
Black-Box IoT: Authentication and Distributed Storage of IoT
Data from Constrained Sensors

Panagiotis Chatzigiannis
George Mason University

pchatzig@gmu.edu

Foteini Baldimtsi
George Mason University

foteini@gmu.edu

Constantinos Kolias
University of Idaho
kolias@uidaho.edu

Angelos Stavrou
Virginia Tech
angelos@vt.edu

ABSTRACT

We propose Black-Box IoT (BBox-IoT), a new ultra-lightweight
black-box system for authenticating and storing IoT data. BBox-IoT
is tailored for deployment on IoT devices (including low-SizeWeight
and Power sensors) which are extremely constrained in terms of
computation, storage, and power. By utilizing core Blockchain prin-
ciples, we ensure that the collected data is immutable and tamper-
proof while preserving data provenance and non-repudiation. To re-
alize BBox-IoT, we designed and implemented a novel chain-based
hash signature scheme which only requires hashing operations
and removes all synchronicity dependencies between signer and
verifier. Our approach enables low-SWaP devices to authenticate
removing reliance on clock synchronization. Our evaluation results
show that BBox-IoT is practical in Industrial Internet of Things
(IIoT) environments: even devices equipped with 16MHz micro-
controllers and 2KB memory can broadcast their collected data
without requiring heavy cryptographic operations or synchronicity
assumptions. Finally, when compared to industry standard ECDSA,
our approach is two and three orders of magnitude faster for sign-
ing and verification operations respectively. Thus, we are able to
increase the total number of signing operations by more than 5000%
for the same amount of power.

1 INTRODUCTION

The commercial success of low Size Weight and Power (SWaP)
sensors and IoT devices has given rise to new sensor-centric ap-
plications transcending traditional industrial and closed-loop sys-
tems [24, 67]. In their most recent Annual Internet Report [2],
CISCO estimates that there will be 30 billion networked devices
by 2023, which is more than three times the global population.
While very different in terms of their hardware and software imple-
mentations, Industrial IoT (IIoT) systems share common functional
requirements: they are designed to collect data from a large number
of low-SWaP sensor nodes deployed at the edge. These nodes, which
we refer to as edge sensors, are resource-constrained devices used

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8354-7/21/05. . . $15.00
https://doi.org/10.1145/3450268.3453536

in volume to achieve a broader sensing coverage while maintain-
ing low cost. Thus, while capable of performing simple operations,
low-SWaP sensors usually depend on battery power, are equipped
with limited storage, and have low processing speed [19].

In practice, edge sensors are usually controlled by and report
to more powerful gateway devices (which we refer to as aggrega-
tors) that process and aggregate the raw sensory data. For instance,
in an Industrial (IIoT) environment, sensors are devices such as
temperature sensors are broadcasting their measurements to the
network router, which in turn submits it to the cloud through the
Internet. Until recently, due to processing and storage constraints,
many IoT designs were geared towards direct to cloud aggregation
and data processing. However, latency, bandwidth, autonomy and
data privacy requirements for IoT applications keep pushing the ag-
gregation and processing of data towards the edge [43]. In addition,
in most use cases, IoT devices need to be mutually authenticated
to maintain system integrity and the data origin has to be verified
to prevent data pollution attacks [45, 56] and in “model poisoning”
where an attacker has compromised a number of nodes acting co-
operatively, aiming to reduce the accuracy or even inject backdoors
to the resulting analysis models [13, 31].

The use of distributed, immutable ledgers has been proposed as
a prominent solution in the IoT setting allowing rapid detection
of inconsistencies in sensory data and network communications,
providing a conflict resolution mechanism without relying on a
trusted authority [10]. A number of relevant schemes has been
proposed in the literature [51, 54], integrating distributed ledgers
(commonly referred to as Blockchain) with IoT.
The Challenge: One of the main roadblocks for using Blockchain-
based systems as “decentralized” databases for sharing and storing
collected data is their dependency on asymmetric authentication
techniques. Typically, to produce authenticated data packets, sen-
sors have to digitally sign the data by performing public key cryp-
tographic operations, which are associated with expensive sign
and verification computations and large bandwidth requirements.
Although some high-end consumer sensor gateways and integrated
sensors might be capable of performing cryptographic operations,
a large number of edge sensors have limited computational power,
storage and energy [16, 37]. To make matters worse, sensors try to
optimize their power consumption by entering a “sleep” state to
save power resulting in intermittent network connectivity and lack
of synchronicity. Given such tight constraints, an important chal-
lenge is allowing low-SWaP devices being extremely constrained
both in terms of computational power and memory (categorized as

1

https://doi.org/10.1145/3450268.3453536

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Panagiotis Chatzigiannis, Foteini Baldimtsi, Constantinos Kolias, and Angelos Stavrou

Class 0 in RFC 7228 [14] ref. Section 5.1), to authenticate and utilize
a blockchain-based data sharing infrastructure.
Our Contributions:We design and implement BBox-IoT, a com-
plete blockchain-based system for Industrial IoT devices aimed
to create a decentralized, immutable ledger of sensing data and
operations while addressing the sensor and data authentication
challenge for extremely constrained devices. We aim to use our
system as a "black-box" that empowers operators of an IIoT en-
clave to audit sensing data and operational information such as
IIoT communications across all IIoT devices.

To perform sensor and data authentication operations without
relying on heavy cryptographic primitives, we introduce a novel
hash-based digital signature that uses an onetime hash chain of
signing keys. While our design is inspired by TESLA broadcast
authentication protocol [49, 50], our approach does not require any
timing and synchronicity assumptions between signer and verifier.
Overcoming the synchronicity requirement is critical for low-SWaP
devices since their internal clocks often drift out of synchronization
(especially those using low cost computing parts) [27, 57]. Our pro-
posed scheme further benefits by the broadcast nature of the wire-
less communication. Indeed, in combination with the immutable
blockchain ledger, we are able to ferret out man-in-the-middle at-
tacks in all scenarios where we have more than one aggregators in
the vicinity of the sensors. To bootstrap the authentication of sensor
keys, we assume an operator-initiated device bootstrap protocol
that can include either physical contact or wireless pairing using
an operator-verified ephemeral code between sensors and their
receiving aggregators. Our bootstrap assumptions are natural in
the IoT setting, where sensors often “report" to specific aggregators
and allows us to overcome the requirement for a centralized PKI.
Note that our signature scheme is of independent interest, in-line
with recent efforts by NIST for lightweight cryptography [58].

For the blockchain implementation where a consensus protocol
is needed, we consider a permissioned setting, where a trusted party
authorizes system participation at the aggregator level. Our system
supports two main types of IoT devices: low-SWaP sensors who
just broadcast data and self-reliant aggregators who collect the data
and serve as gateways between sensors and the blockchain. While
our system is initialized by a trusted operator, the operator is not
always assumed present for data sharing and is only required for
high-level administrative operations including adding or remov-
ing sensors from the enclave. We build the consensus algorithms
for BBox-IoT using a modified version of Hyperledger Fabric [7],
a well known permissioned blockchain framework, and leverage
blockchain properties for constructing our protocols tailored for
constrained-device authentication. However, BBox-IoT operations
are designed to be lightweight and do not use public key cryptogra-
phy based on the RSA or discrete logarithm assumptions, which are
common, basic building blocks of popular blockchain implementa-
tions. We describe our system in details considering interactions
between all participants and argue about its security.

We implemented and tested a BBox-IoT prototype in an IIoT
setting comprising of extremely constrained sensors (Class 0 per
RFC 7228). We employed 8-bit sensor nodes with 16MHz micro
controllers and 2KB RAM, broadcast data every 10 seconds to a
subset of aggregators (e.g. IIoT gateways) which in turn submit
aggregated data to a cloud infrastructure. The evaluation shows

that the IIoT sensors can compute our 64-byte signature in 50ms,
making our signature scheme practical even for the least capable of
IIoT platforms. Our evaluation section shows results by considering
a sensor/gateway ratio of 10:1. When compared with ECDSA sign-
ing operations, our scheme is significantly more efficient offering
two (2) and three (3) orders of magnitude speedup for signing and
verification respectively. Our theoretical analysis and implemen-
tation shows that we can achieve strong chained signatures with
half signature size, which permits accommodating more operations
in the same blockchain environment. BBox-IoT is also over 50
times more energy-efficient, which makes our system ideal for edge
cost-efficient but energy-constrained IIoT devices and applications.

Finally, we adopt the same evaluation for Hyperledger Fabric
considered in previous work [7] and estimate the end-to-end costs
of BBox-IoTwhen running on top of our Hyperledger modification,
showing it is deployable in our considered use-cases.

2 BACKGROUND & PRELIMINARIES

2.1 Blockchain System Consensus

In distributed ledgers (or Blockchains), we can categorize the par-
ticipants as follows: a) Blockchain maintainers (called also miners),
who are collectively responsible for continuously appending valid
data to the ledger, and b) clients, who are reading the blockchain
and posting proposals for new data. While clients are only utilizing
the blockchain in a read-only mode, the blockchain maintainers
who are responsible for “book-keeping" must always act according
to a majority’s agreement to prevent faulty (offline) or Byzantine
(malicious) behavior from affecting its normal functionality. This
assumes that a consensus protocol takes place behind the scenes
among these maintainers, which are distinguished to permissioned
or permissionless, according to their participation controls.

Although the open nature of permissionless blockchains seems
attractive, it does not really fit the membership and access control
requirements for IoT deployments. In such settings, operators pre-
fer to control the participation of IoT sensors and aggregators by
means of authenticating them. Moreover, in permissioned settings
consensus is computationally cheaper and thus better suited to
nodes with limited capabilities.

Fundamental Consensus Properties: Informally, the ledger
consensus problem [29] considers a number of parties receiving a
common sequence of messages, appending their outputs on a public
ledger. The two basic properties of a ledger consensus protocol are:
(a) Consistency: An honest node’s view of the ledger on some round
𝑗 is a prefix of an honest node’s view of the ledger on some round
𝑗 + ℓ, ℓ > 0. (b) Liveness: An honest party on input of value 𝑥 , after
a certain number of rounds outputs a ledger view that includes 𝑥 .

BBox-IoT Permissioned Consensus: The aforementioned fun-
damental properties are not sufficient for our system consensus. For
instance, most “classical" consensus algorithms such as PBFT [20]
have not been widely deployed due to various practical issues in-
cluding lack of scalability. Taking the BBox-IoT requirements into
account, the system’s consensus algorithm needs to satisfy the
following additional properties:

i. Dynamic membership: In BBox-IoT, there is no a priori knowl-
edge of system participants. New members might want to join
(or leave) after bootstrapping the system. We highlight that

2

Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

the vast majority of permissioned consensus protocols assume
a static membership . Decoupling “transaction signing par-
ticipants" from “consensus participants" is a paradigm that
circumvents this limitation .

ii. Scalable: BBox-IoT might be deployed in wide-area scenarios
(e.g. IIoT), so the whole system must support in practice many
thousands of participants, and process many operations per
second (more than 1000 op/s).

iii. DoS resistant: For the same reason above, participants involved
in consensus should be resilient to denial-of-service attacks .

2.2 Modifying Hyperledger Fabric

Hyperledger [35], a well-known open-source blockchain plat-
form in the permissioned model, satisfies a wide range of business
blockchain requirements, and has developed several frameworks,
supporting different consensus algorithms or even “pluggable"
(rather than hardcoded) consensus like Hyperledger Fabric [7].
Its main components are categorized as follows:
(1) Clients are responsible for creating a transaction and submit-

ting it to the peers for signing. After collecting a sufficient
number of signatures (as defined by the system policy), they
submit their transaction to the orderers for including it in a
block. Client authentication is delegated to the application.

(2) Peers are the blockchain maintainers, and are also responsible
for endorsing clients’ transactions. Notice that in the context
of Hyperledger, “Endorsing” corresponds to the process of ap-
plying message authentication.

(3) Orderers after receiving signed transactions from the clients,
establish consensus on total order of a collected transaction set,
deliver blocks to the peers, and ensure the consistency and
liveness properties of the system.

(4) The Membership Service Provider (MSP) is responsible for
granting participation privileges in the system.
Directly using Hyperledger in BBox-IoT is not possible, since

we assume that lightweight devices (which for Hyperledger Fabric
would have the role of “clients") are limited to only broadcasting
data without being capable of receiving and processing. In Hyper-
ledger Fabric, clients need to collect signed transactions and send
them to the ordering service, which is an operation that lightweight
devices are typically not capable of performing.
Ourmodification. To address this issue, we propose amodification
in Hyperledger architecture. In our modified version, as shown
in Figure 1b, a client broadcasts its “transaction" message to all
nearby peer nodes. However, the transaction is handled by a specific
peer (which are equivalent to an aggregator as we discuss in the
next section), while peers not “responsible" for that transaction
disregard it. That specific peer then assumes the role of the “client"
in the original Hyperledger architecture simultaneously, while also
continuing functioning as a peer node. As a client, it would be
responsible for forwarding this transaction to other peers, and
collecting the respective signatures, as dictated by the specified
system policy, in a similar fashion to original Hyperledger Fabric. It
would then forward the signed transaction to the ordering service,
and wait for it to be included in a block. The ordering service would
send the newly constructed block to all peers, which would then
append it to the blockchain.

Security of our modifications. The proposed modifications of
Hyperledger do not affect the established security properties (i.e.
Consistency and Liveness), since a peer node simultaneously act-
ing as a client, can only affect the signing process by including
a self-signature in addition to other peers’ signatures. However,
because the signing requirements are dynamically dictated by the
system policy, these could be easily changed to require additional
signatures or even disallow self-signatures to prevent any degra-
dation in security. We also note that while this modified version
of Hyperledger effectively becomes agnostic to the original client,
which otherwise has no guarantees that its broadcasted transaction
will be processed honestly, our threat model discussed in the next
section captures the above trust model.

3 BBOX-IOT SYSTEM PROPERTIES

In BBox-IoT there are five main types of participants, most of
them inherited by Hyperledger Fabric: the MSP, orderers, local
administrators, aggregators and sensors. Aggregators are equiv-
alent to peers and sensors to clients in our modified Hyperledger
Fabric architecture discussed in the previous section. We provide a
high level description of each participant’s role in the system and
include detailed definitions in the full version of our paper [22].
• TheMSP is a trusted entity who grants or revokes authorization
for orderers, local administrators and aggregators to participate
in the system, based on their credentials. It also initializes the
blockchain and the system parameters and manages the system
configuration and policy.
• Orderers (denoted by O) receive signed transactions from aggre-
gators. After verifying the transactions as dictated by the system
policy they package them into blocks. An orderer who has formed
a block invokes the consensus algorithm which runs among the
set of orderers O. On successful completion, it is transmitted
back to the aggregators with the appropriate signatures.
• Local administrators (denoted by LAdm, are lower-level system
managers with delegated authority from theMSP. Each LAdm
is responsible for creating and managing a local device group
G, which includes one or more aggregators and sensors. He
grants authorization for aggregators to participate in the system
with the permission of the MSP. He is also solely responsible
for granting or revoking authorization for sensors in his group,
using aggregators to store their credentials.
• Aggregators (denoted by Ag) are the blockchain maintainers.
They receive blocks from orderers and each of them keeps a
copy of the blockchain. They store the credentials of sensors
belonging in their group and they pick up data broadcasted by
sensors. Then they create blockchain “transactions" based on
their data (after possible aggregation), and periodically collect
signatures for these transactions from other aggregators in the
system, as dictated by the system policy. Finally, they send signed
transactions to the ordering service, and listen for new blocks to
be added to the blockchain from the orderers.
• Sensors (denoted by S) are resource-constrained devices. They
periodically broadcast signed data blindlywithoutwaiting for any
acknowledgment. They interact with local administrators during
their initialization, while their broadcasted data can potentially
be received and authenticated by multiple aggregators.

3

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Panagiotis Chatzigiannis, Foteini Baldimtsi, Constantinos Kolias, and Angelos Stavrou

(a) Original architecture. Clients collect signatures from peers for a transac-

tion, then submit the signed transaction to the ordering service which then

returns a block containing packaged transactions to peers.

(b) Modified architecture. Clients only broadcast the transaction to the

peers, who are then responsible themselves for signing it before submitting

it to the ordering service.

Figure 1: Modified Hyperledger Fabric architecture.

We then define the security and operational properties of BBox-
IoT, in accordance with evaluation principles adopted in [15, 25,
30, 54].

3.1 Threat model & Assumptions

Physical layer attacks and assumptions. While our system
cannot prevent physical tampering with sensors that might affect
data correctness, any data discrepancies can be quickly detected
through comparisons with adjacent sensors given the blockchain
immutability guarantees. Similarly, any malicious or erroneous
data manipulation by an aggregator will result in detectable dis-
crepancies even when one of the aggregators is not compromised
simultaneously. Of course, if all aggregators become compromised
instantaneously, which is hard in a practical setting, our system
will not detect any discrepancies. This raises the bar significantly
for an adversary who might not be aware or even gain access to all
aggregator nodes at the same time. Finally, attacks such as flood-
ing/jamming and broadcast interception attacks are out of scope in
this paper.
Trust Assumptions.We assume thatMSP is honest during sys-
tem bootstrapping only, and that device group participants (Local
administrators, aggregators and sensors) may behave unreliably
and deviate from protocols. For instance, they might attempt to
statically or dynamically interfere with operations of honest system
participants (e.g. intercept/inject own messages in the respective
protocols), even colluding with each other to do so. This behavior
is expected which our system is designed to detect and thwart.
Consensus Assumptions. As in Hyperledger, we decouple the
security properties of our system from the consensus ones. For ref-
erence, this implies tolerance for up to 1/3 Byzantine orderer nodes,
with a consensus algorithm satisfying at least the fundamental and
additionally required properties discussed in Section 2.

Given the above adversarial setting, we define the following
security properties:

S-1 Only authenticated participants can participate in the system.
Specifically:
a. An orderer non-authenticated by the MSP is not able

to construct blocks (i.e., successfully participate in the

consensus protocol). The ordering service can tolerate up
to 𝑓 malicious (byzantine) orderers.

b. An LAdm non-authenticated by the MSP is not able to
form a device group G.

c. If an aggregator is not authenticated by theMSP, then its
signatures on transactions cannot be accepted or signed
by other aggregators.

S-2 Sensor health: Sensors are resilient in the following types of
attacks:
a. Cloning attacks: A non-authenticated sensor cannot im-

personate an existing sensor and perform operations that
will be accepted by aggregators.

b. Message injection - MITM attack: A malicious adversary
cannot inject or modify data broadcasted by sensors.

S-3 Device group safety: Authenticated participants in one group
cannot tamper with other groups in any way, i.e.:
a. An LAdm cannot manage another group, i.e. add or re-

voke participation of an aggregator or sensor in another
device group, or interfere with the functionalities of exist-
ing aggregators or sensors at any time.

b. An aggregator (or a coalition of aggregators) cannot add or
remove any sensor in device group outside of their scope,
or interfere with the functionalities of existing aggregators
or sensors at any time.

c. A sensor (or a coalition of sensors) cannot interfere with
the functionalities of existing aggregators or other sensors
at any time.

S-4 Non-repudiation and data provenance: Any BBox-IoT node
cannot deny sent data they signed. For all data stored in
BBox-IoT, the source must be identifiable.

S-5 DoS resilient: BBox-IoT continues to function even ifMSP

is offline and not available, or an adversary prevents com-
munication up to a number of orderers (as dictated by the
consensus algorithm), a number of aggregators (as dictated
by the system policy) and up to all but one sensor. Also an
adversary is not able to deny service to any system node
(except through physical layer attacks discussed before).

S-6 System policy and configuration security: BBox-IoT policy
and configuration can only be changed byMSP.

4

Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

S-7 Revocation: The system is able to revoke authentication for
any system participant, and a system participant can have its
credentials revoked only by designated system participants.

4 CONSTRUCTIONS

We first set the notation we will be using throughout the rest of
the paper. By 𝜆 we denote the security parameter. By 𝑏 ← 𝐵(𝑎) we
denote a probabilistic polynomial-time (PPT) algorithm 𝐵 with in-
put 𝑎 and output 𝑏. By := we denote deterministic computation and
by 𝑎 → 𝑏 we denote assignment of value 𝑎 to value 𝑏. By (pk , sk)
we denote a public-private key pair. We denote concatenation as | |.

4.1 Our Hash-based Signature Scheme

Our construction is a digital signature scheme that only requires
hashing as the main operation. While inspired by the Lamport
passwords [40] and TESLA [49, 50], it avoids the need for any syn-
chronization between senders and receivers which is a strong as-
sumption for the IoT setting. Instead, we assume the existence of a
constant-sized state for both the sender and receiver between sign-
ing operations. Our scheme allows for a fixed number of messages
to be signed, and has constant communication and logarithmic
computation and storage costs under the following requirements
and assumptions:
• There’s no requirement for time synchronization, and a verifier
should only need to know the original signer’s pk .
• The verifier should immediately be able to verify the authenticity
of the signature (i.e. without a “key disclosure delay" that is
required in the TESLA family protocols.
• Network outages, interruptions or “sleep” periods can be resolved
by requiring computational work from the verifier, proportional
to the length of the outage.
• We do not protect against Man-in-the-Middle attacks in the sig-
nature level, instead, we use the underlying blockchain to detect
and mitigate such attacks as we discuss later in Section 4.3.
• The signer has very limited computation, power and storage
capabilities, but can outsource a computationally-intensive pre-
computation phase to a powerful system.
Our scheme, presented in Construction 1, is a chain-based one-

time signature scheme, with each key derived from its predecessor
as𝑘𝑖 ← ℎ(𝑘𝑖+1), 𝑖 ∈ {𝑛−1, 𝑛−2, . . . , 0} andℎ is a preimage resistant
hash function. The keys when used in pairs (𝑘𝑖 , 𝑘𝑖−1) can be viewed
as a public-private key pair for a one-time signature scheme, then
forming a one-way hash chain with consecutive applications of ℎ.
The key 𝑘𝑛 serves as the “private seed" for the entire key chain.
In the context of integrity, a signer with a “public key" 𝑘𝑖−1 =

ℎ(𝑘𝑖) would have to use the “private key" 𝑘𝑖 to sign his message.
Since each key can only be used once, the signer would then use
𝑘𝑖 = ℎ(𝑘𝑖+1) as his “public key" and 𝑘𝑖+1 as his “private key", and
continue in this fashion until the key chain is exhausted.

For example as shown in Figure 2, we can construct a hash chain
from seed 𝑘5. For signing the 1st message 𝑚1, the signer would
use (pk1 , sk1) = (𝑘0, 𝑘1) and output signature 𝜎 = ℎ(𝑚1 | |𝑘0) | |𝑘1.
Similarly, for the 2nd message he would use (pk2 , sk2) = (𝑘1, 𝑘2)
and for the 5th message (pk5 , sk5) = (𝑘4, 𝑘5).

Constructing the one-way hash-chain described above, given
the seed 𝑘𝑛 , would require 𝑂 (𝑛) hash operations to compute 𝑘0 =

Let ℎ : {0, 1}∗ → {0, 1}𝜆 be a preimage resistant hash function.

(pk , skn , 𝑠0) ← OTKeyGen(1𝜆, 𝑛)
– sample a random “private seed" 𝑘𝑛 ← {0, 1}∗

– generate hash chain pk = 𝑘0 = ℎ (𝑘1) = ℎ (ℎ (𝑘2)) = ... = ℎ𝑖 (𝑘𝑖) =
ℎ𝑖+1 (𝑘𝑖+1) = ... = ℎ𝑛−1 (𝑘𝑛−1) = ℎ𝑛 (𝑘𝑛)

– hash chain creates 𝑛 pairs of (pki , ski) where:
(pk1 , sk1) = (𝑘0, 𝑘1) = (ℎ (𝑘1), 𝑘1) ,
(pk2 , sk2) = (𝑘1, 𝑘2) = (ℎ (𝑘2), 𝑘2) ,
... ,
(pki , ski) = (𝑘𝑖−1, 𝑘𝑖) = (ℎ (𝑘𝑖), 𝑘𝑖) ,
...,
(pkn , skn) = (𝑘𝑛−1, 𝑘𝑛) = (ℎ (𝑘𝑛), 𝑘𝑛)

– initialize a counter ctr = 0, store ctr and pairs as [(pki , ski)]𝑛1 to
initial state 𝑠0

– output (pk = pk1 , skn , 𝑠0) .
Note: Choosing to store only (pk , skn) instead of the full key lists
introduces a storage-computation trade-off, which can be amortized
by the “pebbling" technique we discuss in this section.
(𝜎, ski , 𝑠𝑖) ← OTSign(ski−1 ,𝑚, 𝑠𝑖−1)
– parse 𝑠𝑖−1 and read ctr→ 𝑖 − 1
– compute one-time private key ski = 𝑘𝑖 from 𝑛 − 𝑖 successive appli-

cations of the hash function ℎ on the private seed 𝑘𝑛 (or read 𝑘𝑖

from [sk]𝑛1 if storing the whole list)
– compute 𝜎 = ℎ (𝑚 | |pki) | |ski = ℎ (𝑚 | |𝑘𝑖−1) | |𝑘𝑖 =

ℎ (𝑚 | |ℎ (𝑘𝑖)) | |𝑘𝑖
– increment ctr→ ctr + 1, store it to updated state 𝑠𝑖
OTVerify(pk , 𝑛,𝑚, 𝜎) := 𝑏

– parse 𝜎 = 𝜎1 | |𝜎2 to recover 𝜎2 = 𝑘𝑖

– Output 𝑏 = (∃ 𝑗 < 𝑛 : ℎ 𝑗 (𝑘𝑖) = pk) ∧ (ℎ (𝑚 | |ℎ (𝑘𝑖)) = 𝜎1)
Note: The verifier might choose to only store the most recent 𝑘𝑖 which
verified correctly, and replace pk with 𝑘𝑖 above resulting in fewer
hash iterations.

Construction 1: 𝑛-length Chain-based Signature Scheme

𝑘0 𝑘1
ℎ

𝑘2
ℎ

𝑘3
ℎ

𝑘4
ℎ

𝑘5
ℎ

Figure 2: Key generation for 𝑛 = 5 and seed 𝑘5. First signature uses

as pk = 𝑘0 and sk = 𝑘1.

ℎ𝑛 (𝑘𝑛), whichmight be a significant computational cost for resource-
constrained devices, as the length of the hash chain 𝑛 is typically
large to offset the constraint of single-use keys. While we could pre-
compute all the keys, which would cost a 𝑂 (1) lookup operation,
we would then require 𝑂 (𝑛) space, which is also a limited resource
in such devices. Using efficient algorithms [36, 66], we can achieve
logarithmic storage and computational costs by placing “pebbles"
at positions 2𝑗 = 1 · · · ⌈𝑙𝑜𝑔2 (𝑛)⌉, which as shown in Section 5.3
makes our construction practical for resource-constrained devices.
The verifier’s cost is 𝑂 (1) when storing the most recently-used 𝑘 .

In the full version of the paper [22] we present formal definitions
of chain-based signatures and prove unforgeability of our scheme.

Comparison and Discussion. Our scheme is directly com-
parable with the TESLA Broadcast Message Authentication Pro-
tocol [49, 50], which follows a similar chain-based paradigm but

5

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Panagiotis Chatzigiannis, Foteini Baldimtsi, Constantinos Kolias, and Angelos Stavrou

Table 1: Hash-based scheme comparison.

Scheme Architecture NoSync NoDelay
TESLA [49, 50] Chain ✗ ✗

𝜇TESLA 2-level chain [44] Chain ✗ ✗

Sandwich, 1-level, light chain [32] Chain ✗ ✗

Comb Skipchain [32] Chain ✓ ✗

Short Hash-Based Signatures [23] Chain ✓ ✓

XMSS [18] Tree ✓ ✓

BPQS [21] Chain ✓ ✓

SPHINCS [11] Tree ✓ ✓

Our construction Chain ✓ ✓

Figure 3: BBox-IoT construction overview

requires some synchronicity between the sender and receiver, and
the receiver can only verify a message after some delay. Several
other chain-based schemes have been proposed [23, 32, 44], form-
ing a “hierarchy” of chains aiming to improve their efficiency in
various aspects. However, most of them do not prevent the syn-
chronicity requirement and delayed verification, in fact some even
introduce additional requirements, e.g. special “commitment dis-
tribution” messages [44], where a verifier won’t be able to verify a
long series of signatures if those are lost. As our scheme is hash-
based, we compare with another family of hash-based signatures
schemes that follow a tree structure, e.g. XMSS [11] and SPHINCS
[18]. While these schemes do not have any synchronicity assump-
tions, their performance is not suited for the low SWaP sensors
we consider (even with resource-constrained device optimizations
[34]). In Table 1 we compare with other hash-based schemes in
terms of properties (i.e. no synchronicity or delays, denoted as
NoSync and NoDelay respectively). In Table 2 we provide a con-
crete comparison with the rest of the schemes satisfying the above
properties. In Section 6 we discuss some of the above schemes in
more detail.

The caveat in our scheme is that it is susceptible to Man-in-the-
Middle attacks. Specifically, an attacker might intercept a signature
packet in transit (thus learning the “ephemeral” private key) and
replace it with an arbitrary message and signature. Nevertheless
such attacks are unlikely to be successful in our setting as discussed
later in Section 4.3.

4.2 Overall BBox-IoT Construction

Our BBox-IoT system consists of the following components as
shown in Figure 3 illustrating our modifications to the Hyperledger
Fabric architecture.

• A (trusted)Membership Service Provider1MSP, which resembles
a Trusted Party, and is responsible for authorizing participation
in the system. TheMSP bootstraps the system and forms the gen-
esis block, which contains hardcoded information on its public
key and the consensus algorithm. The genesis block also initial-
izes the authorized system participants and the system policy
(denoted by Pol), both of which can be changed later.
• A permissioned blockchain BC, which consists of normal “trans-
action" blocks and special “configuration" blocks.
• A configuration Config for BC, containing membership informa-
tion for local administrator, orderer and aggregators, as well as
system policy data. As in Hyperledger Fabric, Config is stored in
the configuration blocks.
• A set of orderer nodes O : {O1,O2, ...,Oℓ }, responsible for
achieving consensus on forming new blocks. These nodes are
assumed static, although it can be extended to handle dynamic
membership.
• A set of device groups G : {G1,G2, ...,Gn}. On each group Gi
there exist:
– A local administrator LAdmi, responsible for its group mem-
bership, which includes a set of aggregators and sensors. In
order for LAdmi to add or remove an aggregator in the system
must also have consent from theMSP, however he does not
need permission to handle sensor membership.

– A set of aggregatorsAG𝑖 : {Agi1,Agi2, ...,Agim}, which have
also the role of peers in Hyperledger Fabric. We assume ag-
gregators can perform regular cryptographic operations and
aggregate data received from sensors. As discussed in our mod-
ified Hyperledger, they also briefly take the role of a “client".

– A set of sensorsS𝑖 : {Si1, Si2, ..., Sik}, which are assumed to be
resource-constrained devices. These would be the equivalent of
clients in the original Hyperledger Fabric architecture, but here
they are assumed to only broadcast their data to nearby group
aggregators, without expecting a confirmation. The only step
where interaction occurs is during initial setup, where they
exchange their public key and other initialization data with
the group administrator. We also assume that sensors can only
perform basic cryptographic operations (i.e. hashing), meaning
they can’t perform public key cryptography operations that
use exponentiations.

We first describe the initialization process for the system’sMSP

and genesis block B0. After generating its keys,MSP bootstraps
the system with pre-populated participation whitelists of orderers,
local group administrators, and aggregators (denoted byOL, LL and
PL respectively) and a pre-defined system policy. Sensors do not
need to be tracked from theMSP, as participation authorization
for sensors is delegated to the group local administrators. Local
administrators control authorization privileges with a respective
sensor whitelist denoted by SL, and they also keep a whitelist of
group aggregators denoted by AL.

Furthermore, we detail the functionality of reading or updating
the system’s configuration, including the permissioned participants
and the system policy. Orderers and local administrators can only
be authorized for participation by theMSP, while aggegators need
their local administrator’s approval as well. As discussed above,

1The MSP also includes the system administrator.
6

Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

Table 2: Hash-based scheme comparison for 256-bit messages and 256-bit security parameter. Sizes in bytes.M,F and H denote MAC, PRF and

hash operations respectively. 𝑛 denotes length of chain-based schemes.

Scheme |𝜎 | |pk | |sk | Sign() Verify()
Short Hash-Based Signatures [23] 128 + 𝑙𝑜𝑔2𝑛 32 64(⌈𝑙𝑜𝑔2 (𝑛)⌉ + 1) (⌈𝑙𝑜𝑔2 (𝑛)⌉ + 3)H + 3F ⌈𝑙𝑜𝑔2 (𝑛)⌉
XMSS [18] 2692 (4963) 1504 (68) 64 747H + 10315F 83H + 1072F
BPQS [21] 2176 68 64 1073 H 1073 H
SPHINCS [11] 41000 1056 1088 386F, 385 PRGs, 167519 H 14060 H
Our Construction 32(64) 32 32 ⌈𝑙𝑜𝑔2 (𝑛)⌉ H 1 H

sensor participation is handled by the local administrators, however,
group aggregators also keep track of group participation for sensors
in a passive manner. The local administrators are also responsible
for revoking participation rights for aggregators and sensors belong-
ing in their group. In general, granting or revoking participation
privileges is equivalent to adding or removing the participant’s
public key from the respective whitelist.

Furthermore, on a high-level, sensors “blindly” broadcast their
data as signed transactions. Nearby aggregators (belonging to the
same device group) receive and verify the data and collect the re-
quired amount of signatures from other aggregators in the system
(as defined by the system policy), and then submit the signed trans-
action to the ordering service. The orderers then by running the
consensus protocol, “package” the collected transactions to form a
blockchain block. Finally, the block is sent back to the aggregators,
who as the blockchain “maintainers”, append it to the blockchain.
The core system functionalities are shown in Construction 2. .

Sensor join: Defined by SensorJoin() protocol between a sensor
and a Local administrator. This is the only phase when a sensor is
interacting with the system, as the LAdm generates a new hash
chain and its associated pebbles in a powerful device. The peb-
bles are then loaded to the sensor, and LAdm updates the group
aggregators with the new sensor’s public key.

Sensor broadcast: Defined by SensorSendData() protocol be-
tween a sensor and group aggregators. For some data𝑚, the sensor
computes the one-time hash-based signature using OTSign() and
the signed data𝑚,𝜎 is broadcasted to all group aggregators. If there
are any aggregator who receives a different signed message𝑚′, 𝜎 ,
the message is discarded, else it remains in the aggregator’s pending
memory for processing.

Aggregator transaction: Defined by AggrSendTx() protocol be-
tween aggregators and orderers. For an aggregator to submit aggre-
gated data to the blockchain, it first needs to collect the needed sig-
natures from other aggregators. Then it submits the signed transac-
tion to the ordering service, which in turn executes theConsensus()
algorithm to construct a block with a set of signed transactions.
Finally, the block is transmitted to the aggregators, who append
the block as the blockchain maintainers.

Sensor transfer: Defined by SensorTransfer algorithm, executed
when a sensor is transferred to a new location or device group. The
handing-over aggregator saves its state of our signature scheme
w.r.t. that sensor and encrypts it on the blockchain under the re-
ceiving aggregator’s public key. After sensor transfer, the receiving
aggregator decrypts that state and resumes message verification.

Optionally in our construction, a symmetric group key KG can
be shared between each group’s local administrator, aggregators

SensorJoin

– Sensor generates a seed uniformly at random, and generates hash
chain through OTKeyGen algorithm. (computation is outsourced to a
powerful device)

– Sensor stores hash chain “pebbles” in its memory and outputs the last
element of the chain as public key to the LAdm

SensorSendData

– Sensor computes signature 𝜎 for broadcasted data𝑚 using OTSign
algorithm

– Sij broadcasts 𝜎 to aggregators in group.
– Each aggregator after verifying the signature through OTVerify,

checks if any other aggregator received a conflicting message. It adds
the message - signature pair in its local state, pending for blockchain
submission.

AggrSendTx

– Aggregator parses its local state for pending blockchain operations as
a transaction.

– Aggregator computes signature on transaction and sends it to other
aggregators.

– Each aggregator after verifying signature and sender membership in
the system, signs the transaction.

– The sending aggregator submits signed transaction to ordering service
after reaching necessary number of signatures, as dictated by system
policy.

– Each orderer after verifying signatures, runs consensus algorithm
which outputs a blockchain update operation.

– The blockchain operation is received by orderers who update the
blockchain state.

SensorTransfer

– Aggregator encrypts the state for the sensor under the reveiving ag-
gregator’s pk (i.e. the most recent received ski) and submits it to the
blockchain using AggrSendTx. Sensor is removed from the device
group and is transferred to new group.

– Receiving aggregator decrypts state from the blockchain and resumes
verification of received data from sensor.

Construction 2: BBox-IoT core algorithms and protocols

and sensors for confidentiality purposes. However, the additional
encryption operations have an impact mainly on sensors, which
have constrained computational and storage resources. Note that
using such key for authentication or integrity would be redundant
since these properties are satisfied using public keys existing in the

7

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Panagiotis Chatzigiannis, Foteini Baldimtsi, Constantinos Kolias, and Angelos Stavrou

appropriate membership lists and revocation operations can still
be performed at an equivalent cost using those lists.

4.3 Security Analysis

Given the threat model discussed in Section 3.1, most of the
security properties (all but S-2 and S-5) rely on the security of the
underlying signature scheme and consensus properties. As it is
straightforward to prove security for these, we focus on S-2 sensor
health security property (which includes resilience toMITM attacks)
and S-5 (resilience to DoS attacks).

In order for an adversary A to impersonate/clone a sensor, it
would either have to break the unforgeability of our signature
scheme, or launch a MITM attack which is a potential attack vector
as discussed in Section 4.1.

As discussed in Section 3.1, we consider jamming attacks at the
physical layer outside the scope of this paper. Given the nature of
our setting where a sensor’s broadcast has typically short range, we
consider MITM and message injection attacks hard and unlikely to
launch but we still consider them as part of our threat model. Even
in these unlikely scenarios, MITM attacks can be easily mitigated
in BBox-IoT. A first approach for detecting such attacks is to lever-
age blockchain properties, where aggregators can compare data
received from a sensor in the blockchain level. Our assumption here
is that sensor data can be received by more than one aggregators in
the vicinity of the sensor which is a reasonable senario for typical
dense IoT deployments. If there’s even one dissenting aggregator,
probably victim of a MITM attack, all the associated data would
be considered compromised and disregarded and the operator will
be notified of the data discrepancy detected. The above approach
while simple, still permits a MITM attacker to “eclipse” a sensor
from the system using a jamming attack.

An alternative approach is to make a proactive check in a group
level, where each aggregator would verify the validity of its received
data by comparing it with other aggregators before even submitting
it to the blockchain. In both above strategies, the attacker’s work
increases significantly because he would need to launch simulta-
neous MITM attack between the sensor and all aggregators in the
vicinity.

Additionaly, we argue that our system is DOS resilient (S-5) in
the following scenarios:

• MSP offline or not available: The core system functionality is
not affected, although there can be no configuration changes in
the system. All algorithms and protocols (except those involving
adding or revoking orderers, local administrators or aggregators
or those involving system policy changes) perform authentication
through the configuration blocks and not theMSP itself.
• Orderers unavailable: Reduces to tolerance properties of the con-
sensus algorithm.
• LAdm unavailable: The core system functionality is not affected,
although there can be no administrative operations in the respec-
tive group.
• Ag unavailable: Transactions are not processed only in the respec-
tive groups. However if the number of unavailable aggregators
exceeds a certain threshold, no transactions can be processed in
the whole system.

Table 3: Classes of Constrained Devices in terms of memory capabil-

ities according to RFC 7228.

Name RAM Flash
Class 0 <<10 KiB <<100 KiB
Class 1 10 KiB 100KiB
Class 2 50KiB 250KiB

Also, an adversary might attempt to flood an aggregator by broad-
casting messages and arbitrary signatures. In this scenario, the
aggregator would be overwhelmed since by running OTVerify for
each message-signature pair separately, it would have to check the
signature against all hash chain values up to the first public key. To
mitigate this, we propose checking only for a few hashes back to
the chain specified by a parameter (defined by a system parameter
“maxVerifications" as shown in Algorithm 2). This parameter can
be set by the local administrator but should be carefully selected. A
small value might generate the need of frequent re-initializations
for the sensors - if a long network outage occurs between a sensor
and an aggregator and they lose “synchronization", the local admin-
istrator should reinitialize the sensor in the device group. On the
other hand, a large value would amplify the impact of DoS attacks.

Algorithm 1 Sensor send data
1: tempkey← 𝑘0
2: initPebbles()
3: while True do
4: m← readSensor()
5: output.type← “payload"
6: output.data← m
7: transmit(output)
8: T1.start()
9: hashedData← ℎ(m||tempkey)
10: output.type← “hash"
11: output.data← hashedData
12: transmit(output)
13: tempkey← computePebbles() {as in [36]}
14: output.type← “secretKey"
15: T1.end()
16: output.data← tempkey
17: transmit(output)
18: end while

5 PERFORMANCE EVALUATION &

MEASUREMENTS

5.1 The IIoT Setting With Constrained Devices

IIoT environments are complex systems comprising of heteroge-
neous devices that can be tracked at different organizational layers,
namely (a) computational, (b) network, (c) sensor/edge layers [63].
Devices at the higher levels are powerful servers dedicated to the
analysis of data, storage, and decision making. They frequently
reside outside the factory premises, i.e., in cloud infrastructures. On
the other hand, on-site and at the edge layer, a myriad of low-SWaP
devices such as sensors and actuators reside, assigned with the
tasks of posting their data or reconfiguring their status based on
received instructions. On typical real-life IIoT deployments, the

8

Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

Algorithm 2 Aggregator receive data
1: publickey← 𝑘0
2: verifications← 0
3: while verifications < maxVerifications do
4: check1← False
5: check2← False
6: read← input()
7: if read.type = “payload" then
8: T3.start()
9: m← read.data
10: else if read.type = “hash" then
11: 𝑠1 ← read.data
12: else if read.type = “secretKey" then
13: 𝑠2 ← read.data
14: tempkey← 𝑠2
15: 𝑖 ← 0
16: T2.start()
17: while 𝑖 < maxVerification ∧ doWhile = True do

18: if ℎ(tempkey) = publickey then

19: check1← True
20: if ℎ(m||publickey) = 𝑠1 then

21: check2← True
22: publickey← secretkey
23: end if

24: doWhile = False
25: else

26: tempkey← ℎ(tempkey)
27: i++
28: end if

29: end while

30: if check1 ∧ check2 = True then
31: print(“Payload m is valid")
32: verifications++
33: T2.end()
34: else

35: print("Verification failed")
36: end if

37: T3.end()
38: end if

39: end while

processing speed of such devices ranges from tens (e.g., Atmel AVR
family) to hundreds of Mhz (e.g., higher-end models of ARM Cortex
M series). Diving even deeper, at the lower end of the spectrum,
one may observe sensor-like devices that are severely constrained
in memory and processing capabilities.

Such extremely constrained devices have been considered by
RFC 7228 [14] which underlines that “most likely they will not have
the resources required to communicate directly with the Internet in
a secure manner”. Thus, the communication of such nodes must be
facilitated by stronger devices acting as gateways that reside at the
network layer. In Table 3 we provide a taxonomy of constrained
devices residing at the edge of IIoT according to RFC 7228.

In this work, we consider a generic IIoT application scenario that
involves Class 0 devices which are connected to more powerful IoT
gateways in a sensor/gateway ratio of 10:1. The chosen platforms

and all experimental decisions were made to provide a realistic
scenario under the following assumptions: (a) devices severely con-
strained in terms of computational power and memory resources
(Class 0) and (b) moderately demanding in terms of communication
frequency (i.e. transmission once every 10 seconds).

5.2 Evaluation Setup

Our testbed consists of Arduino UNO R3 [1] open-source micro-
controller boards equipped with ATmega328P 16 MHz microcon-
troller and 2KB SRAM fitted with a Bluetooth HC-05 module. These
devices are really constrained and they represent the minimum
of capabilities in all of IoT sensors utilized in our experimental
scenarios (Class 0 in Table 3). For the gateways, we use Raspberry
Pi 3 Model B devices equipped with a Quad Core 1.2GHz BCM2837
64bit CPU and 1GB RAM.

We first focus on evaluating our system in a device group level2.
We use the one-time signature scheme outlined in Construction 1
and SHA256 as the hash function ℎ(). The length of the hash chain
sets the upper bound on the number of one-time signatures each
sensor Si can generate. In the case where the sensor’s available sig-
natures are depleted, it would enter an “offline" state and the Local
Administrator LAdm would need to manually renew its member-
ship in the system through the SensorJoin protocol. In a large-scale
deployment of our system however, frequent manual interventions
are not desirable, so our goal is to pick a sufficiently large 𝑛 such
that the available one-time signatures to the sensor last for the
sensor’s lifetime. As discussed above and taking similar schemes’
evaluations into account [6], we consider a frequency of one (1)
signing operation per 10 seconds for simplicity. We consider sensor
lifetimes between 4 months as an lower and 21 years as a upper
estimate (as shown in Table 5), which imply a hash chain between
220 and 226 elements respectively.

In the setup phase, we pre-compute the hash-chain as needed by
the pebbling algorithm [36] and load the initial pebble values into
the sensor. We first measure the actual needed storage on the sensor
for various values of 𝑛. Note that for 𝑛 = 226, the lower bound for
needed storage using a 256-bit hash function is about 26 ·256 = 832
bytes of memory. Then we set the sensor device to communicate
with the aggregator through Bluetooth in broadcast-only mode and
measure the maximum number of signing operations that can be
transmitted to the aggregator for various values of 𝑛, as well as the
verification time needed on the aggregator side since it will need to
verify a large number of sensor messages. The fact that we are able
to run BBox-IoT on Class 0 devices demonstrates the feasibility of
our approach for all low-SWaP sensors.

5.3 Signing and Verification

We run our experiments under different scenarios and multiple
times. Our evaluation results, which are shown in Table 5, represent
the statistical average across all measurements. Note that for mea-
suring the average signature verification time on the aggregator
side, we assume that the aggregator is able to receive all the data
broadcasted by the sensor. If a network outage occurs between
them (and the sensor during the outage keeps transmitting), the
aggregator after reestablishing connection would have to verify
2Our code is available at https://github.com/PanosChtz/Black-Box-IoT

9

https://github.com/PanosChtz/Black-Box-IoT

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Panagiotis Chatzigiannis, Foteini Baldimtsi, Constantinos Kolias, and Angelos Stavrou

Table 4: Evaluation for sensor-aggregator protocol - Average verifi-

cation times

T2 (𝜇sec) T3 (msec)
maxV 20 22 24 26 20 22 24 26
100 28.12 31.18 31.34 28.95 42.83 42.84 42.91 43.08
500 30.78 31.94 30.31 30.63 51.25 51.23 51.37 51.39
1000 31.39 30.96 31.14 30.74 55.27 55.35 55.36 55.41
2500 30.57 30.97 32.39 30.86 60.61 60.65 60.7 60.78
5000 33.26 31.7 31.66 31.43 64.66 64.74 64.79 64.83
10000 33.34 33.38 33.6 31.41 68.68 68.75 68.78 68.86

the signature by traversing the hash chain back up to the last re-
ceived secret key, which incurs additional computation time (in
Figure 4 we show the associated verification cost in such occa-
sions). As expected, the verification time is relatively constant in all
measurements, about 0.031ms on average. This suggests that such
an aggregator could still easily handle 105 sensors transmitting
data for verification (as we considered one transmission every 10
seconds for each sensor).

Table 5, shows that the pebbles data stucture consumes most
of the required memory storage in our implementation, while the
remaining program requires a constant amount of memory for any
number of pebbles. We also observe a slight impact of the number
of pebbles on the total verification time, which is mainly affected
by the sensor’s capability to compute the signature on its message
and the next secret key. For example, the sensor needs 50ms to
compute the next signature with 𝑛 = 226 and 49.95ms for 𝑛 = 224.
Also by comparing the total verification time with the signature
computation time, we conclude the extra 14.3 msec are needed for
transmitting the signature.

In Table 4 we provide a series of measurement results for the
average verification time of 1 signature on the aggregator. By T2
we denote the verification time of a signature and by T3 the total
verification time by an aggregator (as shown in Algorithm 2). The
average total verification time (denoted by maxV) increases signifi-
cantly as we require more verification operations from the Arduino
device. This happens because of dynamic memory fragmentation
as the pebbling algorithm updates the pebble values.

Comparison with ECDSA. We compare our lightweight scheme
with ECDSA, which is commonly used in many blockchain appli-
cations. We assume IoT data payloads between 50 and 220 bytes,
which can accommodate common data such as timestamps, at-
tributes, source IDs and values. In Table 6 we show that our scheme
is more efficient compared to ECDSA by 2 and 3 orders of magnitude
for signing and verification respectively. Even when considering
larger payload sizes which impact hash-based signature operations,
our scheme remains much more efficient. However, verification
cost for our scheme increases linearly during network outages, and
as shown in Figure 4 it might become more expensive than ECDSA
when more than 2400 signature packets are lost.

Another metric we consider is energy efficiency, which is of
particular importance in IoT applications that involve a battery
as power source. Our experiments depicted in Figure 5 show that
our ATmega328P microcontroller can perform more than 50x hash-
based signing operations compared to the equivalent ECDSA oper-
ations for the same amount of power. Finally, while our hash-based

Table 5: Evaluation for sensor-aggregator protocol (average values

for 5000 verifications)

Hash Chain length 𝑛 220 222 224 226

Sensor lifetime for 1sig/10sec
(m: months, y: years) 4 m 16 m 5 y 21 y

Pebble Gen time (seconds) 1.62 6.49 24.57 95.33
Verification time per signature
(msec) 0.031

Signature size (bytes) 64+ |𝑚 |
Total dynamic memory usage
(bytes) 1436 1520 1604 1678

Pebble struct memory usage
(bytes) 840 924 1008 1082

Program memory usage (bytes) 596
Signature computation time
(msec) 49.82 49.88 49.95 50.00

Average total verification time
per signature (msec) 64.15 64.25 64.26 64.32

Communication cost (msec) 14.3

signature normally has a size of 64 bytes (as shown in Table 5), we
can “compress” consecutive signatures along a hash chain to 32
bytes by only publishing the most recent 𝑘𝑖 . The verifier would
then generate the previous hash chain values at a minimal compu-
tational cost. This makes possible to store more authenticated data
in the blockchain, as we show below.

5.4 Consensus Performance

Considering the use-case scenario discussed in Section 5.1, we
discuss the performance of our BBox-IoT system as a whole. We
show that the most important metric in the system is the transac-
tion throughput which heavily depends on the ability of the SWaP
sensors to transmit data in a group setting. Of course, the scalability
of the system overall is also directly proportional to the number of
system active participants it can support simultaneously.
Sensors. Our measurements indicate that the aggregator - which is
a relatively powerful device - is not the bottleneck in the protocol
execution. Based on the measurements in Table 5, we can safely
assume that a single aggregator can verify over a thousand sensors’
data being continuously broadcasted, since the signature computa-
tion time by a sensor is three (3) orders of magnitude larger than
the verification time by an aggregator. This is still a pessimistic
estimation, since we previously assumed that a sensor broadcasts
(and signs) data every 10 seconds, which implies that the aggregator
can accommodate even more sensors.
Orderers. Since orderers only participate in the consensus protocol
to sign blocks, we only need a few orderers such that our system
remains resilient to attacks at the consensus level should a subset
of orderers become compromised. Orderers can be strategically
distributed over a geographical area to minimize the network la-
tency between an aggregator and the ordering service, controlled
by the main organization (which also controls theMSP). Evalua-
tions performed in previous works have shown that by having 3
orderers, 3000 transactions/second can be easily achieved using the

10

Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

BBox-IoT ECDSA
Message length Sensor Sign Aggr Vrfy Sensor Sign Aggr Vrfy
50 50.43 0.0339

4200 42.55
100 53.47 0.0349
150 56.40 0.0357
202 59.33 0.03687
218 60.06 0.0369
Signature size 32 64

Table 6: Signing and verification costs (in milliseconds) compared

with message and signature sizes (in bytes). Note we assume hash-

based signatures are aggregated as discussed in Section 5.3. Signer is

ATmega328P microcontroller and verifier is RPi 3.

consensus protocol used in the current version of Hyperledger Fab-
ric (with a potential of further improvement in a future adoption of
BFT-SMART), and even considering up to 10 orderers in the system
does not greatly affect its performance [7, 55].
Aggregators. The expected number of aggregators in the system
depends on the use case as it is expected. As discussed in Section
5.1, where gateways play the role of BBox-IoT aggregators, we
consider a sensor/gateway ratio of 10:1 for our evaluation purposes.
To our knowledge, no evaluation of Hyperledger Fabric has ever
been performed to consider such a great number of peers, which
would require a great amount of resources to perform. However,
by adopting the evaluation performed in [7] which measured the
throughput in terms of number of peers up to 100 (which as dis-
cussed, are the aggregators in our system), we can extrapolate this
evaluation to the order of thousands, which shows that with the
aid of a “peer gossip" protocol, the system remains scalable if the
peers are in the same approximate geographical area which implies
low average network latency.
Blockchain operations.As discussed, aggregators’ role is to aggregate
sensor data into blockchain transactions. Assuming that aggrega-
tors perform no “lossy" operations (such as averaging techniques),
they would just package many collected sensor data along with
the respective signatures into a transaction which in turn would be
submitted to the ordering service. If we assume as in [7] a block size
of 2MB, we can estimate how much signed sensor data a block can
hold. Given the discussion in Section 5.3, a Hyperledger block could
hold (at most) about 15800 signed sensor data using our hash-based
scheme vs. 12700 using ECDSA.
Latency. We also wish to estimate the time from a value being
proposed by an aggregator until consensus has been reached on it
(assuming the block contains a single transaction). Again we can
adopt previous evaluations in Hyperledger Fabric [7], which show
an average of 0.5 sec for the complete process. Finally, considering
that the previous evaluations mentioned above were all preformed
on the original Hyperledger Fabric (while our architecture requires
a slight modification as discussed in Section 2.2), for our purposes
we assume that the expected performance of aggregators (which
are essentially Hyperledger peers also having client application
functionalities) is not affected by this additional functionality, since
the main affecting factor that can potentially become a bottleneck
for the scalability of the whole system is network latency and not
computational power.

0 1000 2000 3000 4000 5000 6000

Outage depth (hash chain elements)

0.000

0.025

0.050

0.075

0.100

Ti
m
e
to

ve
rif
y
(se

c)

BBox-IoT
ECDSA

Figure 4: Aggregator verification costs in network outages. BBox-IoT

is more expensive when more than about 2400 signature packets are

lost.

BBox-IoT 3592

ECDSA 70

1000 2000 3000 4000

Figure 5: Number of signing operations for a 20mWh battery.

6 RELATEDWORK

We now discuss a number of works that connect IoT to the
blockchain setting or works which build cryptographic primitives
to optimize different parts of computation for resource-constrained
IoT devices. Note that none of these works addresses the problem
of authentication for extremely constrained (Class 0) devices.

6.1 IoT and Blockchain

Shafagh et al. [54] presented an architecture aiming to handle
IoT data in a decentralized manner while achieving confidentiality,
authenticity and integrity. This proposed system defines itself as
“IoT compatible" being append-only by a single writer and can be
accessed by many readers, and consists of a layered design on top
of an existing public blockchain to store access permissions and
hash pointers for data, while storing the actual data off-chain using
decentralized P2P storage techniques. Other approaches [8, 47, 59]
also used a similar "layering" paradigm. While these approaches are
simpler than ours, they ultimately rely heavily on the performance
and properties of the underlying public blockchain and are not
specifically tailored to handle resource-constrained IoT devices.

Dorri, Kanhere, and Jurdak [25] considered a “local" private
blockchain maintained by a capable device, managed by the on-
site owner and containing the local IoT device transactions. These
lower-tier elements would be overlaid by a shared blockchain that
can handle hashed data originating from the local blockchain and
stored in a cloud storage service, and can enable access to local data.
The above approach also offers confidentiality and integrity for
submitted data and is suitable for resource-constrained IoT devices,
however it is more complex than BBox-IoT and requires managing
and replicating data over several points in the system.

11

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Panagiotis Chatzigiannis, Foteini Baldimtsi, Constantinos Kolias, and Angelos Stavrou

More recently, AlTawy and Gong [5] presented a blockchain-
based framework in the supply chain setting using RFIDs. This
model considered blockchain smart contracts interacting with an
overlay application on the RFID readers and a centralized server that
handles membership credentials. This framework offers anonymity
for the participating entities, which prove their membership in
zero-knowledge, while their anonymity remains revocable by the
server. It also provides confidentiality for its transactions and en-
forces a notion of “forward secrecy" which enables future product
owners in the supply chain to access its entire history. BBox-IoT
differs from the above work in several ways, since it is tailored to
handle resource-constrained devices. Our work does not have con-
fidentiality or anonymity as a main goal, although it can be added
as an option using symmetric keys. We also do not require any
smart contract functionality from the blockchain, and we operate
exclusively in the permissioned setting.

IoTLogBlock [51] shares a common goal with our work: enabling
the participation of low-power devices in a distributed fashion, and
similarly uses Hyperledger as a “cloud service” in a IoT setting. The
crucial difference with our work, is that IoTLogBlock is evaluated
on a Class 2 device using ECDSA signatures, which are far more
expensive than our proposed hash-based signature and could not
have been supported at all by a Class 0 device, while having much
larger power consumption (Fig 5). Our proposed signature scheme
is a key component for efficient implementations of blockchain-
based systems in the IIoT setting.

Several more approaches have been presented which augmented
an IoT infrastructure with a blockchain, focusing on providing two-
factor authentication [62], managing or improving communication
among IoT devices [46, 53], implementing a trust management
system in vehicular networks [65], providing edge computing ser-
vices [64], data resiliency [42], providing secure and private energy
trade in a smart-grid environment [3] and implementing a hierar-
chical blockhain storage for efficient industrial IoT infrastructures
[60] and all of which are orthogonal to our work. We point the
reader to [4, 28] for extensive reviews on the related literature.

6.2 Hash-based Signatures

Lamport’s One-Time Signatures (OTS) [39] was the first scheme
to allow the use of a hash function to construct a signature scheme.
Then, Winternitz OTS andWOTS+ [17][33]enabled a time-memory
tradeoff by signing messages in groups, used in turn by XMSS [18]
in a Merkle tree construction. Other works such as HORS [52] en-
abled signing more than once, and more recently SPHINCS and
SPHINCS+ [11, 12] enabled signing without the need to track state.
Using HORS [52] as a primitive combined with a hash chain, Time
Valid One-Time Signature (TV-HORS) [61] improves in signing and
verification computational efficiency, but assuming “loose” time
synchronization between the sender and the verifier.All of the afore-
mentioned schemes, while only involving hash-based operations,
still incur large computational and/or space costs and cannot be
implemented in Class 0 resource-constrained devices we consider.

TESLA [49, 50] constructs a “one-way” hash chain to generate
temporal MAC keys for specified time intervals, disclosing each
chain element with some time delay Δ. While “pebbling” algo-
rithms [36, 66] enable logarithmic storage and computational costs

as discussed in Section 4.1, it requires “loose” time synchronization
between the sender and the receiver for distinguishing valid keys.
In an IIoT setting this would require the frequent execution of an
interactive synchronization protocol since such devices are prone
to clock drifting [27, 57]. Several modifications and upgrades to
TESLA have been proposed, but most of them still require time
synchronization [32, 44].

6.3 Cryptographic Operations in IoT

In the context of improving cryptographic operations in the IoT
setting, Ozmen and Yavuz [48] focused on optimizing public key
cryptography for resource-constrained devices. This work exploited
techniques in Elliptic Curve scalar multiplication optimized for such
devices and presented practical evaluations of their scheme on a
low-end device. Even though the device used in this work is can be
classified as a Class 1 or Class 2 device, our construction signing is
more efficient both in terms of computation cost and storage by at
least an order of magnitude.

Hülsing, Rijneveld and Schwabe [34] showed a practical evalua-
tion of the SPHINCS hash-based signature scheme [11] on a Class
2 device. At first glance this implementation could also serve our
purposes, however our proposed construction, while stateful, is
much cheaper in terms of runtime, storage and communication
costs, without such additional assumptions.

Kumar et al. [38] propose an integrated confidentiality and in-
tegrity solution for large-scale IoT systems, which relies on an
identity-based encryption scheme that can distribute keys in a hier-
archical manner. This solution also uses similar techniques to our
work for signature optimization for resource-constrained devices,
however, it requires synchronicity between the system participants.
Portunes [41] is tailored for preserving privacy (which is not within
our main goals in our setting), and requires multiple rounds of com-
munication (while we consider a “broadcast-only” setting)

Finally we mention an extensive IoT authentication survey [26].
In this work, our authentication scheme is comparable to [9] which
utilizes hashing for one-way authentication in a distributed archi-
tecture, however our scheme is more storage-efficient, suited for
low-SWaP (Class 0) sensors.

7 CONCLUSIONS

In this paper we designed and implemented BBox-IoT, a block-
chain inspired approach for Industrial IoT sensors aiming at offering
a transparent and immutable system for sensing and control in-
formation exchanged between IIoT sensors and aggregators. Our
approach guarantees blockchain-derived properties to even low-
Size Weight and Power (SWaP) devices. Moreover, BBox-IoT acts
as a "black-box" that empowers the operators of any IoT system
to detect data and sensor tampering ferreting out attacks against
even SWaP devices. We posit that enabling data auditing and secu-
rity at the lowest sensing level will be highly beneficial to critical
infrastructure environments with sensors from multiple vendors.

Finally, we envision that our approach will be implemented
during the sensor manufacturing stage: having industrial sensors
shipped with pre-computed pebbles and their key material labeled
using QR-code on the sensor body will allow for a seamless and
practical deployment of BBox-IoT.

12

Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

REFERENCES

[1] 2019. Arduino Uno Rev3. https://store.arduino.cc/usa/arduino-uno-rev3
[2] 2020. Cisco Annual Internet Report . https://www.cisco.com/c/en/us/solutions/

collateral/executive-perspectives/annual-internet-report/white-paper-c11-
741490.html

[3] N. Z. Aitzhan and D. Svetinovic. 2018. Security and Privacy in Decentralized En-
ergy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging
Streams. IEEE Transactions on Dependable and Secure Computing 15, 5 (Sep. 2018),
840–852. https://doi.org/10.1109/TDSC.2016.2616861

[4] M. Ali, M. Vecchio, M.Pincheira, K. Dolui, F. Antonelli, and M. Rehmani. 2019.
Applications of Blockchains in the Internet of Things: A Comprehensive Survey.
IEEE Communications Surveys and Tutorials 21, 2 (2019), 1676–1717. https:
//doi.org/10.1109/COMST.2018.2886932

[5] Riham AlTawy and Guang Gong. 2019. Mesh: A Supply Chain Solution with
Locally Private Blockchain Transactions. PoPETs 2019, 3 (2019), 149–169. https:
//doi.org/10.2478/popets-2019-0041

[6] Dorian Amiet, Andreas Curiger, and Paul Zbinden. 2018. FPGA-based Accelerator
for SPHINCS-256. IACR TCHES 2018, 1 (2018), 18–39. https://doi.org/10.13154/
tches.v2018.i1.18-39 https://tches.iacr.org/index.php/TCHES/article/view/831.

[7] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M.
Vukolic, S. Weed Cocco, and J. Yellick. 2018. Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains. CoRR abs/1801.10228 (2018).
http://arxiv.org/abs/1801.10228

[8] L. Bai, M. Hu, M. Liu, and J. Wang. 2019. BPIIoT: A Light-Weighted Blockchain-
Based Platform for Industrial IoT. IEEE Access 7 (2019), 58381–58393. https:
//doi.org/10.1109/ACCESS.2019.2914223

[9] Omaimah Omar Bamasag and Kamal Youcef-Toumi. 2015. Towards Continuous
Authentication in Internet of Things Based on Secret Sharing Scheme. In Proceed-
ings of the 10th Workshop on Embedded Systems Security, WESS 2015, Amsterdam,
The Netherlands, October 8, 2015, Stavros A. Koubias and Thilo Sauter (Eds.). ACM,
1. https://doi.org/10.1145/2818362.2818363

[10] Jonathan Bell, Thomas D. LaToza, Foteini Baldimtsi, and Angelos Stavrou. 2017.
AdvancingOpen Sciencewith Version Control and Blockchains. In 12th IEEE/ACM
International Workshop on Software Engineering for Science, SE4Science@ICSE
2017, Buenos Aires, Argentina, May 22, 2017. IEEE, 13–14. https://doi.org/10.1109/
SE4Science.2017.11

[11] Daniel J. Bernstein, DairaHopwood, AndreasHülsing, Tanja Lange, RubenNieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-O’Hearn. 2015. SPHINCS: Practical Stateless Hash-Based Signatures. In
EUROCRYPT 2015, Part I (LNCS, Vol. 9056), Elisabeth Oswald and Marc Fischlin
(Eds.). Springer, Heidelberg, 368–397. https://doi.org/10.1007/978-3-662-46800-
5_15

[12] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Ri-
jneveld, and Peter Schwabe. 2019. The SPHINCS+ Signature Framework. In ACM
CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz (Eds.). ACM Press, 2129–2146. https://doi.org/10.1145/3319535.3363229

[13] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin B. Calo.
2019. Analyzing Federated Learning through an Adversarial Lens. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 634–643.
http://proceedings.mlr.press/v97/bhagoji19a.html

[14] C. Bormann, M. Ersue, and A. Keranen. 2014. Terminology for Constrained-Node
Networks. RFC 7228. RFC Editor.

[15] Mic Bowman and Camille Morhardt. 2018. Blockchain Must Adapt to Build Trust
in the Internet of Things. https://www.coindesk.com/blockchain-must-adapt-
build-trust-internet-things/ Retrieved June 24, 2018.

[16] Kyle Boyer, Laura Brubaker, Kyle Everly, RIchard Herriman, Paul Houston, Sean
Ruckle, Rory Scobie, and Ian Ulanday. 2017. A distributed sensor network for an
off-road racing vehicle. International Foundation for Telemetering.

[17] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus
Rückert. 2011. On the Security of the Winternitz One-Time Signature Scheme.
Cryptology ePrint Archive, Report 2011/191. http://eprint.iacr.org/2011/191.

[18] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. 2011. XMSS - A
Practical Forward Secure Signature Scheme Based on Minimal Security Assump-
tions. In Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011,
Bo-Yin Yang (Ed.). Springer, Heidelberg, 117–129. https://doi.org/10.1007/978-3-
642-25405-5_8

[19] Joseph Bugeja, Paul Davidsson, and Andreas Jacobsson. 2018. Functional Classi-
fication and Quantitative Analysis of Smart Connected Home Devices. In 2018
Global Internet of Things Summit, GIoTS 2018, Bilbao, Spain, June 4-7, 2018. IEEE,
1–6. https://doi.org/10.1109/GIOTS.2018.8534563

[20] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.
In OSDI ’99 (New Orleans, Louisiana, USA). USENIX Association, Berkeley, CA,
USA. http://dl.acm.org/citation.cfm?id=296806.296824

[21] Konstantinos Chalkias, James Brown, Mike Hearn, Tommy Lillehagen, Igor Nitto,
and Thomas Schroeter. 2018. Blockchained Post-Quantum Signatures. Cryptology
ePrint Archive, Report 2018/658. https://eprint.iacr.org/2018/658.

[22] Panagiotis Chatzigiannis, Foteini Baldimtsi, Constantinos Kolias, and Angelos
Stavrou. 2021. Black-Box IoT: Authentication and Distributed Storage of IoT Data
from Constrained Sensors (full version). https://cs.gmu.edu/~pchatzig/BBoxIoT.
pdf

[23] Erik Dahmen and Christoph Krauß. 2009. Short Hash-Based Signatures for
Wireless Sensor Networks. In CANS 09 (LNCS, Vol. 5888), Juan A. Garay, Atsuko
Miyaji, and Akira Otsuka (Eds.). Springer, Heidelberg, 463–476.

[24] Hasan Derhamy, Jens Eliasson, Jerker Delsing, and Peter Priller. 2015. A survey
of commercial frameworks for the internet of things. In ETFA 2015. IEEE.

[25] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. 2016. Blockchain in internet of
things: Challenges and Solutions. CoRR abs/1608.05187 (2016). arXiv:1608.05187
http://arxiv.org/abs/1608.05187

[26] Mohammed El-hajj, Ahmad Fadlallah, Maroun Chamoun, and Ahmed
Serhrouchni. 2019. A Survey of Internet of Things (IoT) Authentication Schemes.
Sensors 19, 5 (2019), 1141. https://doi.org/10.3390/s19051141

[27] A. Elsts, X. Fafoutis, S. Duquennoy, G. Oikonomou, R. J. Piechocki, and I. Craddock.
2018. Temperature-Resilient Time Synchronization for the Internet of Things.
IEEE Trans. Industrial Informatics 14, 5 (2018), 2241–2250. https://doi.org/10.
1109/TII.2017.2778746

[28] Mohamed Amine Ferrag, Makhlouf Derdour, Mithun Mukherjee, Abdelouahid
Derhab, Leandros A. Maglaras, and Helge Janicke. 2019. Blockchain Technologies
for the Internet of Things: Research Issues and Challenges. IEEE Internet Things
J. 6, 2 (2019), 2188–2204. https://doi.org/10.1109/JIOT.2018.2882794

[29] Juan A. Garay and Aggelos Kiayias. 2020. SoK: A Consensus Taxonomy in
the Blockchain Era. In CT-RSA 2020 (LNCS, Vol. 12006), Stanislaw Jarecki (Ed.).
Springer, Heidelberg, 284–318. https://doi.org/10.1007/978-3-030-40186-3_13

[30] O. Garcia-Morchon, R. Rietman, S. Sharma, L. Tolhuizen, and J.L. Torre-Arce.
2015. A Comprehensive and Lightweight Security Architecture to Secure the IoT
Throughout the Lifecycle of a Device Based on HIMMO. In ALGOSENSORS 2015
(Patras, Greece). Springer-Verlag, Berlin, Heidelberg, 112–128. https://doi.org/
10.1007/978-3-319-28472-9_9

[31] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets:
Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),
47230–47244.

[32] Yih-ChunHu,Markus Jakobsson, and Adrian Perrig. 2005. Efficient Constructions
for One-Way Hash Chains. In ACNS 05 (LNCS, Vol. 3531), John Ioannidis, Angelos
Keromytis, and Moti Yung (Eds.). Springer, Heidelberg, 423–441. https://doi.org/
10.1007/11496137_29

[33] Andreas Hülsing. 2013. W-OTS+ - Shorter Signatures for Hash-Based Signature
Schemes. In AFRICACRYPT 13 (LNCS, Vol. 7918), Amr Youssef, Abderrahmane
Nitaj, and Aboul Ella Hassanien (Eds.). Springer, Heidelberg, 173–188. https:
//doi.org/10.1007/978-3-642-38553-7_10

[34] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. 2016. ARMed SPHINCS
- Computing a 41 KB Signature in 16 KB of RAM. In PKC 2016, Part I (LNCS,
Vol. 9614), Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang (Eds.). Springer, Heidelberg, 446–470. https://doi.org/10.1007/978-3-662-
49384-7_17

[35] Hyperledger. 2018. Hyperledger Architecture Volumes 1 and 2.
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_
Arch_WG_Paper_1_Consensus.pdf

[36] Markus Jakobsson. 2002. Fractal hash sequence representation and traversal. In
Information Theory, 2002. IEEE, 437.

[37] Fatma Karray, Mohamed Wassim Jmal, Alberto García Ortiz, Mohamed Abid,
and Abdulfattah Mohammad Obeid. 2018. A comprehensive survey on wireless
sensor node hardware platforms. Comput. Networks 144, 89–110. https://doi.org/
10.1016/j.comnet.2018.05.010

[38] Sam Kumar, Yuncong Hu, Michael P. Andersen, Raluca Ada Popa, and David E.
Culler. 2019. JEDI: Many-to-Many End-to-End Encryption and Key Delegation
for IoT. CoRR abs/1905.13369 (2019). arXiv:1905.13369 http://arxiv.org/abs/1905.
13369

[39] Leslie Lamport. 1979. Constructing Digital Signatures from a One-way Function.
Technical Report SRI-CSL-98. SRI International Computer Science Laboratory.

[40] Leslie Lamport. 1981. Password Authentication with Insecure Communication.
Commun. ACM 24, 11 (Nov. 1981), 770–772. https://doi.org/10.1145/358790.
358797

[41] Hongyang Li, György Dán, and Klara Nahrstedt. 2014. Portunes: Privacy-
preserving fast authentication for dynamic electric vehicle charging. In 2014
IEEE International Conference on Smart Grid Communications, SmartGridComm
2014, Venice, Italy, November 3-6, 2014. IEEE, 920–925. https://doi.org/10.1109/
SmartGridComm.2014.7007766

[42] X. Liang, J. Zhao, S. Shetty, and D. Li. 2017. Towards data assurance and resilience
in IoT using blockchain. In MILCOM 2017 - 2017 IEEE Military Communications
Conference (MILCOM). 261–266. https://doi.org/10.1109/MILCOM.2017.8170858

[43] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. 2019. Computation offloading toward
edge computing. Proc. IEEE 107, 8 (2019), 1584–1607.

13

https://store.arduino.cc/usa/arduino-uno-rev3
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/TDSC.2016.2616861
https://doi.org/10.1109/COMST.2018.2886932
https://doi.org/10.1109/COMST.2018.2886932
https://doi.org/10.2478/popets-2019-0041
https://doi.org/10.2478/popets-2019-0041
https://doi.org/10.13154/tches.v2018.i1.18-39
https://doi.org/10.13154/tches.v2018.i1.18-39
https://tches.iacr.org/index.php/TCHES/article/view/831
http://arxiv.org/abs/1801.10228
https://doi.org/10.1109/ACCESS.2019.2914223
https://doi.org/10.1109/ACCESS.2019.2914223
https://doi.org/10.1145/2818362.2818363
https://doi.org/10.1109/SE4Science.2017.11
https://doi.org/10.1109/SE4Science.2017.11
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1145/3319535.3363229
http://proceedings.mlr.press/v97/bhagoji19a.html
https://www.coindesk.com/blockchain-must-adapt-build-trust-internet-things/
https://www.coindesk.com/blockchain-must-adapt-build-trust-internet-things/
http://eprint.iacr.org/2011/191
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1109/GIOTS.2018.8534563
http://dl.acm.org/citation.cfm?id=296806.296824
https://eprint.iacr.org/2018/658
https://cs.gmu.edu/~pchatzig/BBoxIoT.pdf
https://cs.gmu.edu/~pchatzig/BBoxIoT.pdf
https://arxiv.org/abs/1608.05187
http://arxiv.org/abs/1608.05187
https://doi.org/10.3390/s19051141
https://doi.org/10.1109/TII.2017.2778746
https://doi.org/10.1109/TII.2017.2778746
https://doi.org/10.1109/JIOT.2018.2882794
https://doi.org/10.1007/978-3-030-40186-3_13
https://doi.org/10.1007/978-3-319-28472-9_9
https://doi.org/10.1007/978-3-319-28472-9_9
https://doi.org/10.1007/11496137_29
https://doi.org/10.1007/11496137_29
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-662-49384-7_17
https://doi.org/10.1007/978-3-662-49384-7_17
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://doi.org/10.1016/j.comnet.2018.05.010
https://doi.org/10.1016/j.comnet.2018.05.010
https://arxiv.org/abs/1905.13369
http://arxiv.org/abs/1905.13369
http://arxiv.org/abs/1905.13369
https://doi.org/10.1145/358790.358797
https://doi.org/10.1145/358790.358797
https://doi.org/10.1109/SmartGridComm.2014.7007766
https://doi.org/10.1109/SmartGridComm.2014.7007766
https://doi.org/10.1109/MILCOM.2017.8170858

IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA Panagiotis Chatzigiannis, Foteini Baldimtsi, Constantinos Kolias, and Angelos Stavrou

[44] Donggang Liu and Peng Ning. 2003. Efficient Distribution of Key Chain Commit-
ments for Broadcast Authentication in Distributed Sensor Networks. InNDSS 2003.
The Internet Society.

[45] Jing Liu, Yang Xiao, and Jingcheng Gao. 2014. Achieving Accountability in Smart
Grid. IEEE Systems Journal 8, 2 (2014), 493–508. https://doi.org/10.1109/JSYST.
2013.2260697

[46] D. Miller. 2018. Blockchain and the Internet of Things in the Industrial Sec-
tor. IT Professional 20, 3 (May 2018), 15–18. https://doi.org/10.1109/MITP.2018.
032501742

[47] O. Novo. 2018. Blockchain Meets IoT: An Architecture for Scalable Access
Management in IoT. IEEE Internet of Things Journal 5, 2 (April 2018), 1184–1195.
https://doi.org/10.1109/JIOT.2018.2812239

[48] Muslum Ozgur Ozmen and Attila A. Yavuz. 2017. Low-Cost Standard Public
Key Cryptography Services for Wireless IoT Systems. In Proceedings of the 2017
Workshop on Internet of Things Security and Privacy, IoT S&P@CCS,, Peng Liu,
Yuqing Zhang, Theophilus Benson, and Srikanth Sundaresan (Eds.). ACM, 65–70.
https://doi.org/10.1145/3139937.3139940

[49] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. 2000. Efficient authentication
and signing of multicast streams over lossy channels. In IEEE S & P 2000. 56–73.
https://doi.org/10.1109/SECPRI.2000.848446

[50] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song. 2002. The TESLA
Broadcast Authentication Protocol.

[51] Christos Profentzas, Magnus Almgren, and Olaf Landsiedel. 2019. IoTLogBlock:
Recording Off-line Transactions of Low-Power IoT Devices Using a Blockchain.
In 44th IEEE Conference on Local Computer Networks, LCN 2019, Osnabrueck,
Germany, October 14-17, 2019, Karl Andersson, Hwee-Pink Tan, and Sharief
Oteafy (Eds.). IEEE, 414–421. https://doi.org/10.1109/LCN44214.2019.8990728

[52] Leonid Reyzin and Natan Reyzin. 2002. Better than BiBa: Short One-Time
Signatures with Fast Signing and Verifying. In ACISP 02 (LNCS, Vol. 2384),
Lynn Margaret Batten and Jennifer Seberry (Eds.). Springer, Heidelberg, 144–153.
https://doi.org/10.1007/3-540-45450-0_11

[53] M. Samaniego and R. Deters. 2017. Internet of Smart Things - IoST: Using
Blockchain and CLIPS to Make Things Autonomous. In IEEE ICCC 2017. 9–16.
https://doi.org/10.1109/IEEE.ICCC.2017.9

[54] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy.
2017. Towards Blockchain-based Auditable Storage and Sharing of IoT Data. In
Proceedings of the 2017 on Cloud Computing Security Workshop (Dallas, Texas,
USA) (CCSW ’17). ACM, New York, NY, USA, 45–50. https://doi.org/10.1145/
3140649.3140656

[55] J. Sousa, Al. Bessani, and M. Vukolic. 2018. A Byzantine Fault-Tolerant Ordering
Service for the Hyperledger Fabric Blockchain Platform. In DSN 2018. IEEE
Computer Society, 51–58. https://doi.org/10.1109/DSN.2018.00018

[56] P. Tenti, H. K. M. Paredes, and P. Mattavelli. 2011. Conservative Power Theory, a
Framework to Approach Control and Accountability Issues in Smart Microgrids.
IEEE Transactions on Power Electronics 26, 3 (March 2011), 664–673. https://doi.
org/10.1109/TPEL.2010.2093153

[57] Francisco Tirado-Andrés, Alba Rozas, and Álvaro Araujo. 2019. A Methodology
for Choosing Time Synchronization Strategies forWireless IoT Networks. Sensors
19, 16, 3476. https://doi.org/10.3390/s19163476

[58] Meltem Sönmez Turan, Kerry A McKay, Çağdaş Çalık, Donghoon Chang, and
Larry Bassham. 2019. Status report on the first round of the NIST lightweight
cryptography standardization process. (2019).

[59] J.Wan, J. Li, M. Imran, andD. Li. 2019. A Blockchain-Based Solution for Enhancing
Security and Privacy in Smart Factory. IEEE Transactions on Industrial Informatics
(June 2019). https://doi.org/10.1109/TII.2019.2894573

[60] Gang Wang, Zhijie Shi, Mark Nixon, and Song Han. 2019. ChainSplitter: Towards
Blockchain-Based Industrial IoT Architecture for Supporting Hierarchical Storage.
In IEEE International Conference on Blockchain, 2019. IEEE, 166–175. https:
//doi.org/10.1109/Blockchain.2019.00030

[61] Qiyan Wang, Himanshu Khurana, Ying Huang, and Klara Nahrstedt. 2009. Time
Valid One-Time Signature for Time-Critical Multicast Data Authentication. In
INFOCOM 2009. 28th IEEE International Conference on Computer Communications,
Joint Conference of the IEEE Computer and Communications Societies, 19-25 April
2009, Rio de Janeiro, Brazil. IEEE, 1233–1241. https://doi.org/10.1109/INFCOM.
2009.5062037

[62] L. Wu, X. Du, W. Wang, and B. Lin. 2018. An Out-of-band Authentication
Scheme for Internet of Things Using Blockchain Technology. In 2018 International
Conference on Computing, Networking and Communications (ICNC). 769–773.
https://doi.org/10.1109/ICCNC.2018.8390280

[63] Yulei Wu, Hong-Ning Dai, and Hao Wang. 2020. Convergence of Blockchain and
Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry
4.0. IEEE Internet of Things Journal (2020).

[64] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han. 2018. When Mobile
BlockchainMeets Edge Computing. IEEE Communications Magazine 56, 8 (August
2018), 33–39. https://doi.org/10.1109/MCOM.2018.1701095

[65] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung. 2019. Blockchain-Based
Decentralized Trust Management in Vehicular Networks. IEEE Internet of Things

Journal 6, 2 (April 2019), 1495–1505. https://doi.org/10.1109/JIOT.2018.2836144
[66] Dae Hyun Yum, Jae Woo Seo, Sungwook Eom, and Pil Joong Lee. 2009. Single-

Layer Fractal Hash Chain Traversal with Almost Optimal Complexity. In CT-
RSA 2009 (LNCS, Vol. 5473), Marc Fischlin (Ed.). Springer, Heidelberg, 325–339.
https://doi.org/10.1007/978-3-642-00862-7_22

[67] Han Zou, Yuxun Zhou, Jianfei Yang, and Costas J Spanos. 2018. Towards occupant
activity driven smart buildings via WiFi-enabled IoT devices and deep learning.
Energy and Buildings 177 (2018), 12–22.

ACKNOWLEDGMENTS

Foteini Baldimtsi and Panagiotis Chatzigiannis were supported
by NSA 204761.

14

https://doi.org/10.1109/JSYST.2013.2260697
https://doi.org/10.1109/JSYST.2013.2260697
https://doi.org/10.1109/MITP.2018.032501742
https://doi.org/10.1109/MITP.2018.032501742
https://doi.org/10.1109/JIOT.2018.2812239
https://doi.org/10.1145/3139937.3139940
https://doi.org/10.1109/SECPRI.2000.848446
https://doi.org/10.1109/LCN44214.2019.8990728
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1109/IEEE.ICCC.2017.9
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1109/TPEL.2010.2093153
https://doi.org/10.1109/TPEL.2010.2093153
https://doi.org/10.3390/s19163476
https://doi.org/10.1109/TII.2019.2894573
https://doi.org/10.1109/Blockchain.2019.00030
https://doi.org/10.1109/Blockchain.2019.00030
https://doi.org/10.1109/INFCOM.2009.5062037
https://doi.org/10.1109/INFCOM.2009.5062037
https://doi.org/10.1109/ICCNC.2018.8390280
https://doi.org/10.1109/MCOM.2018.1701095
https://doi.org/10.1109/JIOT.2018.2836144
https://doi.org/10.1007/978-3-642-00862-7_22

	Abstract
	1 Introduction
	2 Background & Preliminaries
	2.1 Blockchain System Consensus
	2.2 Modifying Hyperledger Fabric

	3 BBox-IoT System properties
	3.1 Threat model & Assumptions

	4 Constructions
	4.1 Our Hash-based Signature Scheme
	4.2 Overall BBox-IoT Construction
	4.3 Security Analysis

	5 Performance Evaluation & Measurements
	5.1 The IIoT Setting With Constrained Devices
	5.2 Evaluation Setup
	5.3 Signing and Verification
	5.4 Consensus Performance

	6 Related work
	6.1 IoT and Blockchain
	6.2 Hash-based Signatures
	6.3 Cryptographic Operations in IoT

	7 Conclusions
	References
	Acknowledgments

