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ABSTRACT
Deep learning has been widely applied in many computer vision ap-
plications, with remarkable success. However, running deep learn-
ing models on mobile devices is generally challenging due to the
limitation of computing resources. A popular alternative is to use
cloud services to run deep learning models to process raw data.
This, however, imposes privacy risks. Some prior arts proposed
sending the features extracted from raw data (e.g., images) to the
cloud. Unfortunately, these extracted features can still be exploited
by attackers to recover raw images and to infer embedded private
attributes (e.g., age, gender, etc.). In this paper, we propose an ad-
versarial training framework, DeepObfuscator, which prevents the
usage of the features for reconstruction of the raw images and in-
ference of private attributes. This is done while retaining useful
information for the intended cloud service (i.e., image classification).
DeepObfuscator includes a learnable encoder, namely, obfuscator
that is designed to hide privacy-related sensitive information from
the features by performing our proposed adversarial training al-
gorithm. The proposed algorithm is designed by simulating the
game between an attacker who makes efforts to reconstruct raw
image and infer private attributes from the extracted features and a
defender who aims to protect user privacy. By deploying the trained
obfuscator on the smartphone, features can be locally extracted
and then sent to the cloud. Our experiments on CelebA and LFW
datasets show that the quality of the reconstructed images from
the obfuscated features of the raw image is dramatically decreased
from 0.9458 to 0.3175 in terms of multi-scale structural similarity
(MS-SSIM). The person in the reconstructed image, hence, becomes
hardly to be re-identified. The classification accuracy of the inferred
private attributes that can be achieved by the attacker is signifi-
cantly reduced to a random-guessing level, e.g., the accuracy of
gender is reduced from 97.36% to 58.85%. As a comparison, the ac-
curacy of the intended classification tasks performed via the cloud
service is only reduced by 2%. We also demonstrate the efficiency of
DeepObfuscator, showcasing real-time performance of the deployed
models on smartphones.
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1 INTRODUCTION
In the past decade, deep learning has achieved great success in many
computer vision applications, such as face recognition [29] and im-
age segmentation [18]. However, running deep learning models on
mobile devices is technically challenging due to limited computing
resources. Many large-sized deep-learning-based applications are
often deployed on cloud servers, i.e., ML-as-a-service (MLaaS), such
as Amazon Rekognition, Microsoft Cognitive Services, etc. These
cloud-based services require users to send data (e.g., images) to the
cloud service provider. However, this requirement may raise users’
concerns about privacy leakage, since various private information
may be contained in the images (e.g., age, gender, etc.). One widely
adopted solution to address this privacy issue is to upload only
the extracted features rather than the raw image [26, 27]. Unfortu-
nately, the extracted features still contain rich information which
can breach users’ privacy. Specifically, an attacker can exploit the
eavesdropped features to reconstruct the raw image, and hence the
identity of the person on the raw image can be discovered from
the reconstructed image [21]. In addition, the extracted features
can also be exploited by an attacker to infer private attributes, such
as gender, age, etc. Such adversary models can be trained by an
attacker through continuously querying the cloud service to collect
the eavesdropped features as inputs, and the ground truth of the
queried data can be used as the labels.

Figure 1 shows an example where the reconstruction attack
and private attribute leakage occur in a MLaaS for facial attribute
recognition. When a mobile user uploads an image for detecting
facial attribute, the encoder will extract features and then send the
features to the cloud server. The classifier deployed on the server
takes the extracted features as inputs and then predicts whether the
person in the received image is smiling or not. Note that a complete
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Figure 1: An example of reconstruction attack and private attribute leakage in a cloud service for facial attribute recognition.

model is jointly trained in an end-to-end manner, and then split
into the encoder and the classifier. However, the extracted features
can be eavesdropped by an attacker. By continuously querying the
cloud service, the attacker can collect the eavesdropped features to
train an decoder, which is denoted as the adversary reconstructor,
for recovering the raw images. Besides, the eavesdropped features
can also be exploited to train an adversary classifier for inferring
the private attributes associated with the raw images.

There are a few studies have been performed to defend against
reconstruction attacks. They perturbed either the raw data [10] or
the extracted features [26, 27] through adding random noises. But
these methods inevitably incur accuracy drop. Feutry et al. [6] pro-
posed an image anonymization approach to hide sensitive features
related to private attributes. However, none of these previous stud-
ies has investigated whether defending against only reconstruction
attack or private attribute leakage is sufficient to prevent either or
both types of attacks.

Our experiments demonstrate that defending only reconstruc-
tion attack cannot prevent private attribute leakage, and vice versa.
For example, Figure 2 shows two examples of reconstructed images
when we defend against only either the reconstruction attack or
private attribute leakage. The column (a) shows the raw images,
and the column (b) displays the reconstructed images when we
defend only private attribute leakage. These reconstructed images
still contain many details of the raw images, and allow an attacker
to re-identify the person in the images. The reconstructed images
when defending against only reconstruction attack are shown in
the column (c). Although almost all distinguishable information
has been masked, we can still achieve a 93.7% accuracy in detecting
the gender of the person in the reconstructed images. More details
about this experiment can be found in Section 4.2.

In this work, we propose DeepObfuscator – an adversarial train-
ing framework to learn an obfuscator that can hide sensitive infor-
mation that can be exploited for reconstructing raw images and
inferring private attributes, and still keep useful features for image
classifications. Although we focus on image classifications in this
paper, DeepObfuscator can be easily extended to many other tasks,
e.g., speech recognition. By deploying the trained obfuscator on

(a) (b) (c)

Figure 2: Reconstructed images: defending against only pri-
vate attribute leakage vs. defending against only reconstruc-
tion attack. Column (a) is raw images, column (b) shows the
reconstructed images when we defend against only private
attribute leakage, and column (c) displays reconstructed im-
ages when defending against only reconstruction attack.

the smartphone, features can be locally extracted and then sent
to MLaaS provider. As Figure 3 shows, DeepObfuscator consists
of four modules: obfuscator, classifier, adversary reconstructor and
adversary classifier. The key idea is to apply adversarial training
for maximizing the reconstruction error of the adversary recon-
structor and the classification error of the adversary classifier, but
minimizing the classification error of the intended classifier.

