
2014 6th International Conference on Mobile Computing, Applications and Services (MobiCASE)

Cloudlets: at the Leading Edge of Mobile-Cloud Convergence
(Invited Paper)

Mahadev Satyanarayanant, Zhuo Chent, Kiryong Hat, Wenlu Hut, Wolfgang Richtert, Padmanabhan Pillai+

tCamegie Mellon University and +Intel Labs

Abstract-As mobile computing and cloud computing con
verge, the sensing and interaction capabilities of mobile devices
can be seamlessly fused with compute-intensive and data-intensive
processing in the cloud. Cloudlets are important architectural
components in this convergence, representing the middle tier of
a mobile device - cloudlet - cloud hierarchy. We show how
cloudlets enable a new genre of applications called cognitive
assistance applications that augment human perception and
cognition. We describe a plug-and-play architecture for cognitive
assistance, and a proof of concept using Google Glass.

I. INTRODUCTION

"Augmenting Cognition" [20], a thought piece written in
2004, imagined a world with real-time cognitive assistance for
mobile users:

"Looking toward the future, we can envision comput
ing technologies converging in tantalizing ways to augment
cognition. For example, imagine a wearable computer with
a head-up display in the form of eyeglasses and with
a built-in camera for continuous face recognition. This
would offer the essentials of an augmented-reality system
to aid cognition."

A decade is a long time in computing. When this futuristic
world was imagined in 2004, many of the technologies that
we take for granted today did not exist. Smartphones, Google
Glass, and elastic cloud computing had yet to be invented.
What has not changed are human limitations. Already scarce
in 2004, human attention is even scarcer today. Mobile real
time cognitive assistance offers a powerful antidote to high
distraction environments. By unobtrusively and spontaneously
guiding a user's attention, such a system can reduce the impact
of external distractions and help maintain full situational
awareness. It can also help with just-in-time learning of new
skills, which has already become a meta-skill of enormous
value in an ever-changing world.

Today, we have the building blocks of technology needed
to achieve our decade-old dream. Available to us are wearable
computers, ubiquitous wireless networks, cloud computing
resources, and cognitive algorithms that equal or exceed human
accuracy and speed in tasks such as computer vision, speech
recognition, natural language translation, and question answer
ing. How do we put these together to create systems that can
provide real-time cognitive assistance for mobile users? That is
the focus of this paper. We describe a system architecture and
a proof-of-concept demonstration that point the way to many
rapid advances in the coming decade. A critical insight is that
cloud computing itself will have to change architecturally in or
der to support the low-latency resource-intensive computations
that occur within the innermost loops of cognitive assistance.
The need to support cognitive assistance within very tight time

1

bounds will inspire many innovations in mobile and cloud
computing over the next decade. Indeed, real-time cognitive
assistance may become the "killer app" that shapes mobile
computing in the next decade.

II. MOBILE REAL- TIME COGNITIVE ASSISTANCE

In his visionary essay "As We May Think," Vannevar Bush
imagined the existence of a device called a "Memex" that
would extend and amplify human thought [5]. Written in
1945, this is the earliest recognition that computing might
be harnessed to augment human cognition. Prior to Bush,
computing devices had been seen primarily as engines to
reduce the drudgery of laborious mathematical calculations.
Today, one can view the Internet and the World Wide Web as
a collective Memex for society. The Memex was an inspired
early answer to the question, "How can computers help
humans be smarter?" This question assumes renewed urgency
today. The improvements to intellectual productivity that began
at the dawn of computing and continued through the advent
of personal computing, the Internet and the World Wide Web
have now plateaued. How will we re-energize and extend our
quest for intellectual productivity?

We start by recognizing that the scarcest resource in a
computing system is no longer its processor, memory, storage
capacity, network bandwidth, or even battery life. Rather, it is
user attention - the ability of the human user (who is the
most essential part of the whole system) to stay focused on
the task at hand, ignoring all distractions. Herb Simon's 1971
observation that " .. . a wealth of information creates a poverty of
attention ... " [22] is truer today than ever before. Mark Weiser
made the same point in a different way in 1991 [24]: "The
most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they
are indistinguishable from it." The Aura project [9] had low
distraction as its central theme.

This line of thinking leads to the question, "How do we
augment human cognition in a way that is minimally distract
ing?" A modern GPS-based car navigation system offers some
important clues. You start by giving it high-level information
about the destination. From that point onwards, the system
requires no babysitting. Occasionally, it offers you helpful just
in-time voice-synthesized guidance about upcoming actions
that you need to take. If you ignore a suggestion (e.g., by
missing an exit), the system recognizes this promptly and
adapts to your behavior by reformulating its route and offering
you new guidance. Most of the time, it remains silent but alert.
The complex technology needed to achieve this simplicity
(e.g., satellites, wireless communication, GPS receiver chips,
route planning and optimizing algorithms, and voice synthesis

978-1-63190-024-2 © 2014 ICST
DOl 10.4108/icst.mobicase.2014.257757

Ron was wounded in Afghanistan and is slowly recovering from
traumatic brain injury. He is often unable to remember the
names of friends and relatives. He also forgets to do simple
daily tasks. Fortunately, his cognitive assistance system offers
hope. When Ron looks at a person for a few seconds, that
person's name is whispered in his ear along with additional
cues to guide Ron's greeting and interactions; when he looks
at his thirsty houseplant, he hears "water me"; when he looks
at his dog, he hears "take me out." Ron's cognitive assitance
system travels with him, and is always ready to help him.

