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Abstract-As mobile computing and cloud computing con
verge, the sensing and interaction capabilities of mobile devices 
can be seamlessly fused with compute-intensive and data-intensive 
processing in the cloud. Cloudlets are important architectural 
components in this convergence, representing the middle tier of 
a mobile device - cloudlet - cloud hierarchy. We show how 
cloudlets enable a new genre of applications called cognitive 
assistance applications that augment human perception and 
cognition. We describe a plug-and-play architecture for cognitive 
assistance, and a proof of concept using Google Glass. 

I. INTRODUCTION 

"Augmenting Cognition" [20], a thought piece written in 
2004, imagined a world with real-time cognitive assistance for 
mobile users: 

"Looking toward the future, we can envision comput
ing technologies converging in tantalizing ways to augment 
cognition. For example, imagine a wearable computer with 
a head-up display in the form of eyeglasses and with 
a built-in camera for continuous face recognition. This 
would offer the essentials of an augmented-reality system 
to aid cognition." 

A decade is a long time in computing. When this futuristic 
world was imagined in 2004, many of the technologies that 
we take for granted today did not exist. Smartphones, Google 
Glass, and elastic cloud computing had yet to be invented. 
What has not changed are human limitations. Already scarce 
in 2004, human attention is even scarcer today. Mobile real
time cognitive assistance offers a powerful antidote to high
distraction environments. By unobtrusively and spontaneously 
guiding a user's attention, such a system can reduce the impact 
of external distractions and help maintain full situational 
awareness. It can also help with just-in-time learning of new 
skills, which has already become a meta-skill of enormous 
value in an ever-changing world. 

Today, we have the building blocks of technology needed 
to achieve our decade-old dream. Available to us are wearable 
computers, ubiquitous wireless networks, cloud computing 
resources, and cognitive algorithms that equal or exceed human 
accuracy and speed in tasks such as computer vision, speech 
recognition, natural language translation, and question answer
ing. How do we put these together to create systems that can 
provide real-time cognitive assistance for mobile users? That is 
the focus of this paper. We describe a system architecture and 
a proof-of-concept demonstration that point the way to many 
rapid advances in the coming decade. A critical insight is that 
cloud computing itself will have to change architecturally in or
der to support the low-latency resource-intensive computations 
that occur within the innermost loops of cognitive assistance. 
The need to support cognitive assistance within very tight time 
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bounds will inspire many innovations in mobile and cloud 
computing over the next decade. Indeed, real-time cognitive 
assistance may become the "killer app" that shapes mobile 
computing in the next decade. 

II. MOBILE REAL- TIME COGNITIVE ASSISTANCE 

In his visionary essay "As We May Think," Vannevar Bush 
imagined the existence of a device called a "Memex" that 
would extend and amplify human thought [5]. Written in 
1945, this is the earliest recognition that computing might 
be harnessed to augment human cognition. Prior to Bush, 
computing devices had been seen primarily as engines to 
reduce the drudgery of laborious mathematical calculations. 
Today, one can view the Internet and the World Wide Web as 
a collective Memex for society. The Memex was an inspired 
early answer to the question, "How can computers help 
humans be smarter?" This question assumes renewed urgency 
today. The improvements to intellectual productivity that began 
at the dawn of computing and continued through the advent 
of personal computing, the Internet and the World Wide Web 
have now plateaued. How will we re-energize and extend our 
quest for intellectual productivity? 

We start by recognizing that the scarcest resource in a 
computing system is no longer its processor, memory, storage 
capacity, network bandwidth, or even battery life. Rather, it is 
user attention - the ability of the human user (who is the 
most essential part of the whole system) to stay focused on 
the task at hand, ignoring all distractions. Herb Simon's 1971 
observation that " .. . a wealth of information creates a poverty of 
attention ... " [22] is truer today than ever before. Mark Weiser 
made the same point in a different way in 1991 [24]: "The 
most profound technologies are those that disappear. They 
weave themselves into the fabric of everyday life until they 
are indistinguishable from it." The Aura project [9] had low 
distraction as its central theme. 