The main contributions of this paper are summarized as follows:

(1) We design DeepObfuscator which is an adversarial train-
ing framework that can simultaneously defend against both
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reconstruction attack and private attribute leakage while
maintaining the accuracy of primary learning tasks;

(2) We are the first to experimentally demonstrate that defend-
ing against only the reconstruction attack or private attribute
leakage is not inclusive to each other;

(3) We quantitatively evaluate DeepObfuscator on CelebA and
LFW datasets. The results show that the quality of recon-
structed images from the obfuscated features is significantly
decreased from 0.9458 to 0.3175 in terms of MS-SSIM, indi-
cating that the person on the image is hardly reidentifiable
visually. The classification accuracy of the inferred private
attributes is reduced by around 30% to a random-guessing ac-
curacy, but the accuracy of the intended classification tasks
performed via the cloud service is reduced by only 2%.

(4) We demonstrate the efficiency of DeepObfuscator, show-
casing real-time performance of the deployed models on
smartphones.

The rest of this paper is organized as follows: Section 2 reviews
the related work. Section 3 elaborates the design of DeepObfuscator.
Section 4 evaluates the performance of DeepObfuscator. Section 5
shows two case studies of applying DeepObfuscator. Section 6 dis-
cusses the limitation of our proposed method. Section 7 concludes
this work.

2 RELATEDWORK
A large number of works have been done to protect data privacy
using various anonymization techniques including k-anonymity
[35], l-diversity [21] and t-closeness [16]. However, these solutions
are designed for protecting sensitive attributes in a static database,
and hence are not suitable to our addressed problem – obfuscat-
ing intermediate representations of data while retaining the utility
for DNN inference. Differential privacy [1, 2, 4, 5, 31, 34, 37] is
another widely applied technique to prevent an individual’s data
record from being leaked with a strong theoretical guarantee. But
the privacy guarantee provided by differential privacy is differ-
ent from the privacy protection offered by DeepObfuscator. The
goal of differential privacy is to inject random noise to a user’s
data record such that an adversary cannot identify the existence
of this data record in the database. Different from differential pri-
vacy, our goal is to hide private information from the intermediate
representations, such that an adversary cannot accurately infer
the protected private information and successfully reconstruct the
raw data. Li et al. [15] present an information theoretic approach
to hide private information in features while maximally retaining
the information carried by the raw data, such that the extracted
features still have high utility for training DNN models. However,
defending against the reconstruction attack is not taken into ac-
count by this method. In addition, encryption-based approaches
[7, 41] have been presented to protect data privacy, but they require
to train specialized DNN models on the encrypted data. Unfortu-
nately, such encryption-based solutions prevent general dataset
release and introduce substantial computational overhead.

Osia et al. [25] combine dimensionality reduction, noise injec-
tion and Siamese fine-tuning to protect sensitive information from
features, but it does not consider defending against the reconstruc-
tion attack. De-identification is another popular privacy-preserving
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Figure 3: The design of DeepObfuscator.

method to prevent the identity from being visually recognized in
many computer vision applications. There are various techniques
to achieve de-identification, such as Gaussian blur [23], identity
obfuscation [23], mean shift filtering [39] and adversarial image
perturbation [24]. Although those approaches are effective in pro-
tecting visual privacy, they all degrade the utility of the data for
DNN inference.

With recent developments of deep learning, several works have
been proposed to protect data privacy by exploiting adversarial
learning. Pittaluga et al. [30] propose an adversarial learningmethod
to learn an encoder, aiming to defend against performing inference
for specific attributes from the encoded intermediate representa-
tions. Seong et al. [24] design an adversarial network to transform
the raw image so that the attacker cannot successfully perform
image recognition. Wu et al. [40] present an adversarial framework
to explicitly learn a degradation transform for the original video
inputs in order to balance target task accuracy and the associated
privacy budgets on the transformed video. Malekzadeh et al. [22]
propose an on-device transformation of sensor data that will be
used for specific applications, such as monitoring selected daily
activities. This method can prevent the user from being identified
by the adversary. Liu et al. propose PAN [17], which is an adver-
sarial learning framework to obfuscate features for the privacy
purpose. However, PAN defenses against the reconstruction attack
by enlarging the difference between the raw image and the recon-
structed image in terms of pixel-wise distance, which may not be
able to guarantee a significant perceptual difference between the
raw image and the reconstructed image (see Section 5.1). In addi-
tion, PAN’s performance is evaluated only for protecting single
private attribute, which is not always the case in practice.

3 DESIGN OF DEEPOBFUSCATOR
As Figure 3 shows, DeepObfuscator consists of three additional
neural network modules: classifier (𝐶), adversary reconstructor (𝐴𝑅)
and adversary classifier (𝐴𝐶). The classifier works for the intended
classification service. The adversary reconstructor and adversary
classifier simulate an attacker in the adversarial training procedure,
aiming to recover raw images and infer private attributes from the
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eavesdropped features. All the four modules are end-to-end trained
using our proposed adversarial training algorithm.