(a) Disabled Veteran

John has been really good on his new diet for three weeks.
He has been strongly advised by his doctor to lose weight,
because he is on the verge of Type-2 diabetes. Today, at a
dinner with friends, John's resolve has been sorely tested but
he has been able to resist all temptations so far. Alas, the
dessert course is his downfall. When the mouth-watering tray of
delicacies is brought before him, he can hold back no longer.
As he reaches for the 1200-calorie pecan pie with whipped
cream, his cognitive assistance system screams in his ear and
stops him cold. John has been able to stay on his diet for
another day.

(c) Health and Wellness

Fig. 1. Hypothetical Cognitive Assistance Scenarios

algorithms) are totally invisible to the user. The system has
transformed the difficult task of navigating unfamilar terrains
into a trivial exercise in following directions.

Can we generalize this metaphor? Can we transform un
familar and difficult-to-learn tasks in professional and personal
settings into simple just-in-time guidance from a system that
is tolerant of human errors and limitations? The emergence
of wearable computers such as Google Glass is a powerful
catalyst and game-changer. By combining the rich sensing
capabilities of such devices with the plentiful resources of
cloud computing and algorithmic advances in the building
blocks of human cognition, we can fundamentally transform
the learning of new skills and the reinforcement of existing
skills. Figure 1 illustrates the future we are trying to create. In
the rest of this paper, we will abbreviate the phrase "mobile
real-time cognitive assistance" to just "cognitive assistance."

III. CHALLENGES AND THE ROLE OF CLOUDLETS

A. Crisp Interactive Response

Humans are acutely sensitive to delays in the critical path
of interaction. This is apparent to anyone who has used a
geosynchronous satellite link for a telephone call. The nearly
500 ms round-trip delay is distracting to most users, and leads
to frequent conversational errors.

Normal human performance on cognitive tasks is remark
ably fast and accurate. Lewis et al. [14] report that even
under hostile conditions such as low lighting and deliberately
distorted optics, human subjects take less than 700 millisec
onds to determine the absence of faces in a scene. For face
recognition under normal lighting conditions, experimental
results on human subjects by Ramon et al. [18] show that
recognition times range from 370 milliseconds for the fastest
responses on familiar faces to 620 milliseconds for the slowest
response on an unfamiliar face. For speech recognition, Agus

2

For Sara, transitioning from her EMT training to the field is a
daunting experience. Here she is with her first emergency, a
middle-aged woman who has fallen to the ground after being
stung by a wasp at a state fair. With her own pulse racing,
amidst the distraction of the milling crOWd, Sara tries to re
member the protocol for allergic reaction when her cognitive
assistance system says, "Check for respiratory distress." When
Sara responds "present," the voice says, "epinephrine injection
device - thigh." Point by point, Sara is led through her protocol
until the woman's wheezing begins to subside.

(b) Medical Training

On a busy travel day, a People Mover at the airport is down.
It is exhibiting jerky motion and behaving in an unsafe way
not seen before. Jane, the lead engineer has run out of ideas.
Nothing in her extensive experience matches this situation.
Sensing her stress, her cognitive asisstance system suggests
that she check a recent incident report from an Asian airport
with the same People Mover. This proves to be a winning idea.
The symptoms appear to be similar, so Jane tries the same
fix: reverting a recent software upgrade on the wayside com
puter. Within minutes the problem is solved and the People
Mover is back in service.

(d) Industrial Troubleshooting

et al. [1] report that human subjects recognize short target
phrases within 300 to 450 ms, and are able to detect a
human voice within a mere 4 ms. Ellis et al. [6] report
that virtual reality applications that use head-tracked systems
require latencies less than 16 ms to achieve perceptual stability.

More generally, assistive technology that is introduced into
the critical paths of perception and cognition should add neg
ligible delay relative to the task-specific human performance
figures cited above. End-to-end delays of more than a few tens
of milliseconds will distract and annoy a mobile user who is
already attention challenged. Note that it is not sufficient to just
match human performance in recognition speed. It is necessary
to be superhuman in speed without sacrificing accuracy in
order to leave time within a very tight budget for additional
processing to compose user guidance.