This line of thinking leads to the question, "How do we 
augment human cognition in a way that is minimally distract
ing?" A modern GPS-based car navigation system offers some 
important clues. You start by giving it high-level information 
about the destination. From that point onwards, the system 
requires no babysitting. Occasionally, it offers you helpful just
in-time voice-synthesized guidance about upcoming actions 
that you need to take. If you ignore a suggestion (e.g., by 
missing an exit), the system recognizes this promptly and 
adapts to your behavior by reformulating its route and offering 
you new guidance. Most of the time, it remains silent but alert. 
The complex technology needed to achieve this simplicity 
(e.g., satellites, wireless communication, GPS receiver chips, 
route planning and optimizing algorithms, and voice synthesis 
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Ron was wounded in Afghanistan and is slowly recovering from 
traumatic brain injury. He is often unable to remember the 
names of friends and relatives. He also forgets to do simple 
daily tasks. Fortunately, his cognitive assistance system offers 
hope. When Ron looks at a person for a few seconds, that 
person's name is whispered in his ear along with additional 
cues to guide Ron's greeting and interactions; when he looks 
at his thirsty houseplant, he hears "water me"; when he looks 
at his dog, he hears "take me out." Ron's cognitive assitance 
system travels with him, and is always ready to help him. 

(a) Disabled Veteran 

John has been really good on his new diet for three weeks. 
He has been strongly advised by his doctor to lose weight, 
because he is on the verge of Type-2 diabetes. Today, at a 
dinner with friends, John's resolve has been sorely tested but 
he has been able to resist all temptations so far. Alas, the 
dessert course is his downfall. When the mouth-watering tray of 
delicacies is brought before him, he can hold back no longer. 
As he reaches for the 1200-calorie pecan pie with whipped 
cream, his cognitive assistance system screams in his ear and 
stops him cold. John has been able to stay on his diet for 
another day. 

(c) Health and Wellness 

Fig. 1. Hypothetical Cognitive Assistance Scenarios 

algorithms) are totally invisible to the user. The system has 
transformed the difficult task of navigating unfamilar terrains 
into a trivial exercise in following directions. 

Can we generalize this metaphor? Can we transform un
familar and difficult-to-learn tasks in professional and personal 
settings into simple just-in-time guidance from a system that 
is tolerant of human errors and limitations? The emergence 
of wearable computers such as Google Glass is a powerful 
catalyst and game-changer. By combining the rich sensing 
capabilities of such devices with the plentiful resources of 
cloud computing and algorithmic advances in the building 
blocks of human cognition, we can fundamentally transform 
the learning of new skills and the reinforcement of existing 
skills. Figure 1 illustrates the future we are trying to create. In 
the rest of this paper, we will abbreviate the phrase "mobile 
real-time cognitive assistance" to just "cognitive assistance." 

III. CHALLENGES AND THE ROLE OF CLOUDLETS 

A. Crisp Interactive Response 

Humans are acutely sensitive to delays in the critical path 
of interaction. This is apparent to anyone who has used a 
geosynchronous satellite link for a telephone call. The nearly 
500 ms round-trip delay is distracting to most users, and leads 
to frequent conversational errors. 

Normal human performance on cognitive tasks is remark
ably fast and accurate. Lewis et al. [14] report that even 
under hostile conditions such as low lighting and deliberately 
distorted optics, human subjects take less than 700 millisec
onds to determine the absence of faces in a scene. For face 
recognition under normal lighting conditions, experimental 
results on human subjects by Ramon et al. [18] show that 
recognition times range from 370 milliseconds for the fastest 
responses on familiar faces to 620 milliseconds for the slowest 
response on an unfamiliar face. For speech recognition, Agus 
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For Sara, transitioning from her EMT training to the field is a 
daunting experience. Here she is with her first emergency, a 
middle-aged woman who has fallen to the ground after being 
stung by a wasp at a state fair. With her own pulse racing, 
amidst the distraction of the milling crOWd, Sara tries to re
member the protocol for allergic reaction when her cognitive 
assistance system says, "Check for respiratory distress." When 
Sara responds "present," the voice says, "epinephrine injection 
device - thigh." Point by point, Sara is led through her protocol 
until the woman's wheezing begins to subside. 

(b) Medical Training 

On a busy travel day, a People Mover at the airport is down. 
It is exhibiting jerky motion and behaving in an unsafe way 
not seen before. Jane, the lead engineer has run out of ideas. 
Nothing in her extensive experience matches this situation. 
Sensing her stress, her cognitive asisstance system suggests 
that she check a recent incident report from an Asian airport 
with the same People Mover. This proves to be a winning idea. 
The symptoms appear to be similar, so Jane tries the same 
fix: reverting a recent software upgrade on the wayside com
puter. Within minutes the problem is solved and the People 
Mover is back in service. 

