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ABSTRACT

As Multi-access Edge Computing (MEC) and 5G technologies evolve,
new applications are emerging with unprecedented capacity and
real-time requirements. At the core of such applications there is a
need for machine learning (ML) to create value from the data at
the edge. Current ML systems transfer data from geo-distributed
streams to a central datacenter for modeling. The model is then
moved to the edge and used for inference or classification. These
systems can be ineffective because they introduce significant de-
mand for data movement and model transfer in the critical path
of learning. Furthermore, a full model may not be needed at each
edge location. An alternative is to train and update the models on-
line at each edge with local data, in isolation from other edges. Still,
this approach can worsen the accuracy of models due to reduced
data availability, especially in the presence of local data shifts.

In this paper we propose Cartel, a system for collaborative learn-
ing in edge clouds, that creates a model-sharing environment in
which tailored models at each edge can quickly adapt to changes,
and can be as robust and accurate as centralized models. Results
show that Cartel adapts to workload changes 4 to 8x faster than
isolated learning, and reduces model size, training time and total
data transfer by 3%, 5.7x and ~1500X, respectively, when com-
pared to centralized learning.
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1 INTRODUCTION

The proliferation of connected devices is causing a compound an-
nual growth rate of 47% in network traffic since 2016, i.e., an in-
crease from 7 to 49 exabytes per month [15]. Service providers
such as Facebook, Google, Amazon, and Microsoft rely on machine
learning (ML) techniques [18, 47, 50] to extract and monetize in-
sights from this distributed data. The predominant approach to
learn from the geographically distributed data is to create a cen-
tralized model (see Figure 1a) by running ML algorithms over the
raw data, or a preprocessed portion of it, collected from different
data streams [12, 37]. More sophisticated solutions deal with geo-
distributed data by training models locally in the device, which are
later averaged with other user updates in a centralized location —
an approach known as federated learning [21, 33, 61, 64].

A centralized model can be very accurate and generic as it in-
corporates diverse data from multiple streams. From a system per-
spective, however, there is a challenge in moving all this data, and
even the resulting model size can be significant, depending on the
implementation, algorithm, and feature set size [2]. Concretely, as
data sources spread geographically, the network becomes the bot-
tleneck. In this case, ML algorithms [1, 12, 37], which are efficient
in datacenters, can be slowed down by up to 53x when distributed
to the network edge [21].

The emergent Multi-access Edge Computing (MEC) architecture,
as well as 5G connectivity, are conceived to converge telecommu-
nications and cloud services at the access network, and have the
potential to cope with the challenge described above by enabling
unprecedented computing and networking performance closer to
users.

In this context, the obvious alternative to centralized learning
is to replicate the algorithms at each edge cloud and run them in-
dependently with local data, isolated from other edge clouds, as
shown in Figure 1b. Isolated models can be useful in certain cases,
e.g., when the data patterns observed by an edge are stationary
and data is not significantly diverse. However, in more challeng-
ing scenarios, where the distribution of input data to the ML model
is non-stationary, or when the application requires more complex
models — only achievable with more data than the local to a partic-
ular edge — isolated models can have prohibitively high error rates
(cf. Section 6.2).

Therefore, although MEC and 5G technologies constitute the
infrastructure needed to run distributed machine learning algo-
rithms, we argue that there is a need for a coordination system
that leverages the edge resources to learn collaboratively from log-
ically similar nodes, reducing training times and excessive model
updates.

In this paper we introduce Cartel, a new system for collabora-
tive ML at the edge cloud (Figure 1c). The idea behind Cartel is


https://doi.org/10.1145/3357223.3362708
https://doi.org/10.1145/3357223.3362708
https://doi.org/10.1145/3357223.3362708

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

Edge

k-

X

£od
ﬁ::,;

(€Y) .
3

Harshit Daga, Patrick K. Nicholson, Ada Gavrilovska, and Diego Lugones

()
ks

e ()
- ks
.~/

()
\®;

((p)

te3
S

((p)

£e3
A

|

|

|

|

|

|

|

| e
| .
|

|

|

|

|

|

(b) (c)

Figure 1: Machine learning systems with geographically distributed data streams, (a) Centralized learning, either raw data or partial models are shipped to
a central datacenter for modeling (b) Isolated learning, models are replicated in edge cloud locations and maintained independently, and (c) Collaborative
learning (Cartel), a distributed model-sharing framework to aggregate knowledge from related logical neighbors.

that centralized models, although trained on a broader variety of
data, may not be required in full at each edge node. When changes
in the environment or variations in workload patterns require the
model to adapt, Cartel provides a jump start, by transferring knowl-
edge from other edge(s) where similar patterns have been observed.
This allows for lightweight models, reduced backhaul data transfer,
strictly improved model accuracy compared to learning in isola-
tion, and similar performance to centralized models.

Cartel achieves the above by operating on metadata, as op-
posed to on raw data, and uses metadata to decide when an edge-
based model needs to be updated, which peer should be used for the
model update, and how the knowledge should be transferred from
one model to another. To support these decisions and the collabo-
rative learning they enable, Cartel provides three key mechanisms.
It uses drift detection to determine variability in the workload distri-
bution observed at the edge (i.e., dataset shift) and in the accuracy
of the model. It incorporates functions to identify logical neighbors,
i.e., candidate edges from which models can be transferred in case
of input or output drift. Finally, it supports interfaces with the ML
modeling framework to support model-specific knowledge transfer
operations used to update a model instance in one edge, using state
from a model in another edge stack. We describe the system func-
tionality required to support these key mechanisms, their concrete
implementation using specific algorithms which operate on model
metadata, and evaluate the tradeoffs they afford for different col-
laborative learning models.

We use both online random forest (ORF) [56] and online support
vector machines (OSVMs) [11, 20] as running examples of learning
algorithms. Both ORF and OSVM are well-known online classifi-
cation techniques [42] that can operate in the streaming setting.
Moreover, since they function quite differently, and have differ-
ent characteristics of the model and update sizes, together they
facilitate a discussion of how Cartel can be used with different ML
algorithms (see Section 7).

Cartel is evaluated using several streaming datasets as work-
loads, which consists of randomized request patterns in the form of
time series with stationary and non-stationary data distributions
at each edge to cover many use cases. We compare Cartel to iso-
lated and centralized approaches. Results show that collaborative
learning allows for model updates between 4 to 8 faster than iso-
lated learning, and reduces the data transfer from ~200 to ~1500%
compared to a centralized system while achieving similar accuracy.
Moreover, at each edge Cartel reduces both the model size, by up
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to 3%, and the training time, by 3 to 5.7x for the ML models in

evaluation.

In summary, our contributions are:

e A collaborative system to create, distribute and update machine
learning models across geographically distributed edge clouds.
Cartel allows for tailored models to be learned at each edge, but
provides for a quick adaptation to unforeseen variations in the
statistical properties of the values the model is predicting - e.g.,
concept drift, changes in class priors, etc.

e Cartel is designed to address the key challenges in learning at
the edge (cf. §3) and relies on metadata-based operations to guide
cross-edge node collaborations and reduce data transfer require-
ments in learning (cf. §4).

o We design generic metadata-based operations that underpin the
three key mechanisms in Cartel, along with algorithms and sys-
tem support enabling their implementation. In particular: i) a
distance-based heuristic for detecting similarities with other edge
clouds, that can serve as logical neighbors for knowledge trans-
fer, and; ii) two generic algorithms for knowledge transfer, one
of which (based on bagging) can be applied to any machine
learning model. (cf. §5).

e An experimental evaluation using different models, workload
patterns, and datasets, illustrates how Cartel supports robust
edge-based learning, with significant reductions in data trans-
fer and resource demands compared to traditional learning ap-
proaches (cf. §6).

2 MOTIVATION

In this section, we briefly introduce MEC and collaborative learn-
ing, and summarize evidence from prior work on opportunities to
leverage locality of information in MEC, which motivates the de-
sign of Cartel.

Multi-access Edge Computing. Cartel targets the emerging field
of MEC [6, 16, 23, 41, 46, 57, 58, 60]. MEC offers computing, storage
and networking resources integrated with the edge of the cellular
network, such as at base stations, with the goal of improving ap-
plication performance for the end users and devices. The presence
of resources a hop away provides low latency for real time applica-
tions, and data offloading and analytics capabilities, while reducing
the backhaul network traffic. 5G and novel use cases demanding
low latency and/or high data rates, such as connected cars, AR/VR,
etc., are among the primary drivers behind MEC [55].
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Collaborative Learning. We define collaborative learning to be a
model where edge nodes learn independently, but selectively col-
laborate with logical neighbors by transferring knowledge when
needed. Knowledge transfer happens when a target edge execut-
ing a model detects an issue, such as sudden high error rates, with
its current model. Logical neighbors are selected to assist the tar-
get edge, that is, edge nodes that: i) are most similar to the target in
terms of either the data they have observed or their configuration,
and; ii) have models that are performing adequately. Knowledge
transfer involves transmitting some part of the model, or models (if
there is more than one logical neighbor), from the logical neighbor
to the target edge. This framework induces a set of primitive oper-
ations that can be directly used with existing ensemble-based ma-
chine learning algorithms. Note that the same learning algorithm is
used in all edge nodes. For our proof-of-concept, we focus on ORF
and OSVM, where the former makes use of bootstrap aggregation
(or bagging) [9], but the latter does not. However, we emphasize
that since the primitives can be applied to any learning algorithm
utilizing bagging, and that since any machine learning algorithm
can make use of bagging, this means that Cartel is not limited to
the two techniques, but rather can be applied in general to any ma-
chine learning technique. An interesting future research direction
would be to create a general abstraction to apply the set of primi-
tive operations to any machine learning algorithm directly, with-
out the use of bagging. A more surgical approach based on tech-
niques such as patching [30] may be a good candidate for such an
abstraction. However, patching raises potential model size issues
after repeated application of the primitive operations, and thus fur-
ther investigation is beyond the scope of this work.
Locality in MEC. As the MEC compute elements are highly dis-
persed, they operate within contexts which may capture highly lo-
calized information. For instance, a recent study of 650 base sta-
tion logs by AT&T [52] reports consistent daily patterns where
each base station exhibits unique characteristics over time. Simi-
larly, Cellscope [48] highlights differences in the base station char-
acteristics, and demonstrates the change in a model’s performance
with changes in data distributions. They also demonstrate the in-
effectiveness of a global model due to the unique characteristics of
each base station. In Deepcham [36], Li et al. demonstrate a deep
learning framework that exploits data locality and coordination in
near edge clouds to improve object recognition in mobile devices.
Similar observations regarding locality in data patterns observed
at an edge location are leveraged in other contexts, such as gam-
ing [66] and transportation [3].

3 CHALLENGES

To elaborate on the concepts behind Cartel, we first enumerate the
complexities and the key challenges in implementing a distributed
collaborative learning system in a general and effective manner.
In the subsequent section we introduce our system design, com-
ponents, and implementation, and explain how each challenge is
addressed.

C1: When to execute the collaborative model transfer among edge
clouds? Since participants run independent models that can evolve
differently, each edge must determine when to initiate collabora-
tion with edge peers in the system. Changes in the configuration of
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Figure 2: Cartel overview. A collaborative system consisting of edge nodes
(E), where E;’s are trained independently and periodically update a MdS
with metadata information about the node. A subset of logical neighbors
are selected which helps the target edge node (t) to quickly adapt to change.

the edge stack or in the non-stationary statistical distributions of
workloads can decrease model accuracy, thus requiring online re-
training. The challenge is to create a mechanism to quickly detect
and react to such variations.

C2: Which neighbors to contact? Our hypothesis for collaborative
learning is that edge nodes running similar machine learning tasks
can share relevant model portions, thereby achieving more effi-
cient online adaptation to changes. The goal is to avoid sharing
of raw data between edge nodes, which makes nodes oblivious of
data trends at other edges. Therefore, the challenge is to discover
appropriate logical neighbors dynamically while coping with vari-
ations in the workload of the multiple edges over time.

C3: How to transfer knowledge to the target? In order to update a

model it may be possible and/or appropriate to either merge proper

model portions from collaborating nodes or to simply replace local

models with remote ones. The decision depends on various param-
eters such as the modeling technique, whether it allows for parti-
tioning and merging of models, as well as the feature set, the pace

at which the model needs to be updated, and the efficiency of the

cross-node data transfer paths. Thus, the challenge is to provide

support for the model-specific methods for sharing and updating
model state.

4 OVERVIEW OF CARTEL

Goal. The main focus of Cartel is to reduce the dependence on data
movement compared to a purely centralized model that must peri-
odically push out model updates. In contrast, Cartel only performs
knowledge transfer when a target node actively requests help from
logical neighbors. Thus, when no such requests are active, Cartel
only requires nodes to periodically share metadata, which is used
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to establish a relationship among nodes: raw training data is never
explicitly transmitted among the nodes, or to a centralized loca-
tion.

Concepts. To achieve this goal while addressing the challenges
enumerated above, Cartel relies on three key mechanisms: drift
detection (C1), which allows a node to determine when to send a
request to its edge peers for a model transfer; logical neighbors
(C2), which for each node determines sufficiently similar nodes
likely to provide the required model transfer; and knowledge trans-
fer (C3), which allows the system to decide on how to merge model
portions provided from peer nodes.

A common principle underpinning these mechanisms is the use
of system-level support for operating on the metadata. The prin-
ciple allows Cartel to achieve its desired goal of supporting learn-
ing at the edge with adequate accuracy and reduced data transfer
costs. As a result, Cartel provides a novel system-level support for
metadata management — to store, aggregate, compare, and act on
it. This functionality is used by Cartel’s key mechanisms, which in
turn facilitate collaborative learning.

Metadata can be any information about a node that could po-
tentially distinguish it from other nodes. In other words, infor-
mation about the physical hardware, software configuration, en-
abled features, active user distribution by segments, geographic
information, estimates of class priors, etc. Some metadata, such as
enabled software features, those related to active users, or class
prior estimates, can change over time at a given node. When such
changes occur, this usually leads to a degradation in model perfor-
mance, as machine learning techniques are impacted by underly-
ing dataset shifts. Examples of such dataset shifts include: changes
in class priors (probability of certain classes), covariate shift (distri-
bution from which input examples are sampled), concept shift/drift
(classes added/removed or changing boundary functions), and other
more general domain shifts (see [45] for a detailed survey).

In our system discussion and experiments, we focus on the first
type of shift, i.e., changes in class priors. Thus, in our illustrative
online classification examples and experiments, metadata refers
specifically to empirical estimates for the prior probabilities for
each class, as well as overall and per-class error rates. Such meta-
data is available in general, and therefore allows us to concretely
describe an implementation of each of the three key mechanisms
that can be applied in general. We emphasize, however, that ad-
ditional application specific (or even completely different) choices
for metadata are possible, such as the ones enumerated above, to
address other dataset shifts.

Architecture Overview. Figure 2 shows the architecture overview
of Cartel. The system is comprised of edge nodes (E) and a metadata
service (MdS).At a high level, an edge node maintains a tailored
model trained using data observed at the node, and the metadata
associated with that model. The metadata service is responsible for
aggregating and acting on the metadata generated by edge nodes,
so as to facilitate the selection of appropriate peer nodes for col-
laborative model updates. In other words, when a collaborative
model update is requested, the metadata service is responsible for
selecting the subset of edge nodes that can share portions of their
models, with the node that requests assistance. These edge nodes
are then responsible for negotiating with the target to determine
which portions to share. Although shown as a single component
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in the figure, the metadata service is only logically centralized, and
may be realized in a distributed manner depending on the scale of
the system.
Workflow. The operation of Cartel can be summarized as follows.
Each edge node receives batches of requests (1) over a time period —
these requests are the workload on which predictions are made by
the resident model at the edge node. These batches are later used for
retraining the model locally. If an edge node is experiencing poor
model accuracy, we refer to that node as the target (t). We remark
that this batching model fits well with predictive analytics in the
streaming setting, e.g., predicting and classifying network resource
demands based on the current set of users and their usage patterns.
The metadata from each node is aggregated by the metadata ser-
vice (2) which receives periodic updates from each edge node, de-
scribed in Section 5.2. Cartel is aimed at scenarios with dynamic
workload behaviors. As a result, the neighbor selection cannot be
precomputed and stored, but is performed on-demand, based on
dynamically aggregated metadata. When an edge node detects that
its model accuracy has decreased significantly (drift detection), it
asks the metadata service for similar nodes from which model up-
dates should be requested (3). The metadata service processes the
metadata on-demand to identify the corresponding logical neigh-
bors. The target node interacts with (one of) its logical neighbors
directly to request a model update (4), and applies the shared model
state to update its resident model (knowledge transfer).

5 DESIGN DETAIL

Next, we describe the three key mechanisms in Cartel in terms
of their metadata requirements and the algorithms they rely on
for metadata manipulations, and describe the system support that
enables their implementation.

5.1

To support its three building blocks, Cartel maintains and aggre-
gates model metadata in the metadata service, and also stores some
metadata locally at each edge node. For each of the previous W >
1 batches, up to the current batch, each edge node maintains: i)
counts for each class observed in the batch; ii) the overall model
error rate on the batch, and; iii) the error rate per-class for the
batch. Here W is user-defined window length parameter, which is
used to adjust how sensitive the system is to changes in the model
metadata. In terms of memory cost, at each edge node Cartel stores
O(CW) machine words, if C is the total number of classes in the
classification problem.

To aggregate model metadata, the metadata service relies on pe-
riodic updates reporting the metadata generated at each edge node.
We considered several aggregation policies which trade the data
transfer requirements of Cartel for the quality of the selected logi-
cal neighbors. The most trivial approach is where edge nodes send
updates after every request batch. This helps in ensuring there is
no stale information about the edge node at any given time. Thus,
O(CN) machine words are transferred after each batch, where C
is the number of classes, and N the number of edge nodes. We
refer to this operation policy as regular updates. These updates
can further be sparsified by not sending them for every batch, but

Metadata Storage and Aggregation
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for every m batches, referred to as interval updates. Interval up-
dates can provide additional reduction in data transfer, but result in
stale data at the MdS. For instance, an edge node may have model
performance that degraded recently, but the MdS is oblivious to
these changes during logical neighbor selection. One can fix this
by adding further validation steps, however, this will delay the col-
laboration process. An alternative policy is to make use of thresh-
old updates, where an edge sends an update only when there is a
change in the metadata beyond some user-defined threshold. This
reduces the required data transfer, while also attempting to avoid
stale information, but requires an additional threshold. In the eval-
uation of Cartel we primarily use the regular update policy, as it
provides an upper bound on how much metadata Cartel must trans-
fer. However, in Section 6.3 we also explore the additional benefits
that a threshold update policy can provide.

We remark that Gaia [21] also employs a threshold update method-
ology. However, a fundamental difference between Cartel and Gaia,
is that the later focuses on a new ML synchronization model that
improves the communication between the nodes sending the mod-
els updates. Though beneficial for models with smaller model up-
date size, the amount of data transfer will increase if applied to
models with more memory consumption such as ORF. Further,
Gaia’s goal is to build a geo-distributed generalized model, whereas
Cartel supports tailored model at each node that only seek updates
when a change is observed.

5.2 Cartel — Three Key Mechanisms

Drift Detection. As discussed, a dataset shift can cause poor pre-
dictive performance of ML models. Through a drift detection mech-
anism, our goal is to quickly improve the performance of models
on nodes where such dataset drift has occurred. Drift detection is
a widely studied problem, especially in the area of text mining and
natural language processing [62, 63]. It is important to note that in
prior work on drift detection, there is often an interest in detect-
ing both positive and negative drifts. However, for Cartel we only
take action upon a negative drift (i.e., the error rate of the model in-
creases over time). Any existing drift detection algorithm that can
detect negative changes to model error rates can be used in Cartel.
For ease of exposition, we opt for a straightforward threshold-
based drift detection mechanism that requires a user-specified hard
limit L € [0,1] on the error-rate of a resident model. Thus, based
on the two parameters, L and W, drift detection is performed lo-
cally at each edge node after processing a batch. The average error
rate of the model is computed on the previous W batches to detect
whether the hard threshold L has been exceeded, indicating a drift.
Though simplistic, more sophisticated algorithms for drift detec-
tion also make use of two (and often more) such thresholds [19]:
typically the thresholds are set with respect to statistical tests or en-
tropy measures to determine what constitutes a significant change
(cf. [7, 31]).
Logical Neighbor. Although drift detection is useful in determin-
ing the need for help (i.e., for knowledge transfer) from an external
source, we still face the challenge of finding out the node(s) that are
most similar to the target in terms of their characteristics: either
the data they have observed or their configuration. These nodes
are also known as logical neighbors. Intuitively, the goal of Cartel
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is to find a logical neighbor that has similar class priors to the tar-
get node, as this node has most potential to help. Logical neighbors
are computed by the metadata service after receiving the request
for help from the target node. The mechanism relies on the model
metadata collected from each of the edge nodes, and on a similarity
measure used to compare models based on the metadata.

Similarity measure. For our example where class priors are under-
going some shift, the empirical distributions from the target node
can be compared with those from the other nodes to determine
which subset of edge nodes are logical neighbors of the target node.
The metadata service maintains a rolling average of this metadata
information provided by the edge nodes, which in memory costs
can be defined as O(CN) machine words, if C is the total number
of classes in the classification problem and N be the total number
of edge nodes in the system. The metadata service is thus responsi-
ble for determining which nodes are logical neighbors, and does so
via a similarity measure. There are many measures that can be used
for this purpose, such as Kullback-Leibler divergence (KLD) [28],
Hellinger distance [5], Chi-squared statistic [54] and Kolmogorov-
Smirnov distance [44]. After evaluating these techniques empiri-
cally, we selected Jensen-Shannon divergence (JSD) [40] (which is
based on Kullback-Leibler divergence), as a function to determine
the distance of two discrete probability distributions, Q1 and Qa:

JSD(Q1.Q2) = (KLD(Q1, Q) +KLD(Q2.Q))/2 where, 0 = (Q1 +
Q2)/2, and KLD(Q, Q) = ¥; Q(i) log, % JSD has convenient

properties of symmetry, and normalized values between [0, 1]; this
is in contrast with KLD which is unbounded. If JSD(Q1,Q2) = 0
then the distributions Q1 and Q2 are considered identical by this
measure. On the other hand, as JSD(Q1,Q2) — 1 then the distri-
butions are considered highly distant.

Once a list of logical neighbors with high similarity is identified,

the list is pruned to only contain neighbors with low model error
rates. Neighbors with high error rate, e.g., those that are also cur-
rently undergoing dataset drift, are filtered from the list. At this
point, the top-k logical neighbors in the list are transferred to the
target node, which then negotiates the knowledge transfer. Impor-
tantly, if the MdS finds no satisfactory logical neighbors (e.g., if
all JSD scores exceed a user-defined threshold), it will return an
empty result set to the target node.
Knowledge Transfer. The final step in Cartel is to take advan-
tage of the logical neighbors’ models. The knowledge transfer con-
sists of two abstract steps: partitioning and merging. The knowl-
edge transfer process is dependent upon the machine learning tech-
nique used by the application and is accomplished through model
transfer — a machine learning technique for transferring knowl-
edge from a source domain (i.e, the data observed by the logical
neighbors) to a target domain (i.e., the problematic data arriving at
the target node) [49]. The main difference between standard model
transfer and this partitioning and merging setting is that there is
the potential to transfer knowledge from multiple sources, and also
that there is a resident model already present at the target node.

As part of the Cartel system, during the knowledge transfer step,
after the target node receives the logical neighbors, the target node
attempts to identify those classes that have been most problematic.
The target node computes this information by examining the per-
class error rates over the last W batches. Any classes that have
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error-rates exceeding a user defined threshold are marked as prob-
lematic, and communicated to the logical neighbors as part of the
request for help. Next, depending on the machine learning algo-
rithm running on the edge nodes, partitioning and merging pro-
ceeds in different ways. We give two different methods for parti-
tioning and merging that can be applied broadly to any classifica-
tion problem.

Bagging Approach. For the case of ORF, or any online learning
algorithm that uses bootstrap aggregation, knowledge transfer is
achieved via the following straightforward technique. Suppose the
model at the target node contains M sub-models, each constructed
on a separate bag: e.g., in the case of ORF, M is the number of on-
line decision trees in the forest. By replacing a Z € (0, 1] fraction
of the sub-models in the target ensemble (Z of the trees from the
target in the case of ORF), with sub-models collected from the logi-
cal neighbors, we can intuitively create a hybrid model at the target
node, that is somewhere in between the old model and the models
from the logical neighbors. In other words, we partition the models
in the logical neighbors, selecting Z X M sub-models among the
logical neighbors, and then merge these with the existing model at
the target node.

Before discussing how to set Z, it first makes sense to answer
the question of which trees should be replaced in the target en-
semble, and which trees should be used among those at the logi-
cal neighbors. We employ the following heuristic: replace Z of the
trees having the highest error rate in the target node ORF, with the
Z trees having the lowest error rate from the logical neighbors.
To achieve partitioning and merging with bagging, Cartel must
therefore additionally maintain, at each edge node, the error rates
of each sub-model (e.g., decision tree in the forest). Fortunately,
for many libraries implementing ensemble ML algorithms (such
as scikit-learn [51]), this information is readily accessible from the
model APIs. We also experiment with another heuristic that re-
places Z trees with the highest error rate in the target node ORF,
with the Z trees that have the lowest per-class error rate among
the problematic classes.

The exact setting of Z, in general, can depend on workload dy-
namics, as well as the distance between the target node and logi-
cal neighbors. For our datasets and workloads we experimentally
found that Z = 0.3 worked well, and discuss this later in Sec-
tion 6.3. However, other choices, such as Z in the range [0.3,0.6]
also behaved similarly. Thus, a precisely engineered value of Z is
not required to yield similar benefits for the workloads and datasets
we used. We leave automatic online tuning of Z as an interesting
topic for future investigation.

One-versus-Rest Approach. In contrast to the bagging approach
above, linear OSVMs using a one-versus-rest (or one-versus-all)
approach to multi-class classification to construct a set of C hyper-
planes in an n-dimensional space, one for each class, each defining
boundary between its associated class and items not in that class.
This boundary is therefore represented as arow ina C x (¥ + 1)
weight matrix containing the coefficients — each associated with
one feature plus an additional bias term — representing the hy-
perplane, where ¥ is the number of features for the model. For
OSVM, knowledge transfer can be accomplished by updating the
weights assigned to the features of problematic classes. The logical
neighbors then partition the subset of these problematic classes
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Figure 3: Cartel system functions.

from their weight matrices, by simply selecting the rows corre-
sponding to these classes. These rows are transmitted to the target
node where the node merges these model portions into its OSVM
model by overwriting the corresponding rows with the weights
from the logical neighbors. We note that the same approach ap-
plies in general to other one-versus-rest classifiers, but that it is
especially appealing in the case of linear models like OSVM, as the
data required to transmit the ¥ + 1 weights is small compared to
other approaches.

Crucially, both methods presented have the property that the
resulting model at the target node does not increase in size. In par-
ticular, the same number of sub-models is present for the bagging
approach and for OSVM the matrix representing the hyperplanes
is exactly the same size in terms of the total number of entries. This
means that knowledge transfer can be repeated without gradually
inflating the size of the model.

The focus for Cartel is to provide the system support for parti-
tioning and merging operations to be easily integrated for collab-
orative learning. The specific implementation of partitioning and
merging is left to the user, beyond the generic approaches just de-
scribed. Thus, Cartel abstracts this mechanism as a set of APIs for
partitioning and merging that can be extended by any machine
learning model to be incorporated into the Cartel system, as shown
in Figure 3 and described in the next section.

5.3 Cartel Runtime

The Cartel runtime at each edge node consists of two blocks of
functions - Learning and Collaborative — as shown in Figure 3.
The Learning component depends on the machine learning tech-
nique used and the type of problem it addresses (e.g., classifica-
tion, regression, etc.). It constitutes the learning part of the system
which makes predictions on the incoming data using the model,
compares the predicted values to later observations determining
the error rate, and subsequently re-trains the model using obser-
vations. It provides four interfaces: predict, (re)train, partition,
and merge. The predict function keeps track of overall and class-
wise results predicted by the model while the (re)train function
is responsible for training the model on the incoming data feed.
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Moreover, when a model update is requested by a target node, the
partition function of the logical neighbor helps in finding the por-
tion of the model that increases the model’s accuracy at the target
edge node. Finally, the merge function of the target node incorpo-
rates the model update received from the supporting edges and
completes a cycle in a collaborative learning process.

The Collaborative component is independent of the machine learn-
ing technique used. It is responsible for drift detection, for trig-
gering look-ups and for interacting with logical neighbors. It pro-
vides four functions - register, analyzer, communicator, and
transfer. With register an edge node joins the Cartel knowledge
sharing pool. The analyzer function analyzes the prediction results
to determine a drift. Upon drift detection, it additionally performs
data trend analysis to identify the problematic classes at the target
node. The communicator function interacts with MdS to update the
node’s metadata information, based on the metadata aggregation
policy. Additionally, if a drift is detected, it also sends a request to
MdS for logical neighbors. The transfer function opens a commu-
nication channel between the target node and the selected logical
neighbor(s) to request and receive model portions.

6 EVALUATION

We present the results from the experimental evaluation of Cartel,

and seeks to answer the following questions:

1. How effective is Cartel in reducing data transfer costs, while
providing for more lightweight and accurate models that can
quickly adapt to changes? (Section 6.2);

2. What are the costs in the mechanisms of Cartel and the design
choices? (Section 6.3);

3. How does Cartel perform with realistic applications? (Section 6.4).

6.1 Experimental Methodology

Experimental Testbed. We evaluate Cartel on a testbed repre-
senting a distributed deployment of edge infrastructure, with em-
ulated clients generating data to nearby edge nodes. The testbed
consists of five edge nodes and a central node representing a cen-
tralized datacenter. All nodes in the system are Intel(R) Xeon(R)
(X5650) with 2 hex-core 2.67GHz CPUs and 48GB RAM.

Datasets and applications. The first experiment uses an image
classification application where edge nodes participate in classi-
fying images into different categories using ORF and OSVM. The
models are implemented using the ORF library provided by Amir
el at. [56] and, for OSVM, scikit-learn [51]. We use the MNIST data-
base of handwritten digits [35], that consists of 70k digit images.
A set of 1000 uniformly randomly selected images (training data),
distributed across each of the edge node, is used for preliminary
model training. The remainder of the dataset is used to generate a
series of request patterns, following the different distribution pat-
terns described below; batches from these requests are used for
online training.

We also evaluate Cartel with a second use case based on net-
work monitoring and intrusion detection (Section 6.4) that uses the
CICIDS2017 Intrusion Detection evaluation dataset [59]. This use
case further illustrates some of the tradeoffs enabled by Cartel, and
helps generalize the evaluation. The CICIDS2017 dataset consists
of a time series of different network measurements, preprocessed
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into feature values, and includes a mix of benign data samples
as well as malicious attacks such as distributed denial-of-service
(DDoS) attacks, Heartbleed, web and infiltration attacks captured
over a period of 5 days. We use a subset of the features for two days
of the dataset consisting of benign data samples, DDoS attacks, and
port scan attacks, consisting of 500k data samples in total.
Workloads. Edge nodes process requests in discrete batches over
time. A batch consists of varying number of requests correspond-
ing to different classes in a dataset (e.g., corresponding to one of
the ten different digits from 0 to 9 in the case of MNIST, or to
a different type of attack in case of CICIDS2017). In our experi-
ments, the dataset shift we focus on is a change in class priors, i.e.,
a change in the distribution of the classes arriving at a node.

We generate several synthetic request patterns which correspond
to different types of change patterns in the workload. The results
presented in the paper are primarily based on the Introduction and
Fluctuation patterns. Introduction corresponds to a case where a
new class gets introduced at an edge node abruptly after 25 batches.
Fluctuation is a distribution pattern where a new class is introduced
at batch 25, but then disappears and re-appears at batches 50 and
75 respectively. This is analogous to the Introduction pattern with
periodicity. Other patterns used in our evaluation include Uniform,
where all classes are uniformly distributed across all edge nodes,
and Spikes, where several new classes are introduced in succession,
each of which does not persist. The results obtained from these lat-
ter two workloads are similar, so we omit them for brevity.

We have used emulated nodes and synthetic workloads, primar-
ily because of limited availability of real infrastructure and data.
However, in the following section we successfully demonstrate the
benefits of Cartel. Moreover, with more edge nodes, we expect the
savings from transmitting metadata compared to the raw data will
persist.

6.2 Benefits from Cartel

We compare Cartel to centralized and isolated learning, with re-
spect to the changes observed at the edge in the three systems. A
centralized system repeatedly builds a generic model using data
collected from all the nodes in the system. This model is then dis-
tributed among the edge nodes. In such a system there exists a gap
between the error bound and the model performance at the edge
node. This is due to the time difference between the periodical up-
date of the model at the edge nodes. In contrast, in an isolated envi-
ronment, each edge node is trained individually and any change(s)
in the workload pattern could impact the predictive performance
of the model.

We measure the time taken to adapt to changes in the class
priors in the workload, and examine the resource demand (cost)
in terms of data transferred over the backhaul network, time re-
quired to train the online model and model size. In Figures 4 and 5,
we present the results for the image classification application with
ORF and OSVM, and the Introduction and Fluctuation patterns. We
use different workload patterns to assess the impact of change in
request distribution on the performance of the systems. For each
case, with a horizontal dashed red line, we show the error lower
bound, obtained with offline model training. We used window size



SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

Harshit Daga, Patrick K. Nicholson, Ada Gavrilovska, and Diego Lugones

centratizeg 100 100-
30- entralize
w Mo 50- M 10- 5 DM AN A S0-
10 APPANT AR AMG - 0 N AW T AN
< 100- 30- 100-
S 30- Isolated NANW\W\A/WV‘W\
- WM > 10-M > [\/\/W/\’WVVV\N\N'\/
S ALY ~ ) o
% 10 ey 10 LAty 10
- 30- -
o M P WNW"\!\J\MW« o
50- 50
10-F= =g MtV © oL YMA i A= L T o o
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Batch ID Batch ID Batch ID Batch ID

(a) ORF overall error (b) OREF class error

(c) OSVM overall error (d) OSVM class error
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Figure 5: Model performance comparison for fluctuation workload. Similar to Figure 4 Cartel is able to adapt to the changes in the distribution and behaves

close to the centralized system.

W = 5 and hard error rate limit of L = 0.15 for Cartel and W = 10
for the centralized system to provide the model updates at the edge.
Adaptability to Change in the Workload. We observe that
the centralized system is more resilient to the change in the dis-
tribution pattern. This is due to the generic nature of the edge
model which is regularly synchronized with the central node and
is built using prior knowledge from the other edge nodes. On the
other hand, the isolated system and Cartel experience a spike in the
model error rate for the same change. We define the time taken for
the model error rate to return to the baseline (10%) as the adapt-
ability of the system to change. This adaptability is denoted with a
horizontal arrow in Figures 4 and 5.

Cartel’s drift detection allows the target node to have increased
adaptability with respect to the dataset shift (measured as a smaller
horizontal spread in terms of number of batches) when compared
to an isolated system. Specifically, when using OSVM and ORF
techniques, Cartel performs 8x and 4 faster, respectively, as com-
pared to an isolated system. The adaptability of Cartel is important
for both workload patterns. For Fluctuation (Figure 5), Cartel helps
to bring the system back to an acceptable predictive performance
while the isolated system takes a longer time to adapt to the fluc-
tuation.

Data Transfer Cost. In a centralized system, an edge node proac-
tively updates its model from the central server which helps in im-
proving the inference at edge nodes. However, this improvement
comes at a cost of a proactive model transfer between the edge
and the central node. To capture the network backhaul usage we
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divide the data transferred into two categories: (i) data / commu-
nication cost which includes the transfer of raw data or metadata
updates, and (ii) model transfer cost which captures the amount
of data transferred during model updates to the edge (periodically
in case of a centralized system or a partial model request from a
logical neighbor in Cartel).

Cartel does not centralize raw data and only transfers models
when there is a shift in the predictive performance. This design
helps in reducing both data / communication cost and model trans-
fer cost by ~1700%, and 66 to 200X, respectively, thereby reducing
the overall cost of total data transferred for Cartel by two to three
orders of magnitude, compared to the centralized system, as shown
in Table 1.

We note that for ORF the cost of the model updates is the domi-
nating factor in the total data transferred, whereas the data / com-
munication dominates for OSVM. As discussed, the data / commu-
nication for Cartel is O(CN') per batch. For a centralized model,
the data / communication is O (BF N') where B is the average num-
ber of data points in a batch. Provided BF > C, we can expect the
data / communication cost to be much lower for Cartel than a cen-
tralized system.

For applications where dataset shifts are less frequent, we ex-
pect Cartel will provide better predictive performance in the long
run. We expect the gains of Cartel to persist even when consider-
ing federated learning-based approaches to building a centralized
model [33]. Those are reported to reduce communication costs by
one to two orders of magnitude, but, importantly, they strive to
build at each edge a global model, and can miss the opportunity
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ML Workload | D/C (x) | MU (x) | Total (x)
ORF Introduction 1745 200 212
Fluctuation 1760 66 71
OSVM | Introduction 1763 188 1573
Fluctuation 1763 94 1404

Table 1: Ratio of data transferred in a centralized system versus Cartel. D/C
represents data/communication, MU represents model update transfer cost
and Total represents the combined cost.
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Figure 6: Time required to train the ORF and SVM model. Similar trends
are observed for different workload distribution. Combination of global
model and bigger training dataset in a centralized system increases the
online training time of ML model.

to benefit from reduced model sizes or training times, as discussed
next.

Model Size. The model size depends on the machine learning tech-
nique used. It plays an important role in data transfer during model
updates as mentioned above, as well as during retraining of the
model. Cartel results in smaller, tailored models for each edge node,
leading to faster online training time. Since ORF is an ensemble
learning method, it builds multiple decision trees, each with vary-
ing number of nodes. The size of the ORF model depends on several
factors, such as the data and hyperparameters used. From our ex-
periments with two edge nodes, we observe that Cartel results in
a reduction of the model size by 3X on an average when compared
to a centralized system. This reduction is achieved because a tai-
lored model in Cartel does not store as much information when
compared to a generic model used in a centralized system. This is
expected in MEC, because it operates in contexts with highly lo-
calized information that can result in fewer classes being active or
observed at each edge [48, 52]. Beyond reduction in classes, the
number of nodes in the ORF grows less quickly in Cartel vs. the
centralized system due to fewer total training examples, further
reducing the model size. For ORF, the model resulting from use of
Cartel is similar to that of isolated learning, but has faster adapt-
ability (as shown in the above discussion). Since OSVM uses a ma-
trix to represent the hyperplane parameters corresponding to each
class, there is no difference (without applying further compression)
in size of an OSVM model trained for subset of classes compared
to one trained using all classes.

Training Time. The online training time for a machine learning
model is a function of the training dataset and the model size. In an
online system, a smaller model size and/or less data helps in train-
ing the model faster. Figure 6 shows the difference in the training
times for the ORF and OSVM model during our experiment. The
smaller model size and smaller local batch size reduces the ORF

33

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

100-

BOVWV[WBMI 50
10—~ Shan MDD~ - 10

Delayed by 10 100"
50-

- 10

£ Y
T 30- Delayed by 20 100~
3 W‘M’ M, 50-
s 10— o P T 10— \n - a -

30- Isolated 100-

50-
10- WYL —Swp - A
100 20 40 60 80

10=
20 40 60 80
Batch ID Batch ID

100

(a) Overall model error (b) Introductory class error

Figure 7: Effect of different drift detection policies on overall model and
introductory class error rate: “Delayed by X” implies the drift detection
was delayed by X batches.

training time up to by 5.7X, while for OSVM, since the model size
is constant, the smaller training batch size alone reduces the train-
ing time by 3X compared to a centralized system.

Impact of Machine Learning Algorithm. We remark that ben-
efits from Cartel are not primarily related to the ML model accu-
racy, but rather to its adaptability during distribution changes. In
the case of OSVM, although linear SVM exhibits high bias on the
MNIST data, adding more features or using kernel SVMs are un-
likely to speed up convergence. As such we expect the benefits of
Cartel to persist even when other non-linear methods or feature
transformations are used. To test this, we ran the MNIST work-
load as before, but with Random Fourier Features (RFF) [13, 53] to
improve model accuracy.! Although these additional features low-
ered the average error rate, we observed similar improvements to
adaptability, as well as a reduction in data transfer, as observed
with linear SVM and ORF. Thus, Cartel can provide similar bene-
fits when used with these additional techniques.

In summary, Cartel boosts the system’s adaptability by up to 8x.
It achieves a similar predictive performance compared to a cen-
tralized system while reducing the data transfer cost up to three
orders of magnitude. Cartel enables the use of smaller models at
each edge and faster training.

6.3 Effect of Mechanisms

We next investigate the impact that each of the mechanism in Cartel
has on the overall system performance.

Drift Detection Timeliness. Timely drift detection is important
for Cartel, since a delay in detection can impact a model’s predic-
tive performance. To demonstrate the impact of slow drift detec-
tion, we modify the drift policy to delay the request to the MdS
for logical neighbors by a variable number of batches. The results
in Figure 7, show the impact of drift detection delay on the over-
all model’s performance as well as the misclassification rate of the
introduced class for ORF; we observe a similar pattern for OSVM.
The request for model transfer from a logical neighbor at the ac-
tual time of drift detection stabilizes the system quickly. If the de-
lay is too large (e.g., in the figure, a delay of 20 batches), the model
transfer does not provide collaboration benefits, as online training
eventually improves the model. In the current implementation of
Cartel, drift detection triggers immediate requests for logical neigh-
bors. We acknowledge that overly sensitive drift detection may
cause short and non-persistent workload fluctuations to trigger

!We used the implementation of Random Fourier Features of Ishikawa [25].
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Figure 8: Comparison of MdS metadata aggregation policies.

unwarranted and frequent transfer requests, increasing the over-
all data transferred over the network; detailed sensitivity analysis
can be used to develop automated methods for determining effec-
tive ranges for the delay parameter in the future.

MdS Aggregation Policies. The metadata at MdS can be updated
according to different policies described in Section 5.1. All other ex-
periments use the “regular” update policy, but we note that addi-
tional data reduction benefits can be obtained through the “thresh-
old” update policy when configured appropriately. Figure 8a shows
a comparison of the regular update policy with different thresh-
old policies. Here we use a 2% and 5% change in class priors at
each edge as the threshold parameter. As the threshold increases,
we observe a reduction in the total metadata transfer (labeled as
data/communication cost transfers in the figure). However, too
high thresholds could result in an increase in model update costs.
Use of a threshold parameter can result in a misrepresentation of
the distribution pattern of different edge nodes at the MdS. The
corollary to this is the selection of incorrect logical neighbors, shown
in Figure 8b, where the system repeatedly requests for model up-
dates and fails to adapt to the changes in the system due to in-
correct logical neighbors, negating the benefit of reducing other
communication costs.

Finding Logical Neighbors. In a distributed deployment with
hundreds of edge nodes, collaboration can be performed by: i) se-
lecting a node at random, ii) based on geographical proximity, or;
iii) based on similarities determined through node metadata infor-
mation, for example. We experiment with the impact of Cartel’s
logical neighbor selection, compared to various baseline approaches,
using the Introduction workload and ORF. The logical neighbor al-
gorithm in MdS is modified to introduce i selection failures (by
randomly selecting among the nodes not identified as a top match
by the MdS algorithm), before finally providing the correct logical
neighbor. Depending on the batch size and how long drift detection
takes, multiple failures - in our experimental setup, more than two
- negate any benefit that knowledge transfer has on the accuracy
of the model. Thus, it is critical that the MdS uses timely metadata
about edge nodes and effective similarity measure, to identify good
logical neighbor candidates.

Knowledge Transfer Balance. As discussed in Section 5.2, knowl-
edge transfer for OSVM involves selecting the coefficients asso-
ciated with the hyperplane for the problematic classes. However,
ORF operates by selecting the Z trees with lowest error rate for
partitioning at a logical neighbor, raising the question of the value
of Z. For our experimental setup, we tested the following values
of Z:0.1,0.2,...,1.0. We found that Z < 0.3 fails to help for the
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various Z values when using ORF ML model on MNIST dataset.
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Figure 10: Comparison of adaptability of the system and total data transfer
between various knowledge transfer mechanisms, on MNIST dataset using
ORF as machine learning model, that can be applied in Cartel.

problematic class, while Z > 0.6 leads to higher error rate for the
non-problematic classes at the target node, as shown in Figure 9.
Both result in more time required by Cartel to adapt to the changes.
Hence, we selected Z = 0.3 as the optimal value, since higher Z
values, for ORF, result in more bandwidth utilization.

In addition, there are a few ways to apply a model update. In
Figure 10 we evaluate the impact of each of these on the perfor-
mance of Cartel, in terms of its ability to quickly converge to good
models at the target node (with low model error rate) (left hand-
side graphs in the figure), and in terms of the data transfer require-
ments (right hand-side graphs). For ORF, one can replace the ex-
isting forest with the logical neighbor’s forest (Replace All); two
or more forests can be merged (taking the union of all the trees)
(Merge All); the best performing Z of trees from the logical neigh-
bor can be merged with the target’s forest (Merge (Z = 0.3));
or, finally, the worst performing trees in the target model can be
replaced by the best performing Z trees from the logical neigh-
bor’s model. The latter is what is used in Cartel, and enabled by
use of additional local metadata at each edge, examined during the
knowledge transfer request.

Replacing the entire edge model with the neighbor’s model might
not work because each edge node experiences different distribu-
tions and a blind merge from a logical neighbor would not work
if only a few classes were common among the nodes. When possi-
ble (i.e., for ORF), merging all or a portion of the model (the ORF
trees) seems to be a good solution when considering the error con-
vergence time at the target. However, this increases the overall
model size by up to 2Xx for Merge All, which further results in in-
crease in training time by an average of 2x for Merge All, or 1.3x
for Merge (Z = 0.3). Replacing portions of the target model based
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Figure 11: Performance and total data transfer comparison for network
attack dataset using ORF to classify begin request against DDoS and port
scan attack requests.

on the top performing Z classes in the neighbor’s model results in
a target model that quickly converges to the model’s lower error
bound, and keeps model transfer costs low. By enabling replace-
ment of only those model portions which relate to the problematic
classes at the target, Cartel achieves both quick adaptation and low
transfer costs.

6.4 Use Case - Network Attack

This scenario is based on data from the CICIDS2017 Intrusion De-
tection evaluation dataset [59]. The testbed consists of two edge
and a central node. One of the nodes (Edgeg) experiences a sus-
tained port scan attack, while the other (Edge; ) experiences a DDoS
attack. After a time period, Edgeq (target node) experiences a simi-
lar DDoS attack. The ML model used to classify the attacks is ORF,
with 10 tree predictors at each node, each with a maximum depth
of 16. The workload follows the Introduction distribution and con-
sists of 900 batches each with ~1000 data points of various network
metrics (features).

Result. As shown in Figure 11, the collaboration with a logical
neighbors helps the target node to adapt 5x faster to the intro-
duction of the DDoS attack which was already observed by Edge,
compared to the isolated system. A centralized system with edge
nodes receiving regular model updates from a central node does
not require time to adapt, however, even with only two edge nodes,
the total data transfer is 90X more, and the time taken for training
is 2X that of Cartel.

We performed a more comprehensive evaluation of Cartel using
the intrusion detection dataset. Figure 12 demonstrates that the
knowledge transfer mechanism in Cartel reduces model transfer
cost 2.5X or more compared to the other mechanisms, while keep-
ing a lower overall model error rate. Additionally, the results from
the Fluctuation workload exhibit increased adaptability of the sys-
tem, reduced total data transfer (by 60x) and faster model training
time (by 1.65X), compared to centralized learning. These results
showcase a similar trend to the ones described for the MNIST-
based use case in the Section 6.2; the graphs are omitted for the
brevity.

7 DISCUSSION

We have shown how Cartel performs, in terms of data transfer,
training time and model size. Our results demonstrate the poten-
tial of Cartel, but also illustrate several opportunities to be further
explored.
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Figure 12: Comparison of three knowledge transfer mechanisms applied
to the network attack dataset using ORF as the classification model.

Collaboration Scope. We evaluate Cartel under different data dis-
tribution scenarios. However, the evaluation is performed using
synthetic workloads in an attempt to model realistic scenarios [52],
and is limited to few edge nodes. Given that a centralized model
must periodically be pushed to all edge nodes, we expect that the
data transfer reduction of Cartel will be larger in deployments with
dozens or hundreds of edge nodes. Thus, it would be interesting to
evaluate the benefits of Cartel in such scenarios, and for use cases
with live traffic and other dataset shifts. In particular, the choice of
some of the parameters and threshold values chosen in Cartel, is
dependent upon the workload and the characteristics of the under-
lying infrastructure, and further work is needed to establish prac-
tical policies for choosing effective values.

Generalize to other machine learning algorithms. We present
the benefits of Cartel with the underlying machine learning al-
gorithms as ORF and OSVM, and developed general partitioning
and merging algorithms that work in the bagging and one-versus-
rest paradigm. Still, we plan to explore other methods for parti-
tioning and merging heuristics that can be used directly (rather
than requiring bagging). We are interested in general methods for
deep neural networks (DNN), and also in evaluating online regres-
sion problems in addition to online classification. As mentioned,
one possibility is patching [30], though further developments are
needed to ensure models do not become excessively large over
many partitioning and merging operations. Recent work on knowl-
edge transfer through merging of DNN [4, 14, 67] could be a step-
ping stone in extending Cartel to support DNN models. Other re-
cent work has been done to partition DNNs across mobile, edge
and cloud [22, 26, 29, 32], yet additional advances are needed in
the ML algorithms to improve their efficacy of model transfer.
Privacy. While a discussion about privacy is beyond the scope of
this paper, we note that edge nodes in Cartel use the raw data to
train models, but do not explicitly transmit this data to the other
nodes. As such, the information sent to the MdS or to logical neigh-
bors is a sketch derived from the raw data, e.g., a histogram of
the data distribution at a node. However, we still foresee concerns
about this sketched data, and believe such concerns also apply to
other techniques such as federated learning. Regarding the possi-
bility and handling of malicious edge nodes, our scope is limited to
cooperating nodes that are owned or managed by a single service
provider. We leave further exploration of issues, such as trust, as
future work.



SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

8 RELATED WORK

Cartel is a system that leverages the unique characteristics of each
edge and enables collaboration across nodes to provide a head start
in adapting the model for changes observed at the target node. This
is in contrast to the existing systems [38, 43, 65] where data pro-
cessing and analysis happens in a single datacenter, however, the
excessive communication overhead in distributed machine learn-
ing algorithm makes such systems unsuitable in a geo-distributed
setting.

Systems such as Gaia [21], Project Adam [12], Federated learn-
ing [33] and others [10, 39, 64] focus on addressing the communica-
tion overhead in running machine learning methods such as a pa-
rameter server and large deep neural network in a geo-distributed
environment. Additionally, the distributed setting involves interac-
tion with a large number of nodes, where some of these nodes can
experience failures. MOCHA [61] is a system designed to handle
such stragglers. DeepCham [36], IONN [26], Neurosurgeon [29]
and Splitnet [32] are examples of systems where the machine learn-
ing model is partitioned across mobile, edge or cloud which works
in a collaborative way to train a unified model. These systems do
not consider custom models for each node in MEC where an edge
might not require a global model trained on broad variety of data.

Similarly to Cartel, Cellscope [48] is also aimed at creating better
models at edge nodes. Using real data, the authors show evidence
that global models can lead to poor accuracy and high variance.
However, the focus of that work is on providing a bigger dataset
by intelligently combining data from multiple base stations to help
in building the local model at edge nodes. In contrast, Cartel avoids
data transfer and aims to provide model updates from logical edge
nodes only when there exists a data shift.

Finally, there exist many machine learning algorithms [8, 24,
27, 34] to incrementally train machine learning models in an ef-
ficient manner and more sophisticated knowledge transfer tech-
niques [17, 49] that Cartel can leverage to further improve the
learning performance.

9 CONCLUSION

In this paper we introduce Cartel, a system for sharing customized
machine learning models between edge datacenters. Cartel incor-
porates mechanisms to detect changes in the input patterns of the
local machine learning model running in a given edge, to dynami-
cally discover logical neighbors that have seen similar trends, and
to request from them knowledge transfer. This creates a collabora-
tive environment to learn from other models, only when required,
and without sharing the raw data. Experiments show that Cartel
allows edge nodes to benefit from the use of tailored models, while
adapting quickly to change in their workloads, and incurring sig-
nificant reductions in data transfer costs compared to approaches
based on global models. As future work, we aim to explore the
opportunities for additional gains from algorithmic improvements
while adding other machine learning models to the system.
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