B. Need for Offioading

Cognition is not just latency-sensitive but also compute
intensive and memory-intensive. Tasks such as object recog
nition and natural language translation require server class
hardware today. While wearable devices will continue to
improve over time, they will always be resource-poor relative
to server hardware of comparable vintage [19]. Figure 2,
adapted from Flinn [8], illustrates the consistent large gap
in the processing power of typical server and mobile device
hardware over a 16-year period. This stubborn gap reflects
a fundamental reality of user preferences. To be successful
in the marketplace, mobile devices have to exploit Moore's
Law very differently from how it is exploited by server class
hardware. The most sought-after features of a wearable device
are light weight, small size, long battery life, comfort and
aesthetics, and tolerable heat dissipation. System capabilities
such as processor speed, memory size, and storage capacity
are only secondary concerns.

Typical Server Typical Handheld
or Wearable

Year Processor Speed Device Speed

1997 Pentium® II 266 MHz Palm Pilot 16 MHz

2002 Itanium® 1 GHz Blackberry 133 MHz
5810

2007 Intel® 9.6 GHz Apple 412 MHz
Core™ 2 (4 cores) iPhone

2011 Intel® 32 GHz Samsung 2.4 GHz

Xeon® X5 (2x6 cores) Galaxy S2 (2 cores)

2013 Intel® 64 GHz Samsung 6.4 GHz

Xeon® E5 (2x12 cores) Galaxy S4 (4 cores)

Google Glass 2.4 GHz
OMAP 4430 (2 cores)

Fig. 2. Evolution of Hardware Performance (adapted from Flinn [8])

Response time and battery life can often be improved
by offloading the execution of cognitive algorithms from a
wearable device over a wireless network to the cloud. The rich
sensing capabilities of a mobile device (such as accelerometer,
gyroscope, microphone, and camera) can then be combined
with compute-intensive or data-intensive cloud processing. The
Apple Siri voice recognition system, the Google Goggles
augmented reality system, and the Amazon Silk browser are
examples of commercial systems that use this approach.

C. Squaring the Circle: How Cloudlets Can Help

It is difficult to simultaneously satisfy the need for crisp,
low-latency interaction and the need for offloading processing
from a wearable device. The obvious solution of using com
mercial cloud services (such as Amazon EC2) over a wide
area network (WAN) is unsatisfactory because WAN round trip
times (RTTs) are too long. As a user travels, his mobile device
experiences high variability in the end-to-end network latency
and bandwidth to cloud data centers. In their study of cloud
services, Li et al. [15] report an average RTT of 74 millisec
onds from 260 global vantage points to their optimal Amazon
EC2 instances. The RTT distribution on WANs tends to be
heavy-tailed, with many individual round trips taking hundreds
to thousands of milliseconds. The situation is unlikely to
improve on its own, because cOlmnercial service providers are
focused on improving network bandwidth for video streaming
rather than lowering end-to-end latency. In today's Internet,
how do we enable cognitive assistance applications that need
cloud resources at consistently low end-to-end latency?

We can introduce a new degree of freedom into this
overconstrained design space by using cloudlets [21], as shown
in Figure 3. A cloudlet is a new architectural element that
represents the middle tier of a 3-tier hierarchy: mobile device
- cloudlet - cloud. It can be viewed as a "data center
in a box" whose goal is to "bring the cloud closer." As a
powerful, well-connected and trustworthy cloud proxy that is
just one wireless hop away, a cloudlet is the ideal offload
site for cognitive assistance. Although widespread commercial

3

deployment of cloudlets is not yet a reality, there is grow
ing commercial investment in cloudlet-like infrastructure. For
example, Nokia recently announced the availability of RACS
(Radio Access Cloud Platform) [17] for use in 4G cellular
systems. A number of companies including Dell, AOL, and
Huawei have introduced hardware for micro data centers [16]
that could easily be repurposed as cloudlets.

We envision cloudlets being used as follows. The user's
cognitive assistance device (such as Glass) discovers and
associates with a nearby cloudlet. It then uses this cloudlet
for all offload processing. Optionally, the cloudlet may reach
out to the cloud for various services such as centralized error
reporting, usage logging or prefetching of data. However, all
such cloudlet-cloud interactions are outside the critical latency
sensitive path of device-cloudlet interactions. As the mobile
user departs from the proximity of this cloudlet, a mechanism
analogous to cellular handoff is invoked. This seamlessly
associates the user with another cloudlet for further travel.

IV. THE PLUG AND PLAY GABRIEL PLATFORM

The domain-specific knowledge and software development
effort involved in creating and validating an implementation
of a cognitive algorithm are large. There is rapid innovation in
this space by many different teams worldwide, often motivated
by use cases unrelated to cognitive assistance. Many algorithm
designs and implementations have been developed and refined
over the years for tasks such as face recognition [25], activity
recognition in video [23], natural language translation [2],
OCR [10], and question-answering technology [7]. These
cognitive engines are written in a variety of programming
languages and use diverse runtime systems. Some of them
are proprietary, some are written for closed source operating
systems, and some use proprietary optimizing compilers. Each
cognitive engine typically represents many tens to hundreds
of person years of effort by experts in that domain. To the
maximum extent possible, we would like to reuse this large
existing investment without any rewriting of software, or
imposition of rigid standards. We would also like to stimulate
the creation of new cognitive engines that leverage new results
or new software components. In colloquial terms, we would
like to support "plug and play" simplicity in reusing existing
cognitive engines or adding new cognitive engines.

To address these requirements, we have created an open
source platform for cognitive assistance called Gabriel that
runs on cloudlets. Gabriel uses virtual machine (VM) encap
sulation of cognitive engines and interconnects these VMs
using a publish-subscribe (PubSub) mechanism for efficient
sharing of sensor data that is streamed from a wearable device.
Figure 4 illustrates Gabriel's back-end processing structure on
a cloudlet. An ensemble of cognitive VMs, each encapsulat
ing a different cognitive engine, independently processes the
incoming flow of sensor data from a Glass device. A single
control VM is responsible for all interactions with the Glass
device. The sensor streams sent by the device are received
and preprocessed by this VM. For example, the decoding of
compressed images to raw frames is performed by a process
in the control VM. This avoids duplicate decoding within each
cognitive VM. A PubSub mechanism distributes sensor streams
to cognitive VMs. At startup, each VM discovers the sensor
streams of interest through a UPnP discovery mechanism.

Today's Unmodified Cloud
_ Jilfi

SOFTLAV= R'
an IBM Company 1.'I'h, CI d S . lUi' amazon VIii ou ervlces •• web services"

Coogle Cloud Platform

Internet

Cloudlet1 Cloudlet2
Offload VM Instances Offload VM Instances

........ ..

G Mobile devices associated �
� withcloud/el7 all '"

, G I,,'

Fig. 3. Two-Level Cloud-Cloudlet Architecture

The outputs of the cognitive VMs are sent to a single
User Guidance VM that integrates these outputs and performs
higher-level cognitive processing. From time to time, this
processing triggers output for user assistance. For example, in
an assistive application for Alzheimer's patients, a synthesized
voice may say the name of a person whose face appears in the
Glass device's camera. It may also convey additional guidance
for how the user should respond, such as "John Smith is trying
to say hello to you. Shake his hand." As Gabriel evolves, we
envision significant improvement in user experience to come
from sophisticated, higher-level cognitive processing in the
User Guidance VM.

Context-sensitive control of sensors on the Glass device is
achieved through a context inference module in the Control
VM. Significant improvements in battery life and usability are
possible if high-level knowledge of user context is used to
control sensors on a wearable device. For example, consider
a user who falls asleep in his chair at home while watching
TV. While he is asleep, his Glass device does not have to
capture video and stream it for cognitive assistance. In fact,
offering whispered hints during his nap might wake him up and
annoy him. When he wakes up of his own accord, cognitive
assistance should resume promptly. The challenge is, of course,
to reliably distinguish between the user's sleeping and waking
states. This is the classic problem of activity recognition from
body-worn sensor data, on which significant progress has been
made in the recent past. These results can be extended to infer
context and then use it for adaptive control of sensor streams.

This problem has many subtle aspects. In the above exam
ple, if the user falls asleep in a bus or metro rather than in his
living room, the cognitive assistance system should give him

4

'W' Linux

timely warning of his approaching exit even if it wakes him up
from his pleasant nap. In this case, location sensing will need
to remain turned on during his nap even though other sensors
(such as the camera) may be turned off. More generally, tight
coupling of sensing and context inference in a feedback loop
is valuable in a cognitive assistance system.

V. PROOF OF CONCEPT: 2D LEGO ASSEMBLY

To gain initial validation of the cognitive assistance concept
and to obtain first-hand experience with its implementation
challenges, we have built a full end-to-end prototype of a
very simple cognitive assistance application. Simplicity was
essential for keeping the implementation effort of this proof
of concept modest. Our application uses Google Glass and the
Gabriel architecture to guide a user in assembling 2D models
(such as those shown in Figure 5) using the Lego product Life
of George [13]. In addition to colored Lego blocks, the product
also includes a board with a special black dot pattern and a
color palette, as shown in Figure 6. Our processing uses the
dot pattern, but does not use the color palette. The restriction
to two dimensions simplifies the computer vision aspects of
this application. A YouTube video of our implementation can
be found at http://youtu . be/uyl 7Hz5xvmY.

Video from the camera on the Glass device is streamed
to the cloudlet. Processing of video frames and creation of
guidance are done entirely on the cloudlet, as shown by the
workflow in Figure 7. There are two major phases in the
workflow. In the first phase, the current video frame is analyzed
to extract a symbolic representation of the current state of
the Lego task. This phase has to be tolerant of considerable
real-world variation in the image due to variable lighting

.".. Sensor flows
--- Cognitive flows
D VM boundary

Fig. 4. The Gabriel Architecture for Cognitive Assistance (Source: Ha el al [II])

Fig. 5. Example Lego Models from Life of George Fig. 6. Empty Board

levels, varying light sources, varying positions of the viewer
with respect to the board, task-unrelated clutter in the image
background, and so on. The symbolic representation is an
idealized representation of the input image relative to the Lego
task and excludes all irrelevant detail. One can view this phase
as a task-specific "analog-to-digital" conversion of an input
image - the enormous state space of the input image is
simplified to the much smaller state space of the symbolic
representation. Technically, of course, all processing is digital.

The second phase operates exclusively on the symbolic
representation. After extraction, the symbolic representaton is
compared to the expected task state. Based on this comparison,
user guidance for making incremental progress on the task is
generated. This guidance has video and plain text components
that are streamed back to the Glass device. The video guidance
is shown on the Glass display, and accompanying audio
guidance is provided using the Android text-to-speech API. We
provide more detail on the two phases in the sections below.

A. Extracting the Symbolic Representation

As shown by the example in Figure 8(m), we use a two
dimensional matrix to represent the abstract state of the Lego
assembly task. Each matrix element is a small integer that
represents the color of the corresponding Lego brick. Values
from one to six map to different colors of Lego bricks (black,
white, red, green, blue, and yellow). A value of zero indicates
the background (i.e., no brick is in that position).

Although based on well-known computer vision tech
niques, our implementation for extracting the symbolic rep
resentation is nontrivial. It relies on the Lego board, whose
distinctive black border and black dot pattern (Figure 6) make
it easier to detect a Lego model that is placed on it. Our

5

algorithm recognizes the Lego model only if it is placed
on the board. As shown on the left side of Figure 7, the
implementation consists of a 3-stage pipeline: board detector,
Lego localizer, and the generator of the matrix that corresponds
to the symbolic representation (which we abbreviate to "matrix
generator"). The pipeline is implemented using the OpenCV
image processing library, and is described below using Fig
ure 8(a) as a working example.

1) Board detector: The first step in the pipeline is to find
the board. As shown in Figure 6, the board has a black border
and black dots on its surface. We assume this pattern to be
unique and use a black detector to find such an area in the
input image. A black, roughly rectangular shape close to this
area is then considered to be the board. We verify the density
of black dots to make sure that the board is correctly detected.

Reliable implementation of a black detector is harder than
it may seem. Because of variation in lighting conditions, the
absolute color values of the pixels may vary considerably.
A simple threshold on brightness and saturation fails to be
robust. Our implementation subtracts the original image by
a blurred version of the image. The result is essentially
relative brightness of each pixel compared to its neighbors.
We then apply a threshold on this relative brightness value.
This approach gives us a robust black detector (Figure 8(b».

After we have an accurate boundary of the board (Fig
ure 8(c», we find the four corners by doing line detection of
the board contour (Figure 8(d» and intersection of the four
lines. We then perform perspective transformation to restore
the rectangular shape of the board (Figure 8(e». The resulting
image is the basis of all further processing.

2) Lego Localizer: We next extract the Lego model from
its background. Our algorithm is based on the observation that
the Lego image has far fewer edges than the background.
We perform an edge detection on the whole board image
(Figure 8(f). Following this by dilations and erosions results
in an image from which we can simply extract the Lego
image by finding the largest blob near the center of the board
(Figure 8(g».

,- ------------------, ,----------------------,
I \ Symbohc (matnx) f \
I _ I representatIon Verbal gUIdance generator I

Input •• " �I Board Lego Matnx Next step Guidance
frames I locahzer I to user

: I : Visual guidance generator :
� Symbolic representation generator � � Guidance generator :

�-------------------, ,----------------------,

Fig. 7. 2D Lego Task Workflow on Cloudlet

Unfortunately, sole reliance on edge detection is not robust.
The sides of Lego bricks (especially the strongly colored ones
such as red, yellow and blue) have more texture than the
surface, leading to frequent errors. To correct for this, we use
color detection to find these sides, and add them to the Lego
shape obtained by edge detection. This leads to a shape with
both surface and side parts included (Figure 8(h». We then
perform erosion to remove the side parts (Figure 8(i», with
the amount of erosion being calculated from the perspective
transform matrix.

Our color detection mechanism converts the image to
HSV color space, and then thresholds the individual channels.
However, lighting conditions again complicate the processing.
Simple thresholds on HSV values are not robust, especially
when the incident light is strongly colored (e.g. sunlight
through a stained glass window). We therefore use the grey
world color normalization method [3], [4] to correct the white
balance of the image before doing the color detection.

In addition to the main technique described above, we
also apply other techniques such as removing all areas close
to black dots. These tend to perform worse than the main
technique, but the combination of all of the techniques tends
to produce robust results.

3) Matrix Generator: At this point in the processing, we
have found all the pixels associated with the Lego model.
Before we generate a symbolic representation, we have to
perform a final set of corrections. We first rotate the image
to an upright orientation (Figure 8U». The degree of rotation
is calculated by line detection of the Lego image and a majority
vote on the line directions.