(d) Industrial Troubleshooting 

et al. [1] report that human subjects recognize short target 
phrases within 300 to 450 ms, and are able to detect a 
human voice within a mere 4 ms. Ellis et al. [6] report 
that virtual reality applications that use head-tracked systems 
require latencies less than 16 ms to achieve perceptual stability. 

More generally, assistive technology that is introduced into 
the critical paths of perception and cognition should add neg
ligible delay relative to the task-specific human performance 
figures cited above. End-to-end delays of more than a few tens 
of milliseconds will distract and annoy a mobile user who is 
already attention challenged. Note that it is not sufficient to just 
match human performance in recognition speed. It is necessary 
to be superhuman in speed without sacrificing accuracy in 
order to leave time within a very tight budget for additional 
processing to compose user guidance. 

B. Need for Offioading 

Cognition is not just latency-sensitive but also compute
intensive and memory-intensive. Tasks such as object recog
nition and natural language translation require server class 
hardware today. While wearable devices will continue to 
improve over time, they will always be resource-poor relative 
to server hardware of comparable vintage [19]. Figure 2, 
adapted from Flinn [8], illustrates the consistent large gap 
in the processing power of typical server and mobile device 
hardware over a 16-year period. This stubborn gap reflects 
a fundamental reality of user preferences. To be successful 
in the marketplace, mobile devices have to exploit Moore's 
Law very differently from how it is exploited by server class 
hardware. The most sought-after features of a wearable device 
are light weight, small size, long battery life, comfort and 
aesthetics, and tolerable heat dissipation. System capabilities 
such as processor speed, memory size, and storage capacity 
are only secondary concerns. 



Typical Server Typical Handheld 
or Wearable 

Year Processor Speed Device Speed 

1997 Pentium® II 266 MHz Palm Pilot 16 MHz 

2002 Itanium® 1 GHz Blackberry 133 MHz 
5810 

2007 Intel® 9.6 GHz Apple 412 MHz 
Core™ 2 (4 cores) iPhone 

2011 Intel® 32 GHz Samsung 2.4 GHz 

Xeon® X5 (2x6 cores) Galaxy S2 (2 cores) 

2013 Intel® 64 GHz Samsung 6.4 GHz 

Xeon® E5 (2x12 cores) Galaxy S4 (4 cores) 

Google Glass 2.4 GHz 
OMAP 4430 (2 cores) 

Fig. 2. Evolution of Hardware Performance (adapted from Flinn [8]) 

Response time and battery life can often be improved 
by offloading the execution of cognitive algorithms from a 
wearable device over a wireless network to the cloud. The rich 
sensing capabilities of a mobile device (such as accelerometer, 
gyroscope, microphone, and camera) can then be combined 
with compute-intensive or data-intensive cloud processing. The 
Apple Siri voice recognition system, the Google Goggles 
augmented reality system, and the Amazon Silk browser are 
examples of commercial systems that use this approach. 

C. Squaring the Circle: How Cloudlets Can Help 

It is difficult to simultaneously satisfy the need for crisp, 
low-latency interaction and the need for offloading processing 
from a wearable device. The obvious solution of using com
mercial cloud services (such as Amazon EC2) over a wide
area network (WAN) is unsatisfactory because WAN round trip 
times (RTTs) are too long. As a user travels, his mobile device 
experiences high variability in the end-to-end network latency 
and bandwidth to cloud data centers. In their study of cloud 
services, Li et al. [15] report an average RTT of 74 millisec
onds from 260 global vantage points to their optimal Amazon 
EC2 instances. The RTT distribution on WANs tends to be 
heavy-tailed, with many individual round trips taking hundreds 
to thousands of milliseconds. The situation is unlikely to 
improve on its own, because cOlmnercial service providers are 
focused on improving network bandwidth for video streaming 
rather than lowering end-to-end latency. In today's Internet, 
how do we enable cognitive assistance applications that need 
cloud resources at consistently low end-to-end latency? 

We can introduce a new degree of freedom into this 
overconstrained design space by using cloudlets [21], as shown 
in Figure 3. A cloudlet is a new architectural element that 
represents the middle tier of a 3-tier hierarchy: mobile device 
- cloudlet - cloud. It can be viewed as a "data center 
in a box" whose goal is to "bring the cloud closer." As a 
powerful, well-connected and trustworthy cloud proxy that is 
just one wireless hop away, a cloudlet is the ideal offload 
site for cognitive assistance. Although widespread commercial 
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deployment of cloudlets is not yet a reality, there is grow
ing commercial investment in cloudlet-like infrastructure. For 
example, Nokia recently announced the availability of RACS 
(Radio Access Cloud Platform) [17] for use in 4G cellular 
systems. A number of companies including Dell, AOL, and 
Huawei have introduced hardware for micro data centers [16] 
that could easily be repurposed as cloudlets. 

We envision cloudlets being used as follows. The user's 
cognitive assistance device (such as Glass) discovers and 
associates with a nearby cloudlet. It then uses this cloudlet 
for all offload processing. Optionally, the cloudlet may reach 
out to the cloud for various services such as centralized error 
reporting, usage logging or prefetching of data. However, all 
such cloudlet-cloud interactions are outside the critical latency
sensitive path of device-cloudlet interactions. As the mobile 
user departs from the proximity of this cloudlet, a mechanism 
analogous to cellular handoff is invoked. This seamlessly 
associates the user with another cloudlet for further travel. 

IV. THE PLUG AND PLAY GABRIEL PLATFORM 

The domain-specific knowledge and software development 
effort involved in creating and validating an implementation 
of a cognitive algorithm are large. There is rapid innovation in 
this space by many different teams worldwide, often motivated 
by use cases unrelated to cognitive assistance. Many algorithm 
designs and implementations have been developed and refined 
over the years for tasks such as face recognition [25], activity 
recognition in video [23], natural language translation [2], 
OCR [10], and question-answering technology [7]. These 
cognitive engines are written in a variety of programming 
languages and use diverse runtime systems. Some of them 
are proprietary, some are written for closed source operating 
systems, and some use proprietary optimizing compilers. Each 
cognitive engine typically represents many tens to hundreds 
of person years of effort by experts in that domain. To the 
maximum extent possible, we would like to reuse this large 
existing investment without any rewriting of software, or 
imposition of rigid standards. We would also like to stimulate 
the creation of new cognitive engines that leverage new results 
or new software components. In colloquial terms, we would 
like to support "plug and play" simplicity in reusing existing 
cognitive engines or adding new cognitive engines. 

To address these requirements, we have created an open 
source platform for cognitive assistance called Gabriel that 
runs on cloudlets. Gabriel uses virtual machine (VM) encap
sulation of cognitive engines and interconnects these VMs 
using a publish-subscribe (PubSub) mechanism for efficient 
sharing of sensor data that is streamed from a wearable device. 
Figure 4 illustrates Gabriel's back-end processing structure on 
a cloudlet. An ensemble of cognitive VMs, each encapsulat
ing a different cognitive engine, independently processes the 
incoming flow of sensor data from a Glass device. A single 
control VM is responsible for all interactions with the Glass 
device. The sensor streams sent by the device are received 
and preprocessed by this VM. For example, the decoding of 
compressed images to raw frames is performed by a process 
in the control VM. This avoids duplicate decoding within each 
cognitive VM. A PubSub mechanism distributes sensor streams 
to cognitive VMs. At startup, each VM discovers the sensor 
streams of interest through a UPnP discovery mechanism. 
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Fig. 3. Two-Level Cloud-Cloudlet Architecture 

The outputs of the cognitive VMs are sent to a single 
User Guidance VM that integrates these outputs and performs 
higher-level cognitive processing. From time to time, this 
processing triggers output for user assistance. For example, in 
an assistive application for Alzheimer's patients, a synthesized 
voice may say the name of a person whose face appears in the 
Glass device's camera. It may also convey additional guidance 
for how the user should respond, such as "John Smith is trying 
to say hello to you. Shake his hand." As Gabriel evolves, we 
envision significant improvement in user experience to come 
from sophisticated, higher-level cognitive processing in the 
User Guidance VM. 