Before presenting the details of each module, we give the fol-
lowing notations. We denote 𝐷 = {𝐼1, . . . , 𝐼𝑁 } as the images in the
dataset, where 𝑁 is the number of images, and 𝐷 ′ = {𝐼 ′1, . . . , 𝐼

′
𝑁
}

represents the reconstructed images that are generated by the ad-
versary reconstructor. Let Y = {𝑌1, . . . , 𝑌𝑀 } denote the set of the
target classes that the classifier is trained to predict, and 𝑌𝑖 =

{𝑦𝑖1, . . . , 𝑦𝑖𝑁 } denotes the corresponding labels of each class. Simi-
larly, we adoptZ = {𝑍1, . . . , 𝑍𝐾 } to denote the set of private classes
that the adversary classifier aims to infer, and 𝑍𝑖 = {𝑧𝑖1, . . . , 𝑧𝑖𝑁 }
denotes the corresponding labels of each private class.

3.1 Obfuscator
The obfuscator (𝑂) is a typical encoder which consists of an input
layer, multiple convolutional layers, max-pooling layers and batch-
normalization layers. The obfuscator is trained to hide privacy-
related information while retaining useful information for intended
classification tasks.

3.2 Classifier
The classifier (𝐶) is jointly trained with the obfuscator as a complete
CNN model. A service provider can choose any neural network ar-
chitecture for the classifier based on task requirements and available
computing resources. In DeepObfuscator, without loss of generality,
we adopt a popular CNN architecture VGG16 [33], and split it into
the obfuscator and the classifier.

The performance of the classifier 𝐶 is measured using the cross-
entropy loss function, which is expressed as:

L(𝐶) = −
N∑
𝑗=1

M∑
𝑖=1

𝑦𝑖 𝑗 𝑙𝑜𝑔(𝑦′𝑖 𝑗 ) + (1 − 𝑦𝑖 𝑗 )𝑙𝑜𝑔(1 − 𝑦′𝑖 𝑗 ), (1)

where (𝑦1𝑗 , . . . , 𝑦𝑀𝑗 ) denote the ground truth labels for the 𝑗th
data sample, and (𝑦′1𝑗 , . . . , 𝑦

′
𝑀𝑗

) are the corresponding predictions.
Therefore, the obfuscator and the classifier can be optimized by
minimizing the above loss function as:

𝜃𝑜 , 𝜃𝑐 = arg min
𝜃𝑜 ,𝜃𝑐

L(𝐶), (2)

where 𝜃𝑜 and 𝜃𝑐 are the parameters of the obfuscator and classifier,
respectively.

3.3 Adversary Classifier
By continuously querying the cloud service, an attacker can train
the adversary classifier (𝐴𝐶) using the eavesdropped features as
inputs and the interested private attributes as labels. An attacker
can infer private attributes via feeding the eavesdropped features
to the trained adversary classifier. In DeepObfuscator, we apply the
same architecture to both the classifier and the adversary classifier.
However, the attacker can choose any architecture for the adver-
sary classifier. As we shall show in Section 4.4, the performance of
using different architectures in both the classifier and the adversary
classifier will not be significantly different from the one that is
achieved using the same architecture.

Similar to the classifier, the performance of the adversary clas-
sifier 𝐴𝐶 is also measured using the cross-entropy loss function
as:

L(𝐴𝐶) = −
N∑
𝑗=1

K∑
𝑖=1

𝑧𝑖 𝑗 𝑙𝑜𝑔(𝑧′𝑖 𝑗 ) + (1 − 𝑧𝑖 𝑗 )𝑙𝑜𝑔(1 − 𝑧′𝑖 𝑗 ), (3)

where (𝑧1𝑗 , . . . , 𝑧𝑀𝑗 ) denote the ground truth labels for the 𝑗th
eavesdropped feature, and (𝑧′1𝑗 , . . . , 𝑧

′
𝑀𝑗

) stand for the correspond-
ing predictions. When we simulate an attacker who tries to enhance
the accuracy of the adversary classifier as high as possible, the ad-
versary classifier needs to be optimized by minimizing the above
loss function as:

𝜃𝑎𝑐 = arg min
𝜃𝑎𝑐

L(𝐴𝐶), (4)

where 𝜃𝑎𝑐 is the parameter set of the adversary classifier. On the
contrary, when defending against private attribute leakage, we
train the obfuscator in our proposed adversarial training procedure
that aims to degrade the performance of the adversary classifier
while improving the accuracy of the classifier. Consequently, the
obfuscator can be trained using Eq. 5 when simulating a defender:

𝜃𝑜 = arg min
𝜃𝑜

L(𝐶) − 𝜆1L(𝐴𝐶), (5)

where 𝜆1 is a tradeoff parameter.

3.4 Adversary Reconstructor
The adversary reconstructor (𝐴𝑅), which is trained to recover the
raw image from the eavesdropped features, also plays an attacker
role. The attacker can apply any neural network architecture in
the adversary reconstructor design. However, the worst case hap-
pens when an attacker knows the architecture of the obfuscator,
and then builds the most powerful reconstructor, i.e., an exactly
mirrored obfuscator by performing a layer-to-layer reversion. In
DeepObfuscator, we adopt the most powerful reconstructor as the
adversary reconstructor. The experiments in Section 4.4 show our
trained obfuscator can successfully defend against the brute-force
reconstruction attack when an attacker trains the reconstructor
with different neural network architectures.