Using color detection on the color-normalized Lego model,
each pixel is quantized to one of the Lego brick colors (Fig
ure 8(k)). The magenta color represents uncertainty. We then
partition the image into blocks, with each block corresponding
to a lxl sized Lego brick (Figure 8(l». Final assignment of
brick color is done by a weighted majority vote of colors
within the block, with pixels near the block center being
assigned more weight. Figure 8(m) shows the final matrix
representation. Figure 8(n) is synthesized from this matrix, and
is thus a visualization of the symbolic representation.

B. Generating Guidance

A task in our system is represented as a linked list of Lego
states, starting from the beginning state (nothing) to the target
state (the user's goal). In this initial prototype, the state list
is manually generated for each Lego model supported by our
application. Figure 9 shows an example of a task, with each
state being illustrated by the synthesized image of the matrix
that represents that state.

6

(a) Input image (b) Detected dark parts (c) Detected board

(d) Board border (e) Board with per- (f) Edge detection on
spective correction board

(g) Board with back- (h) Lego with side (i) Lego detected
ground subtracted parts

U)
Rotation
corrected

(k) Color (I)
quantized Partitioned

110,3,3,3,3,01,
13,3,3,1,1,31,
[0,6,1,6,1,11,
[0, I, 1,1, 1,01,
14, 4, 6, 4, 4, 41,
14, 4, 6, 4, 4, 41,
[1,4,4,4,4,11,
[0, 5, 5, 5, 5, 01,
10, 5, 0, 0, 5, 01,
16, 6, 0, 6, 6, Oil
(m) Matrix

Fig. 8. Workflow for Extracting Symbolic Representation

• •

(n)
Synthesized
image

Based on the matrix representation of the current Lego
state, our system tries to find an optimal next step towards the
task target. A naive way of doing this is to compare the current
state to all the states in the task. If there is a match, then we
simply tell the user what the next state should be. Based on
the linked list representation, we can easily give users step-by
step instructions as he follows the guidance. However, if the
user fails to follow the instructions (that is, the user's current
state is not in the pre-defined state list) the system will not be
able to give any useful guidance. Our implementation tries to
be smarter in such cases. Guidance generation consists of four
logical steps:

1) We check if any state in the task representation is
strictly one brick more than the current user state. If
so, we ask the user to add the brick to the existing
Lego model; otherwise go to step 2.

2) We check if the current user state can match any state
in the task representation by moving an existing brick.
If so, we ask the user to move the brick, otherwise
go to step 3.

3) We check if any state in the task representation is
strictly one brick less than the current user state. If

.-.1 1 .1""""""'Ir-, .r -' .
Empty Siale

Fig. 9. Example State List Representation of Task

"As a first step, please find a lx4 green piece and put it on the
board."

"Great! Now find a lx2 piece and put it on the top left of the
current model."

"You are quite close. Now slightly move the lxl yellow piece

to the right by 2 brick sizes."

(a) Verbal Guidance

(b) Visual Guidance

Fig. 10. Example of Guidance Provided to User

so we ask the user to remove the brick; otherwise go
to step 4.

4) At this step, the system does not know exactly what
brick to ask the user to add, move, or remove, which
means the user has done something quite different
from our instructions. We will then ask the user to
revert back to a state that he has built earlier, and go
through the steps 1-3 again.

Generally, the instruction to the user consists of three parts,
the action the user needs to perform (add, move, or remove),
the location information about the action (e.g. where to add the
brick or which one to move), and the description of the brick
(e.g. size and color). We use both verbal and visual guidance.
The verbal guidance is a complete instruction whispered into
the user's ears through text-to-speech technology. The visual
guidance is an animation displayed on the Glass screen,
showing how the bricks should be placed. Figure 10 shows
examples of both verbal and visual guidance.

C. Prototype Status

We have implemented the whole pipeline described above
in our prototype. The computer vision processing is usually
robust under a wide range of lighting conditions. However, it is
not perfect especially under very strong light or when the Lego
shape is too complex. Currently we require two consecutive
video frames from Glass to generate the same Lego matrix
before we attempt to generate guidance. This increases our
confidence that the extraction of the symbolic representation
is correct, but comes at the cost of increased latency.

Our implementation uses a Dell OptiPlex 9010 (4-core
3.4 GHz Intel® Core™ i7 processor and 32 GB memory)
as a cloudlet. Since our initial focus has been on creating a
fully functional proof-of-concept, we have made no effort to
optimize performance. On the unoptimized cloudlet pipeline,
it takes between one-half and one second to process one video

7

frame from Glass. If we discover that a frame is defective
(e.g. the scene is too blurry, or the Lego board is occluded),
we discard it as early as possible in the pipeline and start
to process the next frame. Optimizing the cloudlet pipeline
and improving the end-to-end responsiveness of the system
are important next steps in this work.

D. Future Work

To the best of our knowledge, the 2D Lego application
described here is the first working example of a cognitive
assistance system. While the application itself is simplistic,
its implementation demonstrates the feasibility of the concepts
discussed in this paper. It shows that cognitive assistance is
not some distant and ethereal vision, but one that can be made
a reality in the near future.

The current implementation can be improved in many
ways, and these improvements will be our near term focus.
The processing pipeline in the cloudlet offers ample scope for
optimization. Bringing the processing latency down from the
current 0.5-1.0 second to tens of milliseconds will enable a
much more fluid and responsive user experience. The com
plexity of the models and the sophistication of the guidance
can both be increased, while still remaining within the 2D Lego
domain. This will give us more experience in extracting task
specific symbolic representations from video streams, which
is likely to be a very important long-term capability.

Beyond these early improvements, we can expand the
sophistication of the target application and include a wider
range of sensors. For example, the microphone and the ac
celerometer provide additional sensor streams that can be used
to enrich and possibly simplify the analysis of the video
stream from the camera. The metaphor of assembling a target
object from a kit of parts has very broad applicability. For
example, manufacturers such as IKEA provide furniture kits
and expect their customers to perform the assembly from
printed directions. This is often an error-prone and frustrating
experience for the customer, and sometimes requires trou
bleshooting via telephone hotlines. Videos on how to perform
the assembly can help, but a far superior approach would be
to provide a kit-specific cognitive assistance application that
provides step-by-step guidance with prompt error detection and
correction, as described in this paper. Many other everyday
human activities, such as cooking from recipes and repairing
home appliances, can also benefit from this kind of step-by
step guidance based on analyzing the actual state of progress
towards task completion. Further afield, and necessarily further
out into the future, come scenarios such as those of Figure 1.

A major catalyst and accelerator would be the emergence
of a marketplace such as the iTunes store or the Google
Play store for cognitive assistive applications. Each such
cognitive assistive application would need to provide task
specific extraction of symbolic representations from sensed
data (e.g. task-specific computer vision) and task-specific user
guidance (including detection and correction of error states).
By providing a simple way for entrepreneurs to easily monetize
effort, such a marketplace would lead to the emergence of
a rich ecosystem for cognitive assistance. The open-source
Gabriel architecture of Figure 4, layered on top of the open
cloudlet architecture of Figure 3, can serve as the foundation
for such an ecosystem.

VI. CONCLUSION

Mobile real-time cognitive assistance rests on three pillars.
First, it relies on mobile-cloud convergence embodied in
cloudlets for low-latency, compute-intensive processing. Sec
ond, using techniques similar to those used by robotic systems,
it leverages real-time sensor stream analysis and fusion to
extract symbolic representations of the real world. Third, in a
manner reminiscent of the learning sciences [12], it generates
task-specific user guidance from symbolic representations of
task state and deep task knowledge. The pursuit of cognitive
assistance will force each of these pillars to be strengthened,
thus driving much new research.

As discussed in Sections I and II, user distraction is a
growing concern today. The type of cognitive assistance system
that we have described does not reduce external distractions.
Rather, it overcomes the consequences of distraction relative
to a specific task by proactively guiding the user, and by dis
covering and correcting errors before they have propagated too
far. In this sense, the analogy to GPS-based navigation is apt.
We may not be able to reduce distraction, but we can reduce
its impact. Given this goal, providing step-by-step guidance
without any omissions is important. However, one can envision
a more ambitious type of cognitive assistance system whose
goal is to foster learning of task-specific skills. Such a system
would have to be significantly more sophisticated in its task
guidance than the kind of system we have described here.
To encourage learning, it may be necessary to supress much
guidance as a user gains experience on a task. It may also
be necessary to allow a user to recover from errors on his
own, and to offer help only when he fails to make progress.
Implementing such a system will require deep understanding
of human cognition and learning, and can be viewed as a type
of cognitive tutor in the parlance of the learning sciences [12].
Until now, all cognitive tutors have focused on symbolic tasks
such as arithmetic or algebra. They have completely avoided
the difficult problem of extracting a task-specific symbolic
representation in real time from sensor inputs. The latency and
processing requirements for solving this problem, combined
with the additional processing requirements for cognitive tu
toring, make cloudlets an absolute necessity. Thus, cloudlets
are truly the leading edge of mobile-cloud convergence - they
are the enablers of an entirely new class of mobile computing
systems that will shape our future.

Early in this paper we posed the rhetorical question "How
can computers help humans be smarter?" Every few decades,
a fundamentally new approach to answering this question
arises. Offering cognitive assistance to mobile users by trans
forming difficult tasks into simple step-by-step guidance is the
newest of these approaches. It is the potential for enormous
societal and commercial benefits from this approach that lead
us to predict that cognitive assistance will be the "killer app"
for mobile computing in the next decade.

8

ACKNOWLEDGEMENTS

We wish to thank Bobby Klatzky and Dan Siewiorek for the
scenarios in Figure l(b) and Figure l(d) respectively. Rahul Suk
thankar, Jan Harkes, and Benjamin Gilbert helped us in designing the
computer vision processing described in Section V. Some material
in Sections III and IV have been reused from our paper 'Towards
Wearable Cognitive Assistance" [11].

This research was supported by the National Science Foundation
(NSF) under grant number IIS-1065336, by an Intel Science and
Technology Center grant, by DARPA Contract No. FA8650-11-C-
7190, and by the Department of Defense (DoD) under Contract No.
FA8721-05-C-0003 for the operation of the Software Engineering
Institute (SEI), a federally funded research and development center.
This material has been approved for public release and unlimited
distribution (DM-0000276). Additional support for cloudlet-related
research was provided by IBM, Google, Bosch, and Vodafone. Any
opinions, findings, conclusions or recommendations expressed in this
material are those of the authors and should not be attributed to their
employers or funding sources.

REFERENCES

[I] T. Agus, C. Suied, S. Thorpe, and D. Pressnitzer. Characteristics of
human voice processing. In Proceedings of 2010 IEEE International
Symposium on Circuits and Systems (ISCAS), Paris, France, June 2010.

[2] A. L. Berger, Y. J. D. Pietra, and S. A. D. Pietra. A maximum entropy
approach to natural language processing. Comput. Linguist., 22(1):39-
71. Mar. 1996.

[3] G. Buchsbaum. A spatial processor model for object colour perception.
Journal of the Franklin Institute, 310(1):1-26, July 1980.

[4] J. M. Buenaposada and B. Luis. Variations of Grey World for face
tracking. In Image Processing & Communications 7,2001.

[5] Y. Bush. As We May Think. The Atlantic, July 1945. http://www.
theatiantic.com/magazine/archive/1945/07/as-we-may-thinkl3038811.

[6] S. R. Ellis, K. Mania, B. D. Adelstein, and M. I. Hill. Generalizeability
of Latency Detection in a Variety of Virtual Environments. In Proceed
ings of the Human Factors and Ergonomics Society Annual Meeting,
volume 48, 2004.

[7] D. Ferrucci, A. Levas, S. Bagchi, D. Gondek, and E. T. Mueller. Watson:
Beyond jeopardy! Artificial Intelligence, 199:93-105,2013.

[8] J. Flinn. Cyber Foraging: Bridging Mobile and Cloud Computing via
Opportunistic Offload. Morgan & Claypool Publishers, 2012.

[9] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project
Aura: Towards Distraction-Free Pervasive Computing. IEEE Pervasive
Computing, 1(2), April 2002.

[10] Google. tesseract-ocr. http://code.google.comlp/tesseract-ocr/.

[II] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan.
Towards Wearable Cognitive Assistance. In Proceedings of MobSys
2014, Bretton Woods, NH, June 2014.

[12] K. Koedinger and A. Corbett. Cognitive Tutors: Technology bringing
learning science to the classroom. In K. Sawyer, editor, The Cam
bridge Handbook of the Learning Sciences, pages 61-78. Cambridge
University Press, 2006.

[13] Lego. Life of George. http://george.lego.com/, October 2011.

[14] M. B. Lewis and A. J. Edmonds. Face detection: Mapping human
performance. Perception, 32:903-920, 2003.

[I 5] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: comparing
public cloud providers. In Proceedings of the 10th annual coriference
on Internet measurement, 2010.

[I 6] D. McGrath and A. Banathy. What Can A Micro Data Cen-
ter Do For You? The Journal from Rockwell Automation and
Our PartnerNetwork, October 2012. www.rockwellautomation.coml
rockwell automation/news/the-journal/.

[I 7] Nokia Solutions and Networks (NSN). Liquid Applications System
Description, July 2014. DN09139526.

[I 8] M. Ramon, S. Caharel, and B. Rossion. The speed of recognition of
personally familiar faces. Perception, 40(4):437-449, 2011.

[19] M. Satyanarayanan. Fundamental Challenges in Mobile Computing.
In Proceedings of the ACM Symposium on Principles of Distributed
Computing, Ottawa, Canada, 1996.

[20] M. Satyanarayanan. Augmenting Cognition. IEEE Pervasive Comput
ing, 3(2):4-5, April-June 2004.

[21] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case
for YM-Based Cloudlets in Mobile Computing. IEEE Pervasive
Computing, 8(4), October-December 2009.

[22] H. A. Simon. Designing Organizations for an Information-Rich World.
In Martin Greenberger, editor, Computers, Communication, and the
Public Interest. The Johns Hopkins Press, Baltimore, MD, 1971.

[23] D. Weinland, R. Ronfard, and E. Boyer. A survey of vision-based meth
ods for action representation, segmentation and recognition. Computer
Vision and Image Understanding, 115(2):224--241,2011.

[24] M. Weiser. The Computer for the 21st Century. Scientific American,
September 1991.

[25] W. Zhao, R. Chellappa, P. 1. Phillips, and A. Rosenfeld. Face
Recognition: A Literature Survey. ACM Computing Surveys, 35(4):399-
458, December 2003.

9