Context-sensitive control of sensors on the Glass device is 
achieved through a context inference module in the Control 
VM. Significant improvements in battery life and usability are 
possible if high-level knowledge of user context is used to 
control sensors on a wearable device. For example, consider 
a user who falls asleep in his chair at home while watching 
TV. While he is asleep, his Glass device does not have to 
capture video and stream it for cognitive assistance. In fact, 
offering whispered hints during his nap might wake him up and 
annoy him. When he wakes up of his own accord, cognitive 
assistance should resume promptly. The challenge is, of course, 
to reliably distinguish between the user's sleeping and waking 
states. This is the classic problem of activity recognition from 
body-worn sensor data, on which significant progress has been 
made in the recent past. These results can be extended to infer 
context and then use it for adaptive control of sensor streams. 

This problem has many subtle aspects. In the above exam
ple, if the user falls asleep in a bus or metro rather than in his 
living room, the cognitive assistance system should give him 
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timely warning of his approaching exit even if it wakes him up 
from his pleasant nap. In this case, location sensing will need 
to remain turned on during his nap even though other sensors 
(such as the camera) may be turned off. More generally, tight 
coupling of sensing and context inference in a feedback loop 
is valuable in a cognitive assistance system. 

V. PROOF OF CONCEPT: 2D LEGO ASSEMBLY 

To gain initial validation of the cognitive assistance concept 
and to obtain first-hand experience with its implementation 
challenges, we have built a full end-to-end prototype of a 
very simple cognitive assistance application. Simplicity was 
essential for keeping the implementation effort of this proof 
of concept modest. Our application uses Google Glass and the 
Gabriel architecture to guide a user in assembling 2D models 
(such as those shown in Figure 5) using the Lego product Life 
of George [13]. In addition to colored Lego blocks, the product 
also includes a board with a special black dot pattern and a 
color palette, as shown in Figure 6. Our processing uses the 
dot pattern, but does not use the color palette. The restriction 
to two dimensions simplifies the computer vision aspects of 
this application. A YouTube video of our implementation can 
be found at http://youtu . be/uyl 7Hz5xvmY. 

Video from the camera on the Glass device is streamed 
to the cloudlet. Processing of video frames and creation of 
guidance are done entirely on the cloudlet, as shown by the 
workflow in Figure 7. There are two major phases in the 
workflow. In the first phase, the current video frame is analyzed 
to extract a symbolic representation of the current state of 
the Lego task. This phase has to be tolerant of considerable 
real-world variation in the image due to variable lighting 
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Fig. 4. The Gabriel Architecture for Cognitive Assistance (Source: Ha el al [II]) 

Fig. 5. Example Lego Models from Life of George Fig. 6. Empty Board 

levels, varying light sources, varying positions of the viewer 
with respect to the board, task-unrelated clutter in the image 
background, and so on. The symbolic representation is an 
idealized representation of the input image relative to the Lego 
task and excludes all irrelevant detail. One can view this phase 
as a task-specific "analog-to-digital" conversion of an input 
image - the enormous state space of the input image is 
simplified to the much smaller state space of the symbolic 
representation. Technically, of course, all processing is digital. 

The second phase operates exclusively on the symbolic 
representation. After extraction, the symbolic representaton is 
compared to the expected task state. Based on this comparison, 
user guidance for making incremental progress on the task is 
generated. This guidance has video and plain text components 
that are streamed back to the Glass device. The video guidance 
is shown on the Glass display, and accompanying audio 
guidance is provided using the Android text-to-speech API. We 
provide more detail on the two phases in the sections below. 

A. Extracting the Symbolic Representation 

As shown by the example in Figure 8(m), we use a two
dimensional matrix to represent the abstract state of the Lego 
assembly task. Each matrix element is a small integer that 
represents the color of the corresponding Lego brick. Values 
from one to six map to different colors of Lego bricks (black, 
white, red, green, blue, and yellow). A value of zero indicates 
the background (i.e., no brick is in that position). 

Although based on well-known computer vision tech
niques, our implementation for extracting the symbolic rep
resentation is nontrivial. It relies on the Lego board, whose 
distinctive black border and black dot pattern (Figure 6) make 
it easier to detect a Lego model that is placed on it. Our 
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algorithm recognizes the Lego model only if it is placed 
on the board. As shown on the left side of Figure 7, the 
implementation consists of a 3-stage pipeline: board detector, 
Lego localizer, and the generator of the matrix that corresponds 
to the symbolic representation (which we abbreviate to "matrix 
generator"). The pipeline is implemented using the OpenCV 
image processing library, and is described below using Fig
ure 8(a) as a working example. 