When playing as an attacker, the adversary reconstructor is
trained to optimize the quality of the reconstructed image 𝐼𝑟 as
close as the original image 𝐼𝑜 . In DeepObfuscator, we leverage
MS-SSIM [20, 38] to evaluate the performance of the adversary
reconstructor, which is expressed as:

L(𝐴𝑅1) = 1 − MS-SSIM(𝐼𝑜 , 𝐼𝑟 ). (6)
The MS-SSIM value ranges between 0 and 1. The higher the

MS-SSIM value is, the more perceptual similarity can be found
between the two compared images, indicating a better quality of
the reconstructed images. Consequently, an attacker can optimize
the adversary reconstructor as:

𝜃𝑎𝑟 = arg min
𝜃𝑎𝑟

L(𝐴𝑅1), (7)

where 𝜃𝑎𝑟 is the parameter set of the adversary reconstructor. On
the contrary, a defender expects to degrade the quality of the recon-
structed image as much as possible. To this end, we generate one
additional Gaussian noise image 𝐼𝑛𝑜𝑖𝑠𝑒 . The adversary reconstruc-
tor is trained to make each reconstructed image similar to 𝐼𝑛𝑜𝑖𝑠𝑒
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but different from 𝐼𝑜 , and the performance of the classifier should
be maintained. When playing as a defender, the obfuscator can be
trained as:

L(𝐴𝑅2) = 1 − MS-SSIM(𝐼𝑛𝑜𝑖𝑠𝑒 , 𝐼𝑟 ) (8)
𝜃𝑜 = arg min

𝜃𝑜

L(𝐶) + 𝜆2 (L(𝐴𝑅2) − L(𝐴𝑅1)), (9)

where 𝜆2 is a tradeoff parameter.

3.5 Adversarial Training Algorithm
Algorithm 1 summarizes the proposed four-stage adversarial train-
ing algorithm. Before performing the adversarial training, we first
jointly train the obfuscator and the classifier without privacy con-
cern to obtain the optimal performance on the intended classifica-
tion tasks. Similarly, we also pre-train the adversary classifier and
adversary reconstructor for initialization. As Algorithm 1 shows,
within each epoch of training, each adversarial training iteration
consists of four batches. In the first two batches, we train the ob-
fuscator to defend against the adversary reconstructor and the
adversary classifier while keeping the classifier unchanged. For
the third batch, we optimize the adversary reconstructor and the
adversary classifier by simulating an attacker, but the parameters
of the obfuscator and the classifier are fixed. Finally, we optimize
the classifier to improve the classification accuracy on the intended
tasks.

4 EVALUATION
In this section, we evaluate DeepObfuscator’s performance on two
real-world datasets, with a focus on the utility-privacy tradeoff. We
also compare DeepObfuscator with existing solutions proposed in
the literature and visualize the results.

4.1 Experiment Setup
We implement DeepObfuscator with PyTorch, and train it on a
server with 4×NVIDIA TITAN RTX GPUs. We apply mini-batch
technique in training with a batch size of 64, and adopt the AdamOp-
timizer [13] with an adaptive learning rate in all four stages in the
adversarial training procedure. The architecture configurations of
each module are presented in Table 1. We deploy the trained ob-
fuscator on Google Pixel 2 and Pixel 3 to evaluate the real-time
performance.

We adopt CelebA [19] and LFW [14] for the training and testing
of DeepObfuscator. CelebA consists of more than 200K face images.
Each face image is labeled with 40 binary facial attributes. The
dataset is split into 160K images for training and 40K images for
testing. LFW consists of more than 13K face images, and each face
image is labeled with 16 binary facial attributes. We split LFW into
10K images for training and 3K images for testing.

4.2 Motivation
Before presenting our performance evaluations, we first verify our
motivation that defending against only reconstruction attack or
private attribute leakage is not inclusive to each other. We apply our
proposed adversarial training algorithm to defend against only one
of these two attacks each time, and evaluate the attack performance
on the other. In this experiment, we select ‘gender’ as the private
attribute. The results presented in Figure 2 verified our motivation.

Algorithm 1 Adversarial Training Algorithm
Input: Dataset D
Output: 𝜃𝑜 , 𝜃𝑐 , 𝜃𝑎𝑟 , 𝜃𝑎𝑐
1: Input: Dataset D
2: for 𝑒𝑣𝑒𝑟𝑦 𝑒𝑝𝑜𝑐ℎ do
3: for 𝑒𝑣𝑒𝑟𝑦 𝑓 𝑜𝑢𝑟 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do
4: if 𝑏𝑎𝑡𝑐ℎ 𝑖𝑑𝑥 𝑚𝑜𝑑 4 == 0 then
5: Defend against AR:
6: L(𝐶) + L(𝐴𝑅2) − L(𝐴𝑅1) → update 𝑂 (𝜃𝑜 )
7: else if 𝑏𝑎𝑡𝑐ℎ 𝑖𝑑𝑥 𝑚𝑜𝑑 4 == 1 then
8: Defend against AC:
9: L(𝐶) − L(𝐴𝐶) → update 𝑂 (𝜃𝑜 )
10: else if 𝑏𝑎𝑡𝑐ℎ 𝑖𝑑𝑥 𝑚𝑜𝑑 4 == 2 then
11: reconstruction attack:
12: L(𝐴𝑅1) → update 𝐴𝑅(𝜃𝑎𝑟 )
13: Infer private attributes:
14: L(𝐴𝐶) → update 𝐴𝐶 (𝜃𝑎𝑐 )
15: else
16: Recover C:
17: L(𝐶) → update 𝐶 (𝜃𝑐 )
18: end if
19: end for
20: end for

Table 1: The architecture configurations of each module.

Obfuscator Adversary Reconstructor Classifier & Adversary Classifier
conv3-64 Upsample 3×conv3-256
conv3-64 deconv3-128 maxpool
maxpool deconv3-64 3×conv3-512
conv3-128 Upsample maxpool
conv3-128 deconv3-64 3×conv3-512
maxpool deconv3-3 maxpool

2×FC-4096
FC-label length

sigmoid

One naïve solution of the exclusion of defending against recon-
struction attack and private attribute leakage is to first train an
obfuscator to defend against one of these two scenarios using the
adversarial training approach, and then continue to train the obfus-
cator to defend against the other one. However, this naïve solution
can not simultaneously defend against both the scenarios because
the parameters of the obfuscator keep being updated in the second
step. The above limitation motivates the design of DeepObfuscator.

4.3 Comparison Baselines
We select four types of data privacy-preserving baselines [17],
which have been widely applied in the literature, and compare
them with DeepObfuscator. The details settings of the baseline
solutions are presented as below.

• Noisy method perturbs the raw data 𝑥 by adding Gaussian
noise N(0, 𝜎2), where 𝜎 is set to 40 according to [17]. The
noisy data 𝑥 will be delivered to the data collector. The Gauss-
ian noise injected to the raw data can provide strong guaran-
tees of differential privacy using less local noise. This scheme
has been widely applied in federated learning [28, 36].

32



IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Ang Li1 , Jiayi Guo2 , Huanrui Yang1 , Flora D. Salim3 , Yiran Chen1

• DP approach injects Laplace noise the raw data 𝑥 with di-
verse privacy budgets {0.1, 0.2, 0.5, 0.9}, which is a typical
differential privacy method. The noisy data 𝑥 will be submit-
ted to the data collector.

• Encoder learns the latent representation of the raw data 𝑥
using a DNN-based encoder. The extracted features 𝑧 will be
uploaded to the data collector.

• Hybridmethod further perturbs the above encoded features
by performing principle components analysis (PCA) and
adding Laplace noise [25] with varying noise factors privacy
budgets {0.1, 0.2, 0.5, 0.9}.

4.4 Effectiveness of Defending Against
Reconstruction Attack

We quantitatively evaluate the quality of reconstructed images and
obtain the results through a human perceptual study. Before show-
ing quantitative results, we perform an experiment to simulate
reconstruction attack using different reconstructor architectures.
As introduced in Section 3.4, we adopt the most powerful decoder,
i.e., exactly the reverse of the obfuscator, as the adversary recon-
structor for training. However, an attacker may not be able to know
the architecture of the obfuscator, and hence the attacker may con-
duct a brute-force attack using the reconstructor with different
architectures. We implement three additional reconstructors as
attackers in our experiments. The architectural configurations of
those reconstructors are presented in Table 2. URec#1 and URec#2
are built based on the architecture of U-net [32], and ResRec is
implemented with ResNet [11] architecture. Each reconstructor is
separately trained with the same pre-trained obfuscator.

We again adopt the MS-SSIM to evaluate the quality of the re-
constructed images that are generated by each reconstructor, i.e.,
comparing the similarity between the reconstructed image and the
corresponding raw image. A smaller value of MS-SSIM implies less
similarity between the reconstructed image and the raw image, indi-
cating a more effective defense against reconstruction attacks. Table
3 presents the average MS-SSIM for attacking reconstructors on
testing data. The results show that although we apply the mirrored
obfuscator architecture for the adversary reconstructor when train-
ing the obfuscator, the trained obfuscator can effectively defend
against reconstruction attacks no matter what kinds of architecture
are adopted by an attacker in the reconstructor design.

Quantitative Evaluation. In addition to MS-SSIM, we also
adopt the Peak Signal to Noise Ratio (PSNR) – a widely used met-
ric of image quality, to evaluate the quality of the reconstructed
images. In this experiment, the obfuscator is trained by setting the
intended classification task as ‘smile’ and the private attribute as
‘gender’ in CelebA. Smaller values of MS-SSIM and PSNR indicate a
stronger defense against reconstruction attack. Table 4 presents the
average MS-SSIM and PSNR on the testing data of DeepObfuscator
and two baseline models. The result shows that DeepObfuscator is
the most effective one to defend against reconstruction attack and
the baseline models can hardly hide privacy information from the
features. Figure 4 illustrates several examples of the reconstructed
images. With our proposed adversarial training, the images that are
reconstructed from the obfuscated features become unrecognizable.
Even though directly applying Noisy method can hide more private

Table 2: Adversary reconstructor configurations.

URec#1 URec#2 ResRec
Input (54×44×128 feature maps)

conv3-64
conv3-64
conv3-64

conv3-64
conv3-64

transconv3-64[
3 × 3, 64
3 × 3, 64

]
× 2

Upsample
conv3-128
conv3-128
conv3-128

conv3-128
conv3-128

[
3 × 3, 64
3 × 3, 64

]
× 2

Upsample
conv3-256
conv3-256
conv3-256

conv3-256
conv3-256 conv1-3

conv3-3
conv1-3

conv3-3
conv1-3 sigmoid

sigmoid sigmoid

Table 3: MS-SSIM for different attack reconstructors.

Training Reconstructor Attack Reconstructor
AR in DeepObfuscator URec#1 URec#2 ResRec

AR in DeepObfuscator 0.3175 0.3123 0.3095 0.3169

information than apply Encoder method, the person in the image
that is reconstructed from noisy features can still be re-identified.
In summary, both quantitative evaluations and visual results show
that DeepObfuscator can effectively defend against reconstruction
attack.

Table 4: Average PSNR and MS-SSIM for DeepObfuscator
and two baseline models.

Metric DeepObfuscator Encoder Noisy
MS-SSIM 0.3175 0.9458 0.7263
PSNR 6.32 27.81 16.97

Human Perceptual Study.We also conduct an online human
perceptual study to directly examine whether a person in a recon-
structed image can be re-identified by humans. This study consists
of 10 questions, each of which includes one reconstructed image
and four raw images as options. One of the four options contains
the person in the reconstructed image. Participants are instructed
to choose the option that looks like the person the most in the
reconstructed image. There is no time limit about how long the
participants can see these images. Figure 5 shows one example
question in the survey. It is very difficult to find hints from the
reconstructed image to identify the correct answer, i.e., Figure 5(e).
There are 40 participants involved in this survey and each partici-
pant can only submit one response, hence, we collect 40 responses
in total in this study. The average re-identification accuracy of 10
questions is 28%, which is very close to a random guess, i.e., 25% for
4 options. Furthermore, we can imagine if there is no option offered
to an attacker, it will become more challenging to re-identify the
person from the reconstructed image alone.
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Figure 4: The comparison between reconstructed images
with DeepObfuscator and two baseline models.

4.5 Effectiveness of Defending Against Private
Attribute Leakage

Comparison of utility-privacy tradeoff:We compare the utility-
privacy tradeoff offered by DeepObfuscator with four privacy-
preserving baselines. In our experiments, we set ‘gender’ and ‘heavy
makeup’ as the private attributes to protect in CelebA, and consider
detecting ‘smile’ and ‘high cheekbone’ as the intended classification
tasks to evaluate the utility. With regard to LFW, we set ‘gender’
and ‘Asian’ as the private labels, and choose recognizing ‘black
hair’ and ‘eyeglass’ as the intended classification tasks. Figure 6
summarizes the utility-privacy tradeoff offered by four baselines
and DeepObfuscator. Here we evaluate DeepObfuscator with four
discrete choices of 𝜆1 ∈ {1, 2, 5, 10} while setting 𝜆2 = 1. Note that
the evaluation metric of privacy is defined as the classification ac-
curacy of private attributes that we aim to protect, hence, the lower
accuracy of private attributes indicates a better privacy protection.
Therefore, the ideal case for the utility-privacy tradeoff should be in
the lower right corner, which represents achieving the maximized
utility while offering the strongest privacy protection.

As Figure 6 shows, although DeepObfuscator cannot always
outperform the baselines in both utility and privacy, it still achieves
the best utility-privacy tradeoff under most experiment settings. For
example, in Figure 6(h), DeepObfuscator achieves the best tradeoff
by setting 𝜆1 = 1. Specifically, the classification accuracy of ‘Asian’
on LFW is 52.37%, and the accuracy of ‘eyeglass’ is 84.47%. This

(a) (b) (c)

(d) (e)

Figure 5: An example question of the human perceptual
study. (a) is the reconstructed image, and (b)-(e) are the four
options.

demonstrates that DeepObfuscator can efficiently protect privacy
while maintaining high accuracy of intended classification tasks.

In other four baselines, Encoder method can maintain best utility
of the extracted features, but it fails to protect privacy due to the
high accuracy of private attributes achieved by the attacker. Hybrid
method can provide the most effective privacy protection, but the
accuracy of intended classification tasks is unacceptable. In general,
Noisy, DP and Hybrid methods offer strong privacy protection with
sacrificing the utility.

Impact of the utility-privacy budget 𝜆1: An important step
in the hybrid learning procedure is to determine the utility-privacy
budget 𝜆1 and 𝜆2. Due to a large number of possible combinations
of 𝜆1 and 𝜆2, we set 𝜆2 = 1 while varying 𝜆1 in this experiment. To
determine the optimal 𝜆1, we evaluate the utility-privacy tradeoff
on CelebA and LFW by setting different 𝜆1. Specifically, we evaluate
the impact of 𝜆1 with four discrete choices of 𝜆 ∈ {1, 2, 5, 10}.

For experiments using CelebA, we choose detecting ‘smile’ and
‘high cheekbone’ as the intended classification tasks, and ‘gender’
and ‘heavy makeup’ as the private attributes that the attacker aims
to infer from the obfuscated features. We design 6 testing sets using
different combinations of those attributes: (1) {smile, gender}; (2)
{high cheekbone, gender}; (3) {smile, high cheekbone, gender}; (4)
{smile, gender, heavy makeup}; (5) {high cheekbone, gender, heavy
makeup}; (6) {smile, high cheekbone, gender, heavy makeup}. In
fact, those six testing sets can be divided into two groups: the first
three sets only contain one private attribute, and the last three
sets include two private attributes. Within each group, we explore
how the different numbers of the intended classification tasks will
affect the protection of the private attributes. In addition, if we
compare each testing set between two groups accordingly, we can
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Figure 6: Utility-privacy tradeoff comparison ofDeepObfuscatorwith four baselines onCelebA and LFW. The higher the utility
score, the better. The lower the privacy score, the better. Therefore, the best performing algorithms are those located towards
the bottom right quadrant.

investigate how the accuracy of the intended tasks will change with
the number of the private attributes that need to be protected.

Figure 7 shows the average accuracy of intended tasks and pri-
vate attributes using the classifier and adversary classifier which
are trained in the way adopted by DeepObfuscator. With the pro-
posed adversarial training, DeepObfuscator can effectively prevent
private attributes from being inferred by an attacker while only
incurring a small accuracy drop on the intended classification tasks.
In general, the larger 𝜆1 can provides a stronger privacy protection
(i.e., lower accuracy of private attributes), but degrades the perfor-
mance on intended classification tasks. For example, as Figure 7
shows, the accuracy of ‘gender’ decreases from 58.85% to 55.85%
and the accuracy of ‘smile’ decreases from 91.53% to 89.52%, when
increasing 𝜆1 from 1 to 10. However, with the increasing 𝜆1, the per-
formance drop of both private attributes and intended classification
tasks will be marginal.

If we compare Figure 7(c) vs. Figure 7(a-b) and Figure 7(f) vs.
Figure 7(d-e), given a particular 𝜆1, it can be observed that perform-
ing more intended tasks will weaken the defense against private
attribute leakage due to the intrinsic correlation between the in-
tended tasks and the private attributes that an attacker aims to
infer. Specifically, the accuracy of ‘gender’ slightly increases from
58.85% in Figure 7(a) and 59.79% in Figure 7(b) to 63.96% in Figure
7(c) when setting 𝜆1 = 1. Similarly, the accuracy of ‘gender’ and
‘heavy makeup’ increase by 1% from Figure 7(d-e) to Figure 7(f).
In addition, by comparing Figure 7(a-c) vs. Figure 7(d-f), we found
that protecting more private attributes leads to slight decrease in
the accuracy of the intended tasks under a specific 𝜆1. For example,
the accuracy of ‘smile’ slightly decreases from 91.53% in Figure

7(a) to 90.89% in Figure 7(d) when setting 𝜆 = 1. The reason is
that the feature related to the private attributes has some intrinsic
correlations to the feature related to the intended tasks. Therefore,
more correlated features may be hidden if more private attributes
need to be protected. As a result, the performance of the intended
tasks becomes harder to maintain.

Similar to the above experiments on CelebA, in LFW, we choose
recognizing ‘eyeglass’ and ‘black hair’ as the intended classification
tasks, and ‘gender’ and ‘Asian’ as the private attributes that the
attacker aims to infer from the obfuscated features. We also design
6 testing sets using different combinations of those attributes: (1)
{eyeglass, gender}; (2) {black hair, gender}; (3) {eyeglass, black hair,
gender}; (4) {eyeglass, gender, Asian}; (5) {black hair, gender, Asian};
(6) {eyeglass, black hair, gender, Asian}. As same as the settings
for CelebA, those six testing sets can be divided into two groups:
the first three sets only contain one private attribute, and the last
three sets include two private attributes. We also conduct the same
intra-group and inter-group comparisons as the above evaluations
on CelebA.

Generally, we observed the result as same as that of CelebA -
performing more intended tasks will weaken the defense against
private attribute leakage given a specific 𝜆1. For example, if we com-
pare Figure 8(c) vs. Figure 8(a-b), the accuracy of ‘gender’ slightly
increases from 56.27% in Figure 8(a) and 57.23% in Figure 8(b) to
59.74% in Figure 8(c) with 𝜆1 = 1. Similarly, the accuracy of ‘gender’
and ‘Asian’ increase by 1% from Figure 8(d-e) to Figure 8(f). In ad-
dition, by comparing Figure 8(a-c) vs. Figure 8(d-f), we also found
that protecting more private attributes leads to slight decrease in
the accuracy of the intended tasks. For example, the accuracy of
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Figure 7: The impact of the utility-privacy budget 𝜆1 on CelebA. (𝜆2 = 1)
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Figure 8: The impact of the utility-privacy budget 𝜆1 on LFW. (𝜆2 = 1).

‘eyeglass’ slightly decreases from 92.78% in Figure 8(a) to 91.25% in
Figure 8(d) when setting 𝜆1 = 1.

Cross-Dataset Evaluation.We also conduct cross-dataset eval-
uations by training the obfuscator using either CelebA or LFW
dataset and test the performance on the other dataset. Specifically,
we choose recognizing ‘black hair’ as the intended classification
task, and ‘gender’ as the private attribute that the attacker aims to
infer from the obfuscated features. As Table 5 illustrates, the obfus-
cator that is trained using one dataset can still effectively defend

against private attribute leakage on the other dataset, while main-
taining the classification accuracy of the the intended classification
task. For example, if we train the obfuscator using CelebA and then
test it on LFW, the accuracy of ‘gender’ decreases to 53.74% com-
pared with 57.23% by directly training the obfuscator using LFW.
The accuracy of ‘black hair’ marginally increases to 94.79% from
94.31%. The reason is that CelebA offers a larger number of training
data so that the obfuscator can be trained for a better performance.
Although there is a marginal performance drop, the obfuscator that
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Table 5: Evaluate the transferability of DeepObfuscator with
cross-dataset experiments.

Test Dataset Training Dataset ‘gender’ ‘black hair’
LFW CelebA 53.74% 94.79%
LFW LFW 57.23% 94.31%
CelebA LFW 59.87% 93.57%
CelebA CelebA 58.82% 94.88%

Table 6: Performance of running the learned obfuscator on
Google Pixel 2 and Pixel 3.

Smartphone Latency (ms) Storage (MB) Energy (mJ)
Google Pixel 2 105 5.6 2.8
Google Pixel 3 101 5.6 2.7

is trained using LFW still works well on CelebA. The cross-dataset
evaluations demonstrate the transferability of DeepObfuscator.

4.6 Performance on Smartphones
We evaluate the real-time performance of deploying the trained
obfuscator on Google Pixel 2 and Pixel 3, including latency, storage
and energy consumption. We randomly select 1000 images from
CelebA, and feed them into the trained obfuscator which is deployed
on smartphones. The averaged results are summarized in Table 6.
The learned obfuscator only occupies 5.6 MB of memory, costs 101-
105 ms for extracting features, and consumes 2.7-2.8 mJ of energy
for each feature extraction pass.

5 CASE STUDIES
5.1 Case Study on Driver Behavior Recognition
Besides facial recognition tasks which are binary classifications,
performing evaluations on multi-class tasks are essential to verify
DeepObfuscator’s performance. Therefore, we also evaluate Deep-
Obfuscator on StateFarm dataset [12] that contains 22424 images
(17939 for training, 4485 for testing) of 10 different driver behaviors
from 26 people. In this experiment, driver behavior recognition is
considered as an intended taskwhile the driver’s identity is a private
attribute we want to protect. We consider the Encoder presented
in Section 4.1 as the compared baseline. With our adversarial train-
ing method, the accuracy of driver behavior classification slightly
drops from 98.32% to 95.49%, but the accuracy of driver identity
recognition decreases significantly from 99.97% to 30.38%. Figure
9 shows the images reconstructed using the features encoded by
DeepObfuscator, indicating that DeepObfuscator still successfully
defend against the attacker’s reconstruction attack.

5.2 Case Study on Text Data
DeepObfuscator can be easily extended to many other applications
with various modalities of data. For example, we replace the CNN
architecture with LSTM-based architecture in DeepObfuscator, and
then evaluate performance on TwitterAAE dataset described in
[3]. TWitterAAE consists of 166K and 10K tweets for training and
testing, respectively. In our experiment, binary mention detection

Table 7: The architecture configurations of LSTM-based
module.

Obfuscator Classifier & Adversary Classifier
Embedding-300 2×LSTM-300

LSTM-300 FC-150
ReLU

FC-label length

is considered as an intended task while the race (AAE (African-
American English) or SAE (Standard American English) ) is a bi-
nary private attribute we aim to protect. The mention detection
is a binary classification task to determine if a tweet mentions an-
other user, i.e, classifying conversational vs. non-conversational
tweets. The architecture configurations are presented in Table 7.
With applying DeepObfuscator, the mention detection accuracy
marginally drops from 81.69% to 81.38%, however, the accuracy
of race classification decreases from 79.86% to 52.78%, which is a
totally random-guessing level.

5.3 Comparison with PAN
PAN [17] also provides privacy protection against the reconstruc-
tion attack by introducing a loss function for the adversary recon-
structor, and the loss function is based on the Euclidean distance
between a raw image and a reconstructed image. In the adversarial
training, PAN aims to enlarge the difference between the raw im-
age and the reconstructed image in terms of pixel-wise distance. In
contrast to PAN, we adopt MS-SSIM as the metric to evaluate the
perceptual similarity between the raw image and the reconstructed
image in the loss function. More important, DeepObfuscator makes
each reconstructed image similar to a crafted Gaussian noise im-
age which is utilized in training, but significantly different from
the raw image in terms of MS-SSIM. Here, we compare the effec-
tiveness of defending against the reconstruction attack between
DeepObfuscator and PAN via visualizing the reconstructed images.
Specifically, we replace our loss function with PAN’s Euclidean
distance based loss function for comparisons, but keep anything
else unchanged. As Figure 10 shows, with applying the PAN’s loss
function, several pixels around the face are significantly changed in
the reconstructed images compared with the raw images. However,
the key features of the person in the reconstructed images can still
be easily identified. On the contrary, it is very difficult to identify
distinguishable information from the reconstructed images when
applying DeepObfuscator.

6 DISCUSSION
We evaluate the real-time performance of running the learned ob-
fuscator on smartphones, and results show the applicability of
our proposed method. However, the efficiency is a major concern
about deploying the learned obfuscator on resource-constrained
smartphones and edge devices. We have not perform the model
optimization for the obfuscator in terms of efficiency. Numerous
works have been done for model compression, such as quantiza-
tion [8], pruning [9], etc. We propose to apply those approaches
to optimize the efficiency of running the learned obfuscator on
smartphone.
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(a) raw images (b) reconstructed images with applying En-
coder

(c) reconstructed images with applying Deep-
Obfuscator

Figure 9: Reconstructed images of the driver behavior recognition task.

(a) raw image (b) reconstructed im-
age using PAN’s loss
function

(c) reconstructed im-
age using DeepOb-
fuscator

Figure 10: Examples of reconstructed images using DeepOb-
fuscator and PAN.

We evaluate DeepObfuscator on image and text datasets, but it
can be easily extended to many other applications. For example,
if we replace the CNN architecture with a task-specific recurrent
neural network, it is also feasible to apply DeepObfuscator to other
data modalities, such as sensor data (e.g., accelerometer, gyroscope).
We will evaluate DeepObfuscator using various formats of data in
the future work.

Even though DeepObfuscator attains a notably better privacy-
utility tradeoff than existing works, it requires the prior knowledge
of primary learning tasks before training. If the primary learning
tasks are changed, we need to retrain the DeepObfuscator from

scratch to achieve a good privacy-utility tradeoff. However, such
requirement may limit the applicability and generalization of Deep-
Obfuscator in practice. We plan to augment DeepObfuscator with
information theory-based method such that that the learned feature
extractor can hide the privacy information from the intermediate
representations; while maximally retaining the original information
embedded in the raw data.

7 CONCLUSION
We proposed an adversarial training framework DeepObfuscator
for privacy-preserving image classifications by simultaneously de-
fending against both reconstruction attack and private attribute
leakage. DeepObfuscator consists of an obfuscator, a classifier, an
adversary reconstructor and an adversary classifier. The obfusca-
tor is trained using our proposed end-to-end adversarial training
algorithm to hide sensitive information which can be exploited to
reconstruct raw images and infer private attributes by an attacker.
Useful features for the intended classification tasks are still retained
by the obfuscator. The adversary reconstructor and adversary clas-
sifier play an attacker role in the adversarial training procedure,
aiming to reconstruct the raw image and infer private attributes
from the eavesdropped features. Evaluations on CelebA and LFW
datasets show that the quality of the reconstructed images from the
obfuscated features is significantly decreased from 0.9458 to 0.3175
in terms of MS-SSIM, indicating the person on the reconstructed im-
ages is hardly to be re-identified. The classification accuracy of the
inferred private attributes that can be achieved by the attacker sig-
nificantly drops down to a random-guessing level, but the accuracy
of the intended classification tasks performed via the cloud service
drops by mere 2%. The cross-dataset evaluations demonstrate the
transferability of DeepObfuscator, indicating a great practicability
in the real world.
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