2017. Film: Visual reasoning with a general conditioning layer. arXiv
preprint arXiv:1709.07871 (2017).

[28] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[29] Hesam Sagha, Sundara Tejaswi Digumarti, José del RMillán, Ricardo Chavarriaga,
Alberto Calatroni, Daniel Roggen, and Gerhard Tröster. 2011. Benchmarking
classification techniques using the Opportunity human activity dataset. In 2011

IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 36–40.
[30] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and

Paul JM Havinga. 2016. Complex human activity recognition using smartphone
and wrist-worn motion sensors. Sensors 16, 4 (2016), 426.

[31] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel
Urtasun, and Sanja Fidler. 2016. Movieqa: Understanding stories in movies
through question-answering. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 4631–4640.
[32] Yonatan Vaizman, Katherine Ellis, Gert Lanckriet, and Nadir Weibel. 2018. Ex-

trasensory app: Data collection in-the-wild with rich user interface to self-report
behavior. In Proceedings of the 2018 CHI Conference on Human Factors in Comput-

ing Systems. 1–12.
[33] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. 2019. Deep

learning for sensor-based activity recognition: A survey. Pattern Recognition

Letters 119 (2019), 3–11.
[34] Wei Wang, Alex X Liu, Muhammad Shahzad, Kang Ling, and Sanglu Lu. 2017.

Device-free human activity recognition using commercial WiFi devices. IEEE
Journal on Selected Areas in Communications 35, 5 (2017), 1118–1131.

[35] Xiao-Wei Wang, Dan Nie, and Bao-Liang Lu. 2014. Emotional state classification
from EEG data using machine learning approach. Neurocomputing 129 (2014),
94–106.

[36] Tianwei Xing, Luis Garcia, Marc Roig Vilamala, Federico Cerutti, Lance Kaplan,
Alun Preece, and Mani Srivastava. 2020. Neuroplex: learning to detect complex
events in sensor networks through knowledge injection. In Proceedings of the

18th Conference on Embedded Networked Sensor Systems. 489–502.
[37] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. 2016. Stacked

attention networks for image question answering. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 21–29.
[38] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh

Tenenbaum. 2018. Neural-symbolic vqa: Disentangling reasoning from vision and
language understanding. In Advances in neural information processing systems.
1031–1042.

[39] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning transportation
mode from raw gps data for geographic applications on the web. In Proceedings

of the 17th international conference on World Wide Web. 247–256.

118

	Abstract
	1 Introduction
	2 Related work
	3 Formalizing SQA problem and Design of DeepSQA
	3.1 Sensory Question Answering (SQA)
	3.2 SQA Architecture Design

	4 SQA-Gen: SQA Dataset Generation Tool
	4.1 Source Data Selection
	4.2 SQA Data Generation
	4.3 Summary of Generated OppQA Dataset.

	5 DeepSQA Models and Implementations
	5.1 Baseline Models
	5.2 DeepSQA-based models

	6 Evaluation
	6.1 Implementation Details
	6.2 General Observations
	6.3 Analysis by Question Complexity
	6.4 Analysis by Context Complexity
	6.5 Generalization to new questions
	6.6 Discussion

	7 Conclusion
	Acknowledgments
	References