1) Board detector: The first step in the pipeline is to find 
the board. As shown in Figure 6, the board has a black border 
and black dots on its surface. We assume this pattern to be 
unique and use a black detector to find such an area in the 
input image. A black, roughly rectangular shape close to this 
area is then considered to be the board. We verify the density 
of black dots to make sure that the board is correctly detected. 

Reliable implementation of a black detector is harder than 
it may seem. Because of variation in lighting conditions, the 
absolute color values of the pixels may vary considerably. 
A simple threshold on brightness and saturation fails to be 
robust. Our implementation subtracts the original image by 
a blurred version of the image. The result is essentially 
relative brightness of each pixel compared to its neighbors. 
We then apply a threshold on this relative brightness value. 
This approach gives us a robust black detector (Figure 8(b». 

After we have an accurate boundary of the board (Fig
ure 8(c», we find the four corners by doing line detection of 
the board contour (Figure 8(d» and intersection of the four 
lines. We then perform perspective transformation to restore 
the rectangular shape of the board (Figure 8(e». The resulting 
image is the basis of all further processing. 

2) Lego Localizer: We next extract the Lego model from 
its background. Our algorithm is based on the observation that 
the Lego image has far fewer edges than the background. 
We perform an edge detection on the whole board image 
(Figure 8(f). Following this by dilations and erosions results 
in an image from which we can simply extract the Lego 
image by finding the largest blob near the center of the board 
(Figure 8(g». 
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Fig. 7. 2D Lego Task Workflow on Cloudlet 

Unfortunately, sole reliance on edge detection is not robust. 
The sides of Lego bricks (especially the strongly colored ones 
such as red, yellow and blue) have more texture than the 
surface, leading to frequent errors. To correct for this, we use 
color detection to find these sides, and add them to the Lego 
shape obtained by edge detection. This leads to a shape with 
both surface and side parts included (Figure 8(h». We then 
perform erosion to remove the side parts (Figure 8(i», with 
the amount of erosion being calculated from the perspective 
transform matrix. 

Our color detection mechanism converts the image to 
HSV color space, and then thresholds the individual channels. 
However, lighting conditions again complicate the processing. 
Simple thresholds on HSV values are not robust, especially 
when the incident light is strongly colored (e.g. sunlight 
through a stained glass window). We therefore use the grey 
world color normalization method [3], [4] to correct the white 
balance of the image before doing the color detection. 

In addition to the main technique described above, we 
also apply other techniques such as removing all areas close 
to black dots. These tend to perform worse than the main 
technique, but the combination of all of the techniques tends 
to produce robust results. 

3) Matrix Generator: At this point in the processing, we 
have found all the pixels associated with the Lego model. 
Before we generate a symbolic representation, we have to 
perform a final set of corrections. We first rotate the image 
to an upright orientation (Figure 8U». The degree of rotation 
is calculated by line detection of the Lego image and a majority 
vote on the line directions. 

Using color detection on the color-normalized Lego model, 
each pixel is quantized to one of the Lego brick colors (Fig
ure 8(k)). The magenta color represents uncertainty. We then 
partition the image into blocks, with each block corresponding 
to a lxl sized Lego brick (Figure 8(l». Final assignment of 
brick color is done by a weighted majority vote of colors 
within the block, with pixels near the block center being 
assigned more weight. Figure 8(m) shows the final matrix 
representation. Figure 8(n) is synthesized from this matrix, and 
is thus a visualization of the symbolic representation. 

B. Generating Guidance 

A task in our system is represented as a linked list of Lego 
states, starting from the beginning state (nothing) to the target 
state (the user's goal). In this initial prototype, the state list 
is manually generated for each Lego model supported by our 
application. Figure 9 shows an example of a task, with each 
state being illustrated by the synthesized image of the matrix 
that represents that state. 
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(a) Input image (b) Detected dark parts (c) Detected board 

(d) Board border (e) Board with per- (f) Edge detection on 
spective correction board 

(g) Board with back- (h) Lego with side (i) Lego detected 
ground subtracted parts 

U) 
Rotation 
corrected 

(k) Color (I) 
quantized Partitioned 

110,3,3,3,3,01, 
13,3,3,1,1,31, 
[0,6,1,6,1,11, 
[0, I, 1,1, 1,01, 
14, 4, 6, 4, 4, 41, 
14, 4, 6, 4, 4, 41, 
[1,4,4,4,4,11, 
[0, 5, 5, 5, 5, 01, 
10, 5, 0, 0, 5, 01, 
16, 6, 0, 6, 6, Oil 
(m) Matrix 

Fig. 8. Workflow for Extracting Symbolic Representation 

• • 

(n) 
Synthesized 
image 

Based on the matrix representation of the current Lego 
state, our system tries to find an optimal next step towards the 
task target. A naive way of doing this is to compare the current 
state to all the states in the task. If there is a match, then we 
simply tell the user what the next state should be. Based on 
the linked list representation, we can easily give users step-by
step instructions as he follows the guidance. However, if the 
user fails to follow the instructions (that is, the user's current 
state is not in the pre-defined state list) the system will not be 
able to give any useful guidance. Our implementation tries to 
be smarter in such cases. Guidance generation consists of four 
logical steps: 

1) We check if any state in the task representation is 
strictly one brick more than the current user state. If 
so, we ask the user to add the brick to the existing 
Lego model; otherwise go to step 2. 

2) We check if the current user state can match any state 
in the task representation by moving an existing brick. 
If so, we ask the user to move the brick, otherwise 
go to step 3. 

3) We check if any state in the task representation is 
strictly one brick less than the current user state. If 
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Fig. 9. Example State List Representation of Task 

"As a first step, please find a lx4 green piece and put it on the 
board." 

"Great! Now find a lx2 piece and put it on the top left of the 
current model." 

"You are quite close. Now slightly move the lxl yellow piece 

to the right by 2 brick sizes." 

(a) Verbal Guidance 

(b) Visual Guidance 

Fig. 10. Example of Guidance Provided to User 

so we ask the user to remove the brick; otherwise go 
to step 4. 

4) At this step, the system does not know exactly what 
brick to ask the user to add, move, or remove, which 
means the user has done something quite different 
from our instructions. We will then ask the user to 
revert back to a state that he has built earlier, and go 
through the steps 1-3 again. 

Generally, the instruction to the user consists of three parts, 
the action the user needs to perform (add, move, or remove), 
the location information about the action (e.g. where to add the 
brick or which one to move), and the description of the brick 
(e.g. size and color). We use both verbal and visual guidance. 
The verbal guidance is a complete instruction whispered into 
the user's ears through text-to-speech technology. The visual 
guidance is an animation displayed on the Glass screen, 
showing how the bricks should be placed. Figure 10 shows 
examples of both verbal and visual guidance. 

C. Prototype Status 

We have implemented the whole pipeline described above 
in our prototype. The computer vision processing is usually 
robust under a wide range of lighting conditions. However, it is 
not perfect especially under very strong light or when the Lego 
shape is too complex. Currently we require two consecutive 
video frames from Glass to generate the same Lego matrix 
before we attempt to generate guidance. This increases our 
confidence that the extraction of the symbolic representation 
is correct, but comes at the cost of increased latency. 

Our implementation uses a Dell OptiPlex 9010 (4-core 
3.4 GHz Intel® Core™ i7 processor and 32 GB memory) 
as a cloudlet. Since our initial focus has been on creating a 
fully functional proof-of-concept, we have made no effort to 
optimize performance. On the unoptimized cloudlet pipeline, 
it takes between one-half and one second to process one video 
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frame from Glass. If we discover that a frame is defective 
(e.g. the scene is too blurry, or the Lego board is occluded), 
we discard it as early as possible in the pipeline and start 
to process the next frame. Optimizing the cloudlet pipeline 
and improving the end-to-end responsiveness of the system 
are important next steps in this work. 

D. Future Work 

To the best of our knowledge, the 2D Lego application 
described here is the first working example of a cognitive 
assistance system. While the application itself is simplistic, 
its implementation demonstrates the feasibility of the concepts 
discussed in this paper. It shows that cognitive assistance is 
not some distant and ethereal vision, but one that can be made 
a reality in the near future. 

The current implementation can be improved in many 
ways, and these improvements will be our near term focus. 
The processing pipeline in the cloudlet offers ample scope for 
optimization. Bringing the processing latency down from the 
current 0.5-1.0 second to tens of milliseconds will enable a 
much more fluid and responsive user experience. The com
plexity of the models and the sophistication of the guidance 
can both be increased, while still remaining within the 2D Lego 
domain. This will give us more experience in extracting task
specific symbolic representations from video streams, which 
is likely to be a very important long-term capability. 

Beyond these early improvements, we can expand the 
sophistication of the target application and include a wider 
range of sensors. For example, the microphone and the ac
celerometer provide additional sensor streams that can be used 
to enrich and possibly simplify the analysis of the video 
stream from the camera. The metaphor of assembling a target 
object from a kit of parts has very broad applicability. For 
example, manufacturers such as IKEA provide furniture kits 
and expect their customers to perform the assembly from 
printed directions. This is often an error-prone and frustrating 
experience for the customer, and sometimes requires trou
bleshooting via telephone hotlines. Videos on how to perform 
the assembly can help, but a far superior approach would be 
to provide a kit-specific cognitive assistance application that 
provides step-by-step guidance with prompt error detection and 
correction, as described in this paper. Many other everyday 
human activities, such as cooking from recipes and repairing 
home appliances, can also benefit from this kind of step-by
step guidance based on analyzing the actual state of progress 
towards task completion. Further afield, and necessarily further 
out into the future, come scenarios such as those of Figure 1. 

A major catalyst and accelerator would be the emergence 
of a marketplace such as the iTunes store or the Google 
Play store for cognitive assistive applications. Each such 
cognitive assistive application would need to provide task
specific extraction of symbolic representations from sensed 
data (e.g. task-specific computer vision) and task-specific user 
guidance (including detection and correction of error states). 
By providing a simple way for entrepreneurs to easily monetize 
effort, such a marketplace would lead to the emergence of 
a rich ecosystem for cognitive assistance. The open-source 
Gabriel architecture of Figure 4, layered on top of the open 
cloudlet architecture of Figure 3, can serve as the foundation 
for such an ecosystem. 



VI. CONCLUSION 

Mobile real-time cognitive assistance rests on three pillars. 
First, it relies on mobile-cloud convergence embodied in 
cloudlets for low-latency, compute-intensive processing. Sec
ond, using techniques similar to those used by robotic systems, 
it leverages real-time sensor stream analysis and fusion to 
extract symbolic representations of the real world. Third, in a 
manner reminiscent of the learning sciences [12], it generates 
task-specific user guidance from symbolic representations of 
task state and deep task knowledge. The pursuit of cognitive 
assistance will force each of these pillars to be strengthened, 
thus driving much new research. 

As discussed in Sections I and II, user distraction is a 
growing concern today. The type of cognitive assistance system 
that we have described does not reduce external distractions. 
Rather, it overcomes the consequences of distraction relative 
to a specific task by proactively guiding the user, and by dis
covering and correcting errors before they have propagated too 
far. In this sense, the analogy to GPS-based navigation is apt. 
We may not be able to reduce distraction, but we can reduce 
its impact. Given this goal, providing step-by-step guidance 
without any omissions is important. However, one can envision 
a more ambitious type of cognitive assistance system whose 
goal is to foster learning of task-specific skills. Such a system 
would have to be significantly more sophisticated in its task 
guidance than the kind of system we have described here. 
To encourage learning, it may be necessary to supress much 
guidance as a user gains experience on a task. It may also 
be necessary to allow a user to recover from errors on his 
own, and to offer help only when he fails to make progress. 
Implementing such a system will require deep understanding 
of human cognition and learning, and can be viewed as a type 
of cognitive tutor in the parlance of the learning sciences [12]. 
Until now, all cognitive tutors have focused on symbolic tasks 
such as arithmetic or algebra. They have completely avoided 
the difficult problem of extracting a task-specific symbolic 
representation in real time from sensor inputs. The latency and 
processing requirements for solving this problem, combined 
with the additional processing requirements for cognitive tu
toring, make cloudlets an absolute necessity. Thus, cloudlets 
are truly the leading edge of mobile-cloud convergence - they 
are the enablers of an entirely new class of mobile computing 
systems that will shape our future. 

Early in this paper we posed the rhetorical question "How 
can computers help humans be smarter?" Every few decades, 
a fundamentally new approach to answering this question 
arises. Offering cognitive assistance to mobile users by trans
forming difficult tasks into simple step-by-step guidance is the 
newest of these approaches. It is the potential for enormous 
societal and commercial benefits from this approach that lead 
us to predict that cognitive assistance will be the "killer app" 
for mobile computing in the next decade. 
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