
AMVP: Adaptive CNN-based Multitask Video
Processing on Mobile Stream Processing Platforms

Mengyuan Chao, Radu Stoleru, Liuyi Jin, Shuochao Yao*, Maxwell Maurice†, Roger Blalock†
Department of Computer Science and Engineering, Texas A&M University

*Department of Computer Science, George Mason University
†National Institute of Standards and Technology (NIST)

{chaomengyuan, stoleru, liuyi}@tamu.edu, shuochao@gmu.edu, {maxwell.maurice, roger.blalock}@nist.gov

Abstract—The popularity of video cameras has spawned a
new type of application called multitask video processing, which
uses multiple CNNs to obtain different information of interests
from a raw video stream. Unfortunately, the huge resource
requirements of CNNs make the concurrent execution of multiple
CNNs on a single resource-constrained mobile device challenging.
Existing solutions solve this challenge by offloading CNN models
to the cloud or edge server, compressing CNN models to fit the
mobile device, or sharing some common parts of multiple CNN
models. Most of these solutions, however, use the above offloading,
compression or sharing strategies in a separate manner, which
fail to adapt to the complex edge computing scenario well.

In this paper, to solve the above limitation, we propose AMVP,
an adaptive execution framework for CNN-based multitask video
processing, which elegantly integrates the strategies of CNN layer
sharing, feature compression, and model offloading. First, AMVP
reduces the total computation workload of multiple CNN infer-
ence by sharing some common frozen CNN layers. Second, AMVP
supports distributed CNN inference by splitting big CNNs into
smaller components running on different devices. Third, AMVP
leverages a quantization-based feature compression mechanism to
reduce the feature transmission traffic size between two separate
CNN components. We conduct extensive experiments on AMVP
and the experimental results show that our AMVP framework can
adapt to different performance goals and execution environments.
Compared to two baseline approaches that only share or offload
CNN layers, AMVP achieves up to 61% lower latency and 10%
higher throughput with comparative accuracy.

I. INTRODUCTION

With the wide deployment of video cameras, multitask video
processing is having an increasingly important impact on our
daily life. For example, policemen spot stolen vehicles, locate
traffic accidents and track criminals by analyzing videos taken
by the road cameras, office workers get notified of the burglary,
theft and fallen seniors at home by processing videos taken by
the home cameras, disaster responders search for victims and
hazard symbols by processing videos streamed from the UAV
cameras, etc. These applications have a common characteristic:
they process a raw video stream with multiple vision analysis
pipelines to acquire different information of interests.

Nowadays, the core technology to enable complicated vision
applications is Convolutional Neural Networks (CNNs), which
have replaced traditional computer vision methods to become
the mainstream technology for vision processing due to their
distinguished accuracy and performance [1]–[4]. In this case,

CNN-based multitask video processing, which utilizes multiple
sophisticated CNNs to run vision analysis tasks on a given raw
video stream becomes popular [5]–[7]. However, running mul-
tiple computational intensive CNNs on a resource constrained
device (e.g., a surveillance camera) to achieve the user desired
application performance (e.g., high accuracy and low latency)
is not easy. Additionally, the fact that different users may have
different performance preference on different tasks makes this
problem more complicated and challenging.

Existing solutions for addressing the above challenge can be
roughly divided into three categories: offloading, compression
and sharing. First, many offloading strategies [8]–[12] assume
that there is a connection between mobile devices and remote
cloud (or a nearby edge server) so that parts of CNNs can be
offloaded there to achieve the desired performance. However, a
stable connection to the remote cloud is not always available
for specific scenarios like disaster response [13] or military
operations and deploying a powerful edge server near each
video camera is costly. The other offloading strategies [14]–
[18] distribute a whole CNN model to run on several wireless
connected IoT devices. However, they only consider the single
CNN scenario, which is simpler than the multi-CNNs case we
consider. Second, the model compression strategies construct
efficient CNN models for mobile devices through different
compression techniques, such as low-rank expansions [19], pa-
rameter quantization [20], pruning and Huffman coding [21],
fully factorized convolution [22], depth-wise separable con-
volution [23], and channel-wise sparse connection [24], etc.
Unfortunately, these solutions provide a one-for-all model, i.e.,
a fixed model compression technique is utilized for different
performance goals. A recent work [25] employes on-demand
compression, which applies proper compression techniques on
different CNN layers to achieve an optimal balance between
performance goals and resource constraints. However, it still
focuses on the single CNN case. Third, the sharing strategies
reduce the computation costs [9] and memory footprint [26]
by sharing common layers among multiple CNNs. However,
the existing solutions run multiple CNNs on a single device,
so the performance improvement is restricted by the device
resource and the scalability is poor.

Different from existing works which use the above strategies
separately, in this paper, we combine these strategies together

20
20

 I
E

E
E

/A
C

M
 S

ym
po

si
um

 o
n

E
dg

e
C

om
pu

tin
g

(S
E

C
)

| 9
78

-1
-7

28
1-

59
43

-0
/2

0/
$3

1.
00

 ©
20

20
 I

E
E

E
 |

D
O

I:
 1

0.
11

09
/S

E
C

50
01

2.
20

20
.0

00
15

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

�

�
��

�
�

�
�
�

	

�� ������	

������	

����	

��������	

����������

��

������

����������

�
��

�
�

�
�
�

	

��

Fig. 1: An example of CNN-based multitask video processing,
which consists of two vision analysis pipelines and four CNNs.

as AMVP, an Adaptive execution framework for CNN-based
Multitask Video Processing on wireless connected mobile/IoT
devices. First, AMVP reduces the computation cost by sharing
some common components among different analysis pipelines.
For the distinct components which run different vision tasks,
AMVP provides multiple CNN candidates for each of them.
These candidates are pre-trained from some well-known base
CNNs (e.g., mobileNet [27], resNet [28]) via transfer learning.
If two distinct application components select CNNs derived
from the same base CNN, they can share some common frozen
layers to reduce the total computation cost. There is a trade-
off between the number of common frozen layers different
CNNs can share and the inference accuracy each CNN can
achieve. AMVP aims to keep an optimal balance between them
based on the user performance goals and available computing
resources. Second, AMVP supports distributed CNN inference
by splitting big CNNs into smaller components running on
different devices. In order to reduce the communication costs,
AMVP leverages a quantization-based feature compression
methodd to compress the feature maps transmitted between
two separate CNN components. Third, AMVP is built on top
of a mobile stream processing platform called MStorm [29],
where it maintains an adaptive scheduler to choose appropriate
CNN candidates for different pipeline components and assign
these components to appropriate devices to achieve the user
desired performance goals. We implement a prototype system
of AMVP on Android phones and demonstrate its superiority
by running a CNN-based multitask video analysis application.
The experimental results show that, compared to two baseline
solutions, AMVP achieves up to 61% lower latency and 10%
higher throughput with comparative accuracy.

In summary, this paper makes the following contributions:

• It shows the possibility of combing three types of orthog-
onal strategies (i.e. offloading, compression and sharing)
to support the execution of multiple computational inten-
sive CNNs on resource-constrained mobile/IoT devices.

• It designs an adaptive framework which chooses the most
appropriate CNNs implementation and running device for
each pipeline component based on the user performance
goals and the actually available system resources .

• It implements a prototype system on Android phones to
prove its superiority over two status quo approaches in
supporting CNN-based multitask video processing.

The rest of this paper is organized as follows. In Section II,

�

��

��

��

��

��

��

�������	

����������
����� �����������������������������������

�� �� ��

��

��

�� 	�

	�

	�

	�

Fig. 2: An example of Distributed Mobile Stream Processing
(DMSP), which assigns six components of a stream application
to execute on four wireless-connected mobile devices.

we introduce background and motivation. Then, in Section III,
we describe the system overview and give more design details
in Section IV. Following that, we describe the system imple-
mentation and show some experimental results in Section V. In
Section VI, we introduce some related works and we conclude
this paper and propose some future work in Section VII.

II. BACKGROUND AND MOTIVATION

A. CNN-based Multitask Video Processing

Multitask video processing is a new category of applications
which applies multiple different analysis pipelines on a given
raw video stream to run various vision processing tasks, such
as object detection, people re-identification, image classifica-
tion, activity recognition, etc. CNNs, because of distinguished
accuracy and effectiveness, have replaced traditional computer
vision methods to be the mainstream technology to implement
complex vision tasks. In this case, CNN-based multitask video
processing becomes increasingly popular in our lives. Fig. 1 is
an example of CNN-based multitask video processing which
consists of two vision analysis pipelines and four CNNs. It
identifies both age and gender of survivors shown up in a video
stream from a helmet camera, which helps disaster responders
to collect the basic information about survivors during recuse.

To deal with issues such as intermittent connectivity, band-
width limitation, real-time requirements, privacy concern, etc.,
it is common to run CNN-based multitask video processing at
the edge rather than in the cloud. However, executing multiple
CNNs concurrently is extremely computational intensive while
edge devices usually have very limited computing resources.
In addition, these resources are shared with other applications,
which makes the actual resources available to run CNNs even
fewer. Moreover, the users expect to achieve good application
performance and the performance goals may change from time
to time. All these factors make running CNN-based multitask
video processing at the edge challenging.

B. Distributed Mobile Stream Processing

Distributed Mobile Stream Processing (DMSP) is an emerg-
ing computing paradigm [30]–[33] that supports online stream
processing at the edge. Different from previous systems which
offload computation tasks to a nearby edge server, DMSP uses
resources of nearby mobile devices to conduct real-time stream
processing. In DMSP, each stream application is represented
as a graph called topology. Each topology consists of several
logical units called component. Each component implements

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

� �

�
��

�
�

�
�

�
	

�� ������	

�������������

������

������

�� �� �� ��

Fig. 3: Motivation of AMVP: sharing components and layers of
multiple CNNs and running them on multiple mobile devices
to improve the performance of multitask video processing.

an independent functionality of a whole pipeline. To execute a
stream application on a DMSP platform, the user at first needs
to submit an application topology. Then, the DMSP platform
assigns different components to proper devices to perform
distributed stream processing. Fig. 2 shows an example of
DMSP, where six components C1-C6 of the stream application
are assigned to run on four wireless-connected mobile devices
M1-M4 to perform distributed stream processing.

Although DMSP makes it easier to deploy and scale stream
processing at the edge, there are still some challenges to solve.
First, in DMSP, mobile devices are not dedicated to do stream
processing, other applications need to execute on them as well.
This makes the actual available resources for DMSP uncertain.
It would be great if a component of a DMSP application could
adjust its workload based on the free resources of the device.
Second, mobile devices in DMSP are connected by wireless
networks that have dynamic bandwidths. It would be great if
the data traffic size between two adjacent components can be
reduced by some compression method and adjusted according
to the dynamic networks.

C. Motivation and Challenges

In this paper, our goal is to develop an adaptive execution
framework for the CNN-based multitask video processing on a
DMSP platform. Our motivation comes from two aspects: On
the one hand, a DMSP platform can provide more computation
resources to CNN-based multitask video processing to achieve
better performance. On the other hand, CNNs offer an elastic
trade-off between the inference accuracy and computation cost,
which perfectly match the aforementioned adaptive computing
and communication requirements of DMSP. Thereby, as shown
in Fig. 3, running CNN-based multitask video processing on
a DMSP platform is a perfect win-win choice.

However, to enable the above combination, there are several
challenges to overcome. First, we need to combine different
pipelines in Fig. 1 into a single pipeline by sharing common
components. Second, we need to find an approach to enable
different CNNs to share different common layers and adjust
total computation workload. Third, we need to implement an
adaptive scheduler which chooses the most appropriate CNN
candidates for each application component. Finally, we need
a compression method to reduce the feature transmission size
between two separate CNN parts running on two devices. In
the following, we overcome these challenges on by one.

III. AMVP ARCHITECTURE

Fig. 4 illustrates the architecture of AMVP, which consists
of four stages: model training, model splitting, model profiling
and model selection & task assignment. The first three stages
are performed offline while the last state is performed online.

Model training. AMVP trains different CNNs for different
vision processing tasks through transfer learning. It first takes
a well-known pre-trained model, such as mobileNet or resNet,
as vanilla model. Then, it replaces the classifier layers of the
vanilla model and freezes some of its base layers. Next, AMVP
trains the model with an input dataset (e.g., emotion dataset)
and outputs a new CNN (e.g., emotionNet) for a specific vision
task (e.g., emotion analysis). By using different vanilla models,
replacing with different classifier layers, freezing different base
layers and training with different datasets, CNNs with different
accuracy and computation workload are obtained for different
vision processing tasks. This stage is performed offline on a
computer server using TensorFlow and Keras framework, with
different pre-trained models and datasets as input, a set of .h5
format CNN models as output.

Model splitting. Since big CNNs might be too computation-
ally intensive for a resource-constrained mobile device, they
require to be split into two parts and run on different mobile
devices to achieve the desirable performance. To this end, after
getting a group of .h5 CNN models from the model training
stage, AMVP splits each .h5 model into two and converts them
to .tflite format for mobile devices. To adapt to the uncertain
available resources at mobile devices, AMVP splits each .h5
model at different splitting points, resulting in different .tflite
model pairs. For each pair, the first part extracts intermediate
features from the input and the second part makes inference
on the features output by the first part. For different pairs, the
computation costs of the first and second parts, as well as the
features between them, are different. This stage is performed
offline using Keras, with different .h5 CNN models as input
and a set of .tflite model pairs for each .h5 model as output.

Model profiling. After getting a set of .tflite model pairs
for each vision task, AMVP profiles each pair of .tflite models
on mobile devices to obtain the execution latency, memory
footprint, inference accuracy of each part and the traffic size
of feature transmission between two separate parts. To get
an accurate baseline, when profiling these parameters, mobile
devices are in an idle state, i.e., except for some necessary
system services, no other applications are running. This stage
is conducted offline using TensorFlow benchmark tools, with
.tflite models as input and diverse profile information as output.

Model selection & task assignment. Finally, after getting
a group of .tflite models and corresponding profile information
for each vision analysis task, AMVP requires to assign a
CNN-based multitask video processing pipeline to run on a
DMSP platform to achieve the desirable performance. To this
end, AMVP uses a runtime resource and network monitor to
obtain the actually available resources and network speed at
each mobile device. It also uses an APP topology and user
preference manager to get the APP topology and performance

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

� �
�������������	��
���

�������������

�����������������

�����������������

��������	
�
�� ���������
�
��

�����
�	�����������

������	������������

�

���
�	�����������

������
�	�����������

	������������������
���� ���!���"��#$

%���������������
���� ����������������

�&'�������

������	������
�� �� �� ���

������������
������	������
������

��������������
��
(����)��*��������

�		���	�����(�����
	�������
���������

����������	
�
�
���	

�����
��
��
�������

+	������
����������
����

+	������
���*�����������

�		���	�����(
�����	�������
�

,�����������������

���������
��
��

���	������&'�������

�������	�������

-	���������������������

������
��%������

��������������

Fig. 4: AMVP architecture, which includes model training, splitting, profiling, selection and assignment.

� �

��������	��
���
�
��������	�
��������

��
	�	��
������	��������������

�������
������

�����

�������
������

�����

���
������ ���
���������
������

�������

��������

�����

�����
��������

�������
������

�����

�������
������

�����

Fig. 5: Transfer learning strategies for CNN models

goals from the user. Then, AMVP chooses an optimal CNN
candidate for each application component and assgins all the
components to the optimal devices based on an optimization
function and a task assignment scheme. A detailed description
about optimization function and scheme is given in the next
section. This stage is conducted online, with .tflite models and
profile information, available resources and network condition,
application topology and performance goals as input, with the
optimal model selection and task assignment as output.

IV. DESIGN OF AMVP

A. Transfer Learning and Layer Sharing

In AMVP, all CNNs for different vision analytic tasks are
obtained through transfer learning – an efficient approach of
building CNNs for new tasks. Instead of learning from scratch,
transfer learning starts with some patterns learned from solving
similar problems. In computer vision, these patterns are pre-
trained CNN models (e.g., mobileNet, resNet, etc.) trained on
large benchmark datasets (e.g., ImageNet, CIFAR, etc.).

As shown in Fig. 5, a pre-trained CNN model can be divided
into two parts: the convolutional base that consists of stacked
convolutional and pooling layers and the classifier that consists
of fully connected layers. The goal of a convolutional base is
to extract features from an input image whereas the goal of a
classifier is to classify the input image based on the extracted
features. The convolutional base learns hierarchical features:
the features learned by lower-layers are general whereas the
features learned by higher-layers are specialized [34]. General
features can be shared among different tasks whereas specific
features strongly depend on the specific tasks and datasets. The
key idea of AMVP is to reduce the total computation cost of
an application by sharing common layers that generate general
features among different CNNs while using the rest layers of
each CNN to perform task-specific inference.

Based on transfer learning, AMVP trains CNNs for different
video tasks of an application as follows. At first, it replaces the

�
���������	
�

�����������	

��
������
����
������

���������	
�

�
�
�
�
��
�
�
�

�
�
�
�
�
�
��
�
�
�

�����������	

���� ����

������

���	�����

Fig. 6: Compression and decompression of feature maps

original classifier in a pre-trained model with a new classifier.
Then, it tunes the parameters of the new model with strategies
in Fig. 5. Strategy 1 retrains all the parameters of the model
from scratch, which needs a large training dataset and a lot of
computation. Strategy 2 freezes the whole convolutional base
and only retrains the classifier. It uses a pre-trained model as
a fixed feature extractor, which is suitable for training CNNs
for new tasks similar to the original tasks with small datasets.
Strategy 3 is a compromise between Strategy 1 and Strategy
2, which freezes some convolutional layers and retrains the
rest. As a rule of thumb, when a new task has a small dataset,
freezing more layers avoids overfitting; however, when a new
task has a large dataset, retraining more layers improves the
accuracy. With different frozen layers, AMVP generates a list
of CNNs for each task with different accuracy (as shown in
Fig. 9). We assume CNNs for different tasks in an application
are generated from the same pre-trained model. In this case,
AMVP can share some common frozen layers among multiple
CNNs to reduce the overall computation and memory costs.
According to our experience, there is a trade-off between the
number of frozen layers different CNNs actually share and the
inference accuracy each CNN achieves. Generally, the more
layers different CNNs share, the more computation costs can
be reduced, but the less specific each CNN will be and the
lower inference accuracy each CNN can achieve. Therefore,
one challenge of AMVP design is to choose appropriate frozen
layers for each CNN to balance between the total computation
cost and the inference accuracy of each task.

B. Model Splitting and Feature Compression

In AMVP, to enable distributed CNN execution, a big CNN
model is split into two separate parts: Feature Extraction (FE)
and Feature Inference (FI). FE takes a raw image as input and
outputs features extracted from that image; FI takes features
extracted from a raw image as input and outputs the inference
results. There are multiple splitting points where a CNN model
can be split, resulting in a group of (FE, FI) pairs. To improve
the processing throughput, FE and FI of a pair are scheduled

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

to run on different mobile devices. However, due to the large
data size of intermediate features and dynamic bandwidth of
wireless networks, how to efficiently transfer features from FE
to FI becomes a big challenge. In AMVP, we use quantization-
based compression method to reduce the data size of feature
transmission. The whole processes is shown in Fig. 6, where
the features output by a FE is quantized by a quantizer before
sent to a FI. After FI receives the quantized features, it uses
corresponding dequantizer to recover the original feature.
Splitting: There are multiple splitting points to divide a CNN
into two separate parts. For different splitting points, the traffic
size for feature transmission between two separate parts are
different. Usually, the size of features gradually gets reduced
along with the inference process [35]. The reason behind is:
features at the lower layers represent lower level information,
which are more detailed and fragmented; however, features at
the higher layers represent higher level information converged
from the lower level, which are more abstract and advanced.
Usually, the lower level information is more than the higher
level. However, this characteristic of CNNs does not mean that
AMVP should always split a CNN at a higher layer to reduce
the communication cost. In fact, different from the asymmetric
camera-cloud architecture [36] where the computation cost at
the cloud is negligible and the communication cost between
a camera and the cloud constitutes the main part of the total
latency, our architecture is more challenging because both the
computation cost at two devices and the communication cost
between them constitutes the main delay. Therefore, in AMVP,
except for the communication latency, we also consider the
computation balance of two separate parts. Although splitting
at a higher layer saves communication costs, computation costs
of two parts become less balanced, which is not beneficial for
achieving high processing throughput and low latency.
Quantization: AMVP adopts quantiztion-based compression
to reduce the communication cost of feature transmission [37].
The features output by FE is quantized to n-bit precision by
a uniform quantizer defined as follows:

F = � F −min (F)
max (F)−min (F)

· (2n − 1)� (1)

where F ∈ R
H×W×C is the tensor containing the feature map

data with H as height, W as width, and C as channels. min(F)
and max(F) denote the minimum and the maximum values in
F, respectively. F denotes the quantized feature tensor and �·�
denotes a function rounding to the nearest integer. When the
quantized feature tensor F, min(F) and max(F) are obtained
at the FI of a CNN, F is dequantized by a uniform dequantizer:

F̂ =
max (F)−min (F)

2n − 1
· F +min (F) (2)

where F̂ denotes the dequantized feature tensor. It deserves to
be mentioned that, although F̂ is not exactly equal to F, some
research [38], [39] shows that, when the n value is above a
threshold, the quantization process has a negligible effect on
the accuracy of image classification and object detection. As

described later in Section V-B, AMVP uses n = 8 to compress
the feature most while keep the accuracy close to original.

Expect for quantiztion-based compression, other compres-
sion methods, such as GZIP, ZLIB, BZIP2, LEMA, JPEG2000,
HEVC [40]–[42], can also be applied to further compress the
features transmitted from FE to FI. We leave the interface for
supporting more compression methods as the future work.
Compression metric: We leverage three metrics to evaluate
the quantization-based feature compression method. The first
metric is compression rate (CR), which is defined as:

CR =
Feature size after compression

Feature size before compression
. (3)

The second metric is fidelity, which evaluates the information
loss of dequantized features for image classification. It is cal-
culated by comparing the original onehot classification results
with the outputs inferred from the dequantized features [35]:

Fidelity = 1− 1

2N

N∑
i=1

Hamming(Oog
i , Ocp

i) (4)

where Oog
i denotes the original onehot classification result of

image sample i and Ocp
i denotes the onehot output inferred

from the dequantized features. Hamming(·) is the hamming
distance function and N denotes the total number of samples.

The third metric is compression benefits (CPB), which com-
pares the total latency for transmitting features in compressed
format and latency for transmitting features in original format.
The concrete definition is as follows:

CPB = OTR− (QT + TR+DQ) (5)

where OTR is the latency for transmitting features in original
format, QT is the latency for feature quantization, TR is the
latency for transmitting features in compressed format and DQ
is the latency for feature dequantization.

C. Model Selection and Task Assignment

In AMVP, a set of .tflite models and profiles are deployed on
mobile devices in advance, AMVP needs to choose an appro-
priate model for each vision task and assign the whole CNN-
based multitask video processing pipeline to proper devices of
a DMSP platform to achieve the desirable performance. We
name this procedure as Model Selection and Task Assignment
(MSTA) and formulate it mathematically as follows.

Let S denote the set of vision analytic tasks in a multitask
video processing application and let As, Ls and Ts denote the
user setting goals for inference accuracy, processing latency
and processing throughput for task s ∈ S, respectively. Let
Ms represent the set of all available CNN candidates for task
s and let ms ∈ Ms denote a specific candidate with specific
pre-trained CNN type and frozen layers. In addition, we use
ms = (m1

s,m
2
s) to denote a specific separation of CNN model

ms, which consists of two separate parts m1
s and m2

s. The size
of features transmitted from m1

s to m2
s is denoted as fm1

sm
2
s

and the communication bandwidth between devices k1, k2 that

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

execute m1
s, m2

s is denoted as bk1k2
. Then, the cost function

for task s is defined as follows:

C(ms,u
k
s , s) = αs · As −A(ms)

As

+ βs · max(0, L(ms,u
k
s)− Ls)

L(ms,uk
s)

+ γs · max(0, Ts − T (ms,u
k
s))

Ts

(6)

where A(ms) is the inference accuracy of ms; L(ms,u
k
s) is

the processing latency defined as

L(ms,u
k
s) =

lk1

m1
s

uk1

m1
s

+
lk2

m2
s

uk2

m2
s

+D(fm1
sm

2
s
, bk1k2

) (7)

where uk
s = (uk1

m1
s
, uk2

m2
s
), ukj

mi
s
∈ (0, 1] denotes the percentage

of computing resources allocated to model mi
s at device kj ,

l
kj

mi
s

denotes the processing latency of mi
s when 100% comput-

ing resources of kj are allocated to mi
s, and D(fm1

sm
2
s
, bk1k2)

denotes the latency for delivering the features from k1 to k2;
T (ms,u

k
s) is the processing throughput defined as

T (ms,u
k
s) = min{uk1

m1
s
tk1

m1
s
, uk2

m2
s
tk2

m2
s
,

1

D(fm1
sm

2
s
, bk1k2)

}
(8)

where t
kj

mi
s

represents the processing throughput of mi
s when

100% computing resources of kj are allocated to mi
s.

In the cost function, the first term promotes to select a CNN
candidate with the highest inference accuracy, the second term
penalizes choosing a CNN candidate that achieves a processing
latency higher than the latency goal Ls and the third term
penalizes choosing a CNN candidate that achieves a processing
throughput lower than the throughput goal Ts. Since the video
stream is streamed at a fixed frame rate, there is no reward to
achieve a latency lower than Ls and a throughput higher than
Ts. Therefore, in Eq. 6, we use a max function for the second
and third terms. To allow the trade-off among accuracy, latency
and throughput, parameters αs, βs, γs ∈ [0, 1], αs+βs+γs =
1, can be set by the user to indicate the importance of accuracy,
latency and throughput, respectively. The larger a parameter
is, the more important the corresponding metric is.

It deserves to be mentioned that, asking different parameters
from users is not intuitive. Therefore, in the future, instead of
asking the users for the concrete budgets and preferences, we
will provide several levels of services for the users to choose
with the words they can understand. Inside the system, we can
map the chosen service level to corresponding parameters.

Given the cost function of each task, AMVP applies a widely
used MinMaxCost scheme [26] to perform the model selection
and task assignment, which minimizes the cost of the task that
has the largest cost. The optimization problem of this scheme

�

���������	
����������
����������

��������������������
����������

�
�
�
�
��
�
�

��������������������������������������

����������
����
������
�����������

���������
�������� ���
�����
������

��
��� ������
�!�"�������������

#��������
 $�
����

����
������������������
���"������

(a) Basic workflow of MSTA

�

�� �� ��������	�

�	�	�

�	�
	��	�

�

��
�

����	�����	��

�������

��

�����	�	��� �	��	�����

��������	��

�� �

��

��

(b) An example of MSTA

Fig. 7: Model Selection and Task Assignment (MSTA)

is formulated as follows:

minimize
ms,uk

s

C (9)

subject to: ∀s : C(ms,u
k
s , s) ≤ C, (10)

∀k :
∑
{mi

s}
uk
mi

s
≤ Uk, (11)

∀k :
∑
{mi

s}
rkmi

s
≤ Rk (12)

where the cost of any task k must be smaller than C where C
is minimized. {mi

s} is a CNN model set where all the models
inside are different. At device k, uk

mi
s

denotes the percentage
of computing resources allocated to model mi

s, Uk denotes the
percentage of total available computing resources, rkmi

s
denotes

the runtime memory usage of model mi
s and Rk denotes the

total available memory. With the MinMaxCost scheme, AMVP
assigns resources to all the tasks of video processing in a fair
way so that there is no obvious performance bottleneck.

In order to solve the above computationally hard nonlinear
optimization problem, AMVP uses a greedy heuristic algorithm
to get an approximate solution. The key idea of this algorithm
is built on a basic workflow of MSTA shown in Fig. 7a. First,
each task selects a specific CNN implementation from all the
available candidates, which implies the following information:
1) the used pre-trained CNN model; 2) the frozen CNN layers.
This selection directly determines the inference accuracy that
each task can achieve. Then, after each task chooses its own
CNN implementation, information about how many common
frozen layers are shareable among different CNNs are easy to
obtain. To minimize the total computation workload, different
CNNs try to share as many common frozen layers as possible.
With this shared layer information, each related CNN can be
split into two sub-parts. Since the profile of each CNN sub-
part is acquired in advance, AMVP finally assigns all the sub-
parts to proper devices based on the monitored system status.
Based on the assignment, throughput and latency of each task
is determined. A detailed description of this greedy algorithm
is in Algorithm 1. First, we use Q and X to represent the final
model selection and task assignment and we set the minimum
maximum cost value minMaxCost as 1 (line 1-2). Then, we

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: MSTA(), a greedy algorithm
Input : ∀ task s: Ms, As, Ls, Ts, αs, βs, γs;

∀ device k, k′: Uk, Rk, bkk′ ;
∀ model mi

s and ∀ device k: lkmi
s
, tkmi

s

Output: Model selection Q and task assignment X
1 Q ← ∅ , X ← ∅

2 minMaxCost ← 1 // based on Eq. 6, the maximum cost is 1
// Initialize with CNNs that have the highest accuracy

3 P ← {∀s: ms|ms ∈ Ms and has the highest accuracy}
4 while ∃ms ∈ P is NOT with the lowest accuracy do
5 CFL ← common frozen layers of CNNs in P
6 Q ← ∅

7 for ms ∈ P do
// split each model based on common frozen layers

8 ms ← (m1
s,m

2
s), separation of ms based on CFL

// record separate models as model selection
9 Q.add(ms)

10 X ← TaskAssign(Q, Input) // Algorithm 2
11 cost ← 0, exit ← ture, accCost ← 1, s ← NULL
12 for s ∈ S do

// calculate cost of each task and find the maximum
13 cost ← max(cost, C(ms,u

k
s , s))

// update flag for early exit
14 if L(ms,u

k
s) > Ls or T (ms,u

k
s) < Ts then

15 exit ← false

// find task s with the minimum accuracy cost
16 if accCost > αs · As−A(ms)

As
then

17 s ← s

18 accCost ← αs · As−A(ms)
As

// update minMaxCost, model selection and task assignment
19 if cost < minMaxCost then
20 minMaxCost ← cost
21 Q ← Q, X ← X

22 if exit = ture then
23 return Q and X

// replace model for task with the minimum accuracy cost
24 m′

s ← CNN in Ms with accuracy second to ms ∈ P
25 P ← P \ {ms} ∪ {m′

s} // update model in P for task s

26 return Q and X

create a set P by choosing the model with the highest inference
accuracy for each task (line 3). Starting with this initial set, a
procedure is performed repeatedly until all the models in the
set have the lowest accuracy (line 4). In the procedure, we first
find the Common Frozen Layers (CFL) among all the models
(line 5). Then, base on the common frozen layer, each model is
split into two parts and stored in Q (line 6-9). Next, based on
the separate models and the input information, we call a task
assignment procedure (Algorithm 2) to get a task assignment
X (line 10). Based on the assignment X , we calculate the
cost function of each task and record the maximum one (line
13). We also calculate the latency and throughput of each task

Algorithm 2: TaskAssign(), a genetic algorithm
Input : Q = {ms}; ∀s: As, Ls, Ts, αs, βs, γs;

∀k, k′: Uk, Rk, bkk′ ; ∀mi
s, k: lkmi

s
, tkmi

s

Output: Task assignment X
1 P ← RandomlyInitPopulations()
2 X ← SelectBest(C(ms,u

k
s , s), P)

3 gen ← 0;
4 while gen < MAXGEN do
5 Ppa ← SelectParents(C(ms,u

k
s , s), P)

6 Pch ← GenerateChildren(Ppa)
7 Pmu ← Pch

8 for p ∈ Pmu do
9 p ← Mutate(p,MR) // mutation rate: MR

// recombination period: RP

10 if gen%RP = 0 then
11 p ← Recombination(p)

// Filter constraints: CSTR

12 Poff ← FilterOffspring(CSTR,Pch ∪ Pmu)
13 P ← SelectPopulations(C(ms,u

k
s , s), Ppa ∪ Poff)

14 X ← SelectBest(C(ms,u
k
s , s), {X} ∪ P)

15 return X

and check if they meet the goals (line 14). If either of them
does not meet the goal, the whole procedure cannot exit in
advance (line 15). Besides, we also check which task has
the minimum accuracy cost and record it for the later update
(line 16-18). After we find the maximum cost of all tasks,
we compare it with minMaxCost and update minMaxCost
with new value it is smaller (line 19-20). Correspondingly, we
also update Q and X with a better solution (line 21). Then,
we check if the procedure can exit early (line 22). If so, we get
current Q and X as the optimal solution (line 23). Otherwise,
we update model set P by replacing the model of task with the
minimum accuracy cost and continue the loop procedure (line
24-25). In the end, when all the models in P have the lowest
accuracy, the loop procedure stops and the whole algorithm
returns Q and X as the optimal solution (line 26).

Algorithm 2 describes the task assignment procedure used
in Algorithm 1. It is a genetic algorithm which starts with a
certain amount of random assignments (line 1) and runs an it-
erative process (line 4-14) containing the following operations:
a) SelectParents, which selects a certain number of candidate
assignments as parents based on the cost function (line 5); b)
GenerateChildren, which generates children assignments by
running uniform crossover (line 6); c) Mutate, which chooses
some rows of an assignment and changes the values at some
random positions (line 9); d) Recombination, which exchanges
two rows of a task assignment to achieve a lower cost (line 11);
e) FilterOffSpring, which deletes task assignments that violate
constraints (line 12); f) SelectPopulations, which selects new
populations from all the candidates based on the cost function;
g) SelectBest, which selects an assignment with the minimum
cost (line 13). After iterating the above operations for a certain

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

� �

Fig. 8: A test platform for deploying AMVP which consists of
a helmet camera, four Android phones and a wireless manpack

number of generation gen, it returns an assignment X which
achieves the lowest cost with the best efforts (line 15).

A simple example of MSTA is shown in Fig. 7b, where three
components (i.e., GenderNet, EmotionNet, AgeNet) of a video
processing pipeline depend on CNNs. For each component,
there are a set of CNN model candidates with two pre-trained
CNN types (mobileNetV2, resNet50V2) and different frozen
layers. Based on MSTA, GenderNet chooses a mobileNetV2-
based CNN while both EmotionNet and AgeNet choose the
resNet50V2-based CNNs. GenderNet runs the selected CNN
at device M4. EmotionNet and AgeNet execute the common
frozen layers of the selected CNNs at device M2 and execute
the distinct layers of the selected CNNs at device M3.

V. EVALUATION

A. Implementation and experimental setup

The implementation of AMVP are divided into two stages:
offline stage and online stage. For the offline stage, we first
train a group of CNNs for different vision analytic tasks (e.g.,
gender recognition, emotion recognition, age recognition, etc.)
via transfer learning with Keras [43] API of TensorFlow [44].
These CNNs are trained from different pre-trained CNNs with
different frozen layers, which result in a group of different .h5
models. The pre-trained CNNs we adopt are mobileNetV2 and
resNet50V2 trained on ImageNet [45]. The dataset we use to
train each vision task contains 750 images for each category:
500 images for training and 250 images for validation. After
getting the .h5 models, we split each model at different layers
and convert the separate models into .tflite format. This results
in a group of .tflite model pairs. Next, we run each .tflite model
pair on an Android phone to profile critical information such
as inference accuracy, processing latency, memory footprint,
feature traffic size, etc. We gather these information together
as a database for the later model selection and assignment.

Next, for the online stage, we implement AMVP on top of a
mobile distributed stream processing system [30] running on a
test platform shown in Fig. 8, which consists of a helmet Yi R©

camera, four Essentail R© phones and a wireless manpack. An
AMVP client application with a group of .tflite model pairs is
installed on each phone in advance. An AMVP server with the
profile database is running on the manpack for model selection
and task assignment. Before a user executes a multitask video
processing application, he/she first sends a request containing
the application information and the performance goals to the

AMVP server. When the server receives the request, it calls the
MSTA algorithm to select an appropriate CNN model for each
vision task and assigns them to run on proper devices. When an
AMVP client receives an assignment from the server, it loads
the selected CNNs to memory to perform vision analysis.

In our experiments, we utilizes a multitask video processing
application in Fig. 7b to evaluate AMVP. The first component
C1 of this application pulls stream from the video source and
chops the stream into frames and the second component C2
detects whether there is a face in each frame and outputs the
frames containing faces into GenderNet, EmotionNet, AgeNet,
respectively. The component C3 finally collects the inference
results. We compare AMVP with two baseline strategies, i.e.,
Pure Sharing Strategy (PSS), which shares the common frozen
layers among multiple CNNs on a single mobile device and
Pure Offloading Strategy (POS), which offloads CNNs layers
to other devices without sharing. We run extensive experiments
with various performance goals and parameters under different
computation and networking conditions to show how AMVP
adapts to the different edge computing environment.

B. Experimental results

1) Transfer learning of CNNs: We train CNNs for different
vision analysis tasks through transfer learning with different
frozen layers in the pre-trained models. As shown in Fig. 9,
in general, resNet50V2-based CNNs achieves higher inference
accuracy than mobileNetV2-based CNNs because the former
have deeper layers (190 vs. 155) and more parameters (23.56M
vs. 2.25M). For each specific vision task, we observe that, as
the number of frozen layers increases, the inference accuracy
first increases and then decreases. This is because the datasets
we use for training different vision tasks are much smaller than
the ImageNet [45] dataset used for training resNet50V2 and
mobileNetV2. If we retrain all the layers in the base model
(Strategy 1 in Fig. 5), it is easy to encounter the overfitting
problem. Specifically, we find that, the overfitting problem for
resNet50V2-based CNNs is more serious than mobileNetV2-
based CNNs because it has more parameters. By contrast, if we
freeze all the layers in the based model (Strategy 2 in Fig. 5), it
is difficult to extract specific features for each vision analysis
task, which leads to a low accuracy as well. Therefore, freezing
some part of the layers in the base model (Strategy 3 in Fig. 5)
is a wise choice when performing transfer learning on large
parameter CNNs with small dataset. Besides, we also observe
that, the effect of freezing proper layers is more obvious for
complicated applications. For example, as shown in Fig. 9a,
for gender recognition which is simpler than emotion or age
recognition, the accuracy difference of models with different
frozen layers is much smaller.

2) CNN model profiling: As shown in Fig. 10, we choose
17 points as the candidate splitting points for mobileNetV2
and resNet50V2. All these splitting points are the last layers
of CNN blocks. For each splitting point, we can divide a CNN
model into a pair of separate CNN parts P1 and P2. For each
pair of separate CNN parts, we profile the latency and memory
size, as well as the feature size between them. As we see

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

 40

 50

 60

 70

 80

 90

 100

0 10 30 50 70 90 110 130 150 all

A
cc

ur
ac

y
(%

)

Frozen layers in based model

 mobileNetV2
 resNet50V2

(a) GenderNet

 40

 50

 60

 70

 80

 90

 100

0 10 30 50 70 90 110 130 150 all

A
cc

ur
ac

y
(%

)

Frozen layers in based model

 mobileNetV2
 resNet50V2

(b) EmotionNet

 40

 50

 60

 70

 80

 90

 100

0 10 30 50 70 90 110 130 150 all

A
cc

ur
ac

y
(%

)

Frozen layers in based model

 mobileNetV2
 resNet50V2

(c) AgeNet

Fig. 9: The number of frozen layers in the pre-trained CNNs affects the inference accuracy of vision analysis tasks

��
���
���

����
����
����

	� 	� 	
 	� 	� 	� 	� 	� 	 	��
	��
	��
	�

	��
	��
	��
���

��	��������

�������������������	���������

���� ����

��
�
��
����
���

�����
�����

����������

��
��
�

!�
�"
���

��
��
��
��
#�

��
�$�

�%

���� ����

(a) Latency

��
��
��

���
���
���

	� 	� 	
 	� 	� 	� 	� 	� 	 	��
	��
	��
	�

	��
	��
	��
���

��	��������

�������������������	���������

���� ����

��
�
�
���
��

����
����

����������

�
��

��
��
��
���

��
��
��
��
��

��
���

�%
���� ����

(b) Memory size

��
���

�	
�
����
����
����

	 � � � �
 � � 	�
		
	�
	�
	�
	�
	

���

����������

����������������������������

��
����

�	
��
�����
�����
�����

����������

��
��
��
��
���

��
��

��
��

��
��

��
��	

&

(c) Feature size

Fig. 10: Latency, memory size of and feature size between separate CNNs at different splitting points

in Fig. 10a, the latency of P1 almost increases linearly with the
block number. Therefore, to balance the computation workload
between P1 and P2, the optimal splitting point is in the middle.
However, the memory size of a CNN is mainly concentrated in
the back of the model (Fig. 10b). Meanwhile, the feature size
between P1 and P2 decreases as the block number increases.
Therefore, from the perspective of memory print balance and
communication cost, splitting the model at a latter layer is
better. Moreover, from the layer sharing perspective, if we
split different CNNs at a latter layer, these CNNs will have
a larger opportunity to share more layers by freezing more
layers of their first parts. However, as we observe from Fig. 9,
freezing too many CNN layers in the convolutional base
decreases the inference accuracy of vision tasks. Overall, from
the above profile data, we can conclude that, when we split
a CNN model into two separate parts, there is a complicated
trade-off among different metrics, which includes computation
workload balance, memory footprint balance, communication
costs, shareable common layers, and inference accuracy. This
motivates us to design a framework that is able to adaptively
choose the most appropriate splitting points for different CNNs
based on the user requirements and environment condition.

3) Feature compression and transmission: After we split a
CNN into two separate parts P1 and P2 and deploy them on
two devices, P1 needs to transmit its extracted feature to P2 to
finish the inference. As mentioned in IV-B, in AMVP, we use
a quantization-based method to compress the feature before
transmitting it. In Fig. 11, we use a simple example to show
how the quantization precision affects the total quantization
and dequantization time, compression rate, and fidelity. We use
a mobileNetV2-based AgeNet, splitting at layer 90, with inter-

 0

 1

 2

 3

 4

 5

 6

n=16 n=8 n=4 n=2

T
im

e
(m

s)

Quantization Precision

QT-Time
DQ-Time

(a) Quantization and dequantization time

 0

 0.2

 0.4

 0.6

 0.8

 1

Base n=16 n=8 n=4 n=2 0.75

 0.8

 0.85

 0.9

 0.95

 1

C
om

pr
es

si
on

 R
at

e

F
id

el
ity

Quantization Precision

CR
Fidelity

(b) Compression rate and fidelity

Fig. 11: An example (mobileNetV2-based AgeNet, splitting
at layer 90, feature size = 14*14*64*4 ≈ 50 KB) that shows
how quantization precision affects quantization/dequantization
time (QT-Time/DQ-Time), compression rate (CR) and fidelity.

part feature size around 50KB. As we see from Fig. 11a, when
the quantization precision n decreases, both quantization and
dequantization time decreases. From Fig. 11b, we observe that,

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

 0

 5

 10

 15

 20

 25

CP OG CP OG CP OG CP OG

T
im

e
(m

s)

Network Bandwidth

 QT
 TR
 DQ

80Mbps60Mbps40Mbps20Mbps

(a) Effects of network bandwidth

 0

 20

 40

 60

 80

 100

 120

CP OG CP OG CP OG CP OG

T
im

e
(m

s)

Feature Size (Byte)

 QT
 TR
 DQ

400K200K100K50K

(b) Effects of feature size

Fig. 12: An example that compares quantization, transmission,
and dequantization time (QT, TR, and DQ) of our compression
method (CP) and the original transmission (OG) with different
network bandwidths and feature sizes. In (a), the feature size
is fixed at 50 KB and the network bandwidth increases from
20Mbps to 80Mbps. In (b), the network bandwidth is fixed at
30Mbps and the feature size increases from 50KB to 400KB.

although the compression rate decreases as the quantization
precision decreases, the fidelity metric starts to decrease at
some point (n=8, fidelity=0.999) as well. To keep the inference
accuracy, we use n=8 in AMVP.

In Fig. 12, we compare the quantization, transmission, and
dequantization time (QT, TR, and DQ) of our compression
method (CP) and the original transmission (OG) with different
network bandwidths and feature sizes. In Fig. 12a, we trans-
mit the feature with fixed size (50KB) at different network
bandwidths. When the network bandwidth is low, even though
(de)quantization takes some time, the total amount of time for
delivering the feature is still lower than that of delivering it in
original size. However, as the network bandwidth increases,
transmitting feature in original size becomes a better choice
because the (de)quantization time exceeds the saved trans-
mission time. In Fig. 12b, we show that, when the network
bandwidth is at a low level (30Mbps), the larger the feature
size is, the more compression benefits (CPB) we can obtain by
using the quantization-based compression. In AMVP, system
can adaptively use the quantization-based compression method
based on the network condition.

4) Adapting to different accuracy requirement: The user of
AMVP may have different accuracy requirements. In Fig. 13,
we show how AMVP adapts to different accuracy requirements

by trading off other metrics. As we can see, the first user has
an accuracy goal 80% for all three vision tasks, which is not
very high. He also has a latency goal 1000ms and a throughput
goal 1F/s. Since he does not have a strong preference on the
accuracy goal, he sets α, β, γ all equal to 0.33. The second
user, however, has a much higher accuracy goal 90% and he
has a latency goal 1000ms and a throughput goal 1F/s as well.
Since he has strong preference on fulfilling the accuracy goal,
he sets α = 0.8, β = 0.1, and γ = 0.1, respectively. Based
on the different accuracy goals and preference, AMVP offers
a solution with lower accuracy and lower latency for the first
user. For the second user, however, AMVP offers a solution
with higher accuracy by trading off the latency. Both solutions
meet the throughput goals.

5) Adapt to different throughput requirement: Video stream
can be fed into AMVP at different frame rate, which requires
AMVP to provide different throughput. As shown in Fig. 14,
when the input rate is 1F/s, AMVP provides a solution with
high accuracy by using the resNet50V2-based model for each
task, which also has higher latency. However, when the input
rate becomes 3F/s, AMVP provides another solution by using
the mobileNetV2-based models. This solution provides 2.8x
higher throughput and 5x lower latency than the original.

6) Adapting to different latency requirement: Sometimes,
an AMVP user wants to instantly get an inference result, which
requires AMVP to provide a short latency. As shown in Fig. 15,
when the latency required by the user is high (1500ms), AMVP
provides a solution with a high latency and a high accuracy.
However, once the latency requirement becomes low (200ms),
AMVP will choose another solution with lower latency, as well
as lower accuracy. The throughput in both solutions are equal
to the input rate.

7) Adapt to different computing resource: The actual avail-
able computing resource of a mobile device at the edge is un-
certain because other applications also consume it. In Fig. 16,
we show how AMVP adapts to computing resource change of
a mobile device by running a synthetic workload application
to consume some computing resources in the background. We
compare AMVP with two baseline strategies, i.e., Pure Sharing
Strategy (PSS), which shares common layers among CNNs on
a single device, and Pure Offloading Strategy (POS), which
offloads CNNs to other devices, to show the superiority of
AMVP. As we see in the left figure, comparing with scenarios
with no workload application (“-no”), in the scenarios with
workload application (“-wl”), all the strategies choose to run
CNNs with lower accuracy to reduce the total computation
cost. From the middle figure, we observe that: (a) when there
is no workload, AMVP achieves up to 48% shorter latency
than PSS by offloading some CNN layers to other devices and
around 6% shorter latency than POS by sharing some common
layers among CNNs; (b) when there is workload, although all
the three strategies choose a lightweight mobileNetV2-based
model for each task, AMVP achieves up to 61% shorter latency
than PSS and POS; (c) for POS in the workload running case,
GenderNet running on the mobile device with the workload
has much higher latency than EmotionNet and AgeNet running

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

 80

 85

 90

 95

 100

80 90

A
cc

ur
ac

y
(%

)

Accuracy Req. (%)

Gender
Emotion

Age

 0

 500

 1000

 1500

 2000

 2500

80 90

La
te

nc
y

(m
s)

Accuracy Req. (%)

Gender
Emotion

Age

 0

 0.5

 1

 1.5

 2

80 90

T
hr

ou
gh

pu
t (

F
/s

)

Accuracy Req. (%)

Gender
Emotion

Age

Fig. 13: AMVP adapts to different accuracy requirement.

 80

 85

 90

 95

 100

1 3

A
cc

ur
ac

y
(%

)

Throughput Req. (F/s)

Gender
Emotion

Age

 0

 500

 1000

 1500

 2000

 2500

1 3

La
te

nc
y

(m
s)

Throughput Req. (F/s)

Gender
Emotion

Age

 0

 1

 2

 3

 4

1 3

T
hr

ou
gh

pu
t (

F
/s

)

Throughput Req. (F/s)

Gender
Emotion

Age

Fig. 14: AMVP adapts to different throughput requirement.

 80

 85

 90

 95

 100

1500ms 200ms

A
cc

ur
ac

y
(%

)

Latency Req. (ms)

Gender
Emotion

Age

 0

 500

 1000

 1500

 2000

 2500

1500ms 200ms

La
te

nc
y

(m
s)

Latency Req. (ms)

Gender
Emotion

Age

 0

 0.5

 1

 1.5

 2

1500ms 200ms

T
hr

ou
gh

pu
t (

F
/s

)

Latency Req. (ms)

Gender
Emotion

Age

Fig. 15: AMVP adapts to different latency requirement.

on other devices that are idle. From the right figure, we see
that, when there is no workload, all three strategies achieve
similar throughput. However, when there is workload running,
AMVP achieves around 10% higher throughput than PSS and
around 7% higher throughput than POS.

8) Adapt to different network bandwidth: The edge network
is dynamic. In Fig. 17, we show how AMVP outperforms POS
by running application under different network bandwidths.
As we observe in the left figure, when the network bandwidth
drops from 50Mbps to 1Mbps, AMVP sacrifices the accuracy
of EmotionNet by selecting a model with more frozen layers
so that different CNNs can share more layers and all execute
locally. However, POS still uses the original models because it
does not care about layer sharing. From the middle figure, we
observe that, when the network bandwidth becomes 1Mbps,
AMVP executes all the CNNs locally while POS still offloads
two CNNs to other devices, which causes larger communi-
cation latency. From the right figure, we find that, AMVP
achieves around 1T/s throughput for all tasks in both 50Mbps
and 1Mbps scenarios. However, since POS offloads two tasks
to other devices when the network bandwidth is 1Mbps, the

throughput of those offloaded tasks is restrict by the network
bandwidth and thus decreases.

VI. RELATED WORK

There are plenty of existing works regarding how to execute
computational intensive CNNs on resource constrained mobile
devices to support vision analysis. We classify these works into
three categories and describe them from high level as follows.
CNN offloading. The key idea of CNN offloading is moving
some CNN layers or the whole CNN model from the resource
constrained mobile devices to some resource sufficient servers,
no matter the server is in the cloud or at the edge. MCDNN [8]
is an earlier representative work which deploys different CNN
variants on both cloud and mobile devices. The variants at the
cloud have higher accuracy but higher computation cost and
extra communication overhead. The variants at mobile devices
have lower computation cost and no communication overhead
but lower accuracy. MCDNN selects a proper CNN variant at
runtime to adapt to the dynamic operating conditions. Another
representative work of CNN offloading is Neurosurgeon [46],
which performs CNN computation partition between mobile

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

 80

 85

 90

 95

 100

amvp-no

pss-no
pos-no

amvp-wl

pss-wl
pos-wl

A
cc

ur
ac

y
(%

)

Workload Condition

Gender
Emotion

Age

 0

 500

 1000

 1500

 2000

 2500

amvp-no

pss-no
pos-no

amvp-wl

pss-wl
pos-wl

La
te

nc
y

(m
s)

Workload Condition

Gender
Emotion

Age

 0

 0.5

 1

 1.5

 2

amvp-no

pss-no
pos-no

amvp-wl

pss-wl
pos-wl

T
hr

ou
gh

pu
t (

F
/s

)

Workload Condition

Gender
Emotion

Age

Fig. 16: Comparing AMVP with pure sharing strategy (pss) and pure offloading strategy (pos) with different computing resources.
“-no” indicates that there is no other application with heavy workload running in the background, i.e., there are more computing
resources for the video processing application. In contrast, “-wl” indicates that there is other application with heavy workload
running in the background, i.e., there are fewer computing resources for the video processing application.

 80

 85

 90

 95

 100

amvp-50

pos-50
amvp-1

pos-1

A
cc

ur
ac

y
(%

)

Network Bandwidth (Mbps)

Gender
Emotion

Age

 0

 500

 1000

 1500

 2000

 2500

amvp-50

pos-50
amvp-1

pos-1

La
te

nc
y

(m
s)

Network Bandwidth (Mbps)

Gender
Emotion

Age

 0

 0.5

 1

 1.5

 2

amvp-50

pos-50
amvp-1

pos-1

T
hr

ou
gh

pu
t (

F
/s

)
Network Bandwidth (Mbps)

Gender
Emotion

Age

Fig. 17: Comparing AMVP with pure offloading strategy (pos) under different network bandwidths, where ”-1” indicates that
the bandwidth is 1Mbps and ”-50” indicates that the bandwidth is 50Mbps.

devices and cloud at the granularity of neural network layers.
It demonstrates that, compared to those cloud-only solutions,
this collaborative solution achieves lower latency, lower energy
consumption and higher datacenter throughput. A recent work
named as Couper [12] brings edge server into CNN offloading
by quickly slicing CNNs into components executing on both
the cloud and edge. It proves via extensive experiments that
a powerful edge server is essential for CNN offloading when
the required latency is low while the network condition to the
cloud is bad. Although the above solutions achieve significant
performance improvement, they either rely on the cloud or a
powerful edge server. Under some extreme conditions without
Internet or powerful edge server, such solutions will fail.

Recent works also start to study distributing CNN execution
on several IoT or mobile devices. Modnn [14] and Mednn [15]
utilize specific partition schemes to partition CNN models onto
several mobile devices to alleviate device-level computing cost
and memory footprint. DeepThings [17] proposes distributed
inference on IoT devices by employing a fused tile partitioning
of convolution layers to expose parallelism, a distributed work
stealing approach to balance dynamic workload and a novel
scheduling procedure to reduce the overall execution latency.
Musical Chair [18] supports efficient recognition at local by
harvesting aggregated computational power from IoT devices
in the same network. It explores both data parallelism and
model parallelism of CNN to deal with the inherit dynamic.
Different from above works which focus on the execution of

single CNN, AMVP studies how to run multiple CNNs on the
mobile devices, which is obviously more challenging.

CNN compression. CNN compression uses different compres-
sion techniques to construct efficient CNN models for mobile
devices. XNOR-Net [47] approximates both input and weights
into binary values to reduce the computation workload for real-
time inference at the cost of some accuracy loss. ThiNet [48]
applies filter level pruning to compresses CNNs by greedily
pruning the filter that has the minimum effect on the activation
values of the next layer. Factorized Networks [22] factorizes
a high-cost 3D convolution operation as a low-cost single
intra-channel convolution and a linear channel projection to
reduce the computation while maintain the accuracy. All these
works, however, have an identical limitation: they use a fixed
compression technique to compress a CNN, which results in
a one-for-all model that cannot adapt to different performance
goals and resource constraints. To deal with this issue, a recent
work [25] enables on-demand model compression by applying
proper compression techniques to different CNN layers, which
achieves an optimal balance between performance goals and
resource constraints. In current AMVP, there is no direct model
compression technique to support CNN model compression.
However, in the future, we plan to integrate some.

Except for the above works which compress CNN layers to
reduce computation cost and memory footprint, there are also
some other works which compress the intermediate features to
reduce the feature transmission size. For example, the authors

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

in [40] claim that intermediate deep feature compression
will become the next battlefield of collaborative intelligent
sensing. In [37] and [41], the authors study the impact of
lossy and near-losses feature compression on object detection
accuracy. In [35], the authors present a lossy compression
framework for intermediate deep feature compression based on
quantization and video codec, which is adopted by the Audio
Video Coding Standard Workgroup as the visual feature coding
standard. In AMVP, in order to reduce the data traffic size of
feature transmission between separate CNN components, we
use similar methods to compress the feature. And in order to
adapt to the uncertain edge network, we provide configures
with different compression rate to provide trade-off between
feature size and accuracy.
CNN sharing The key idea of CNN sharing is to share some
common layers or parameters among multiple related CNNs
to reduce the total computation workload or memory footprint.
For example, in NestDNN [26], the authors propose a nesting
method to allow different variants of a deep learning model
to share common parameters, so that it can dynamically select
the optimal resource-accuracy trade-off at runtime to fit each
model’s resource demand to the system available resources. In
Mainstream [9], the authors propose to share some common
layers among multiple CNNs at an edge server to reduce the
total computation workload. At deployment time, based on
the available resources and mix of applications on the edge
server, it automatically determines the right trade-off between
per-frame accuracy and more frames per second by choosing
different number of shared layers. AMVP adopts similar layer
sharing strategy as Mainstream. The difference is, instead of
choosing proper shared layers based on the available resource
at edge server, AMVP needs to consider the available resources
of a mobile device cluster, as well as the dynamic bandwidth
of the wireless network connecting them.

VII. CONCLUSION AND FUTURE WORK

In this paper, we describe the design, implementation and
evaluation of AMVP, an adaptive execution framework which
supports CNN-based multitask video processing on a mobile
distributed stream processing platform. AMVP combines the
strategy of model sharing and model offloading, which enables
multiple closely-related CNNs to share common frozen layers
to reduce the total computation cost and allows one mobile
device to offload part of CNN models to nearby mobile devices
to reduce the local computation workload. To adapt to different
performance goals and uncertain system status, the number of
CNN layers for sharing and offloading is determined online.
We conduct extensive experiments to show the superiority of
AMVP. The experimental results show that, compared to those
baseline solutions, AMVP achieves up to 61% lower latency
and 10% higher throughput with comparative accuracy.

Current AMVP still have some limitations. First, it adopts a
static accuracy metric, which does not meet the requirement
of video analytics very well. For the future work, we consider
applying similar accuracy metrics as in Chameleon [49], which
includes precision, recall and F1 score. Second, current AMVP

only executes on a mobile stream processing platform. For the
future, we plan to generalize it to deploy on a heterogeneous
stream processing platform, which leverages all the available
resources including mobile devices, edge servers and cloud to
perform CNN-based multitask video processing. Third, current
AMVP only supports single video processing, evaluation with
simultaneous processing of multiple videos will be conducted
in the future. Finally, AMVP assumes that CNNs of different
tasks are trained from the same base networks. Although this is
a premise for sharing common layers among different CNNs,
it is also a limitation of our solution.

ACKNOWLEDGEMENT

This material is based upon a project supported by National
Institute of Standards and Technology (NIST) under Grant NO.
(#70NANB17H190). We also appreciate the suggestions from
the anonymous reviewers and our shepherd Dr. Mi Zhang.

REFERENCES

[1] K. Muhammad, J. Ahmad, Z. Lv, P. Bellavista, P. Yang, and S. W.
Baik, “Efficient deep cnn-based fire detection and localization in video
surveillance applications,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 49, no. 7, pp. 1419–1434, 2018.

[2] M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, and N. Sebe,
“Plug-and-play cnn for crowd motion analysis: An application in abnor-
mal event detection,” in Proceedings of the IEEE Winter Conference on
Applications of Computer Vision (WACV), 2018, pp. 1689–1698.

[3] M. Babaee, D. T. Dinh, and G. Rigoll, “A deep convolutional
neural network for video sequence background subtraction,” Pattern
Recognition, vol. 76, pp. 635–649, 2018.

[4] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane,
“Mobisr: Efficient on-device super-resolution through heterogeneous
mobile processors,” in Proceedings of the 25th Annual International
Conference on Mobile Computing and Networking. ACM, 2019, p. 54.

[5] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[6] R. Ranjan, V. M. Patel, and R. Chellappa, “Hyperface: A deep multi-
task learning framework for face detection, landmark localization, pose
estimation, and gender recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 1, pp. 121–135, 2017.

[7] D. C. Luvizon, D. Picard, and H. Tabia, “2d/3d pose estimation and
action recognition using multitask deep learning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 5137–5146.

[8] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy, “Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints,” in Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2016, pp. 123–136.

[9] A. Jiang, D. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,
M. Kozuch, P. Pillai, and G. Andersen, Davidand Ganger, “Mainstream:
Dynamic stem-sharing for multi-tenant video processing,” in Proceed-
ings of 2018 USENIX Annual Technical Conference, 2018, pp. 29–42.

[10] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic, and
S. Bagchi, “Videochef: efficient approximation for streaming video
processing pipelines,” in Proceedings of 2018 USENIX Annual Technical
Conference, 2018, pp. 43–56.

[11] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, G. Maghanath, and S. Bagchi,
“Approxnet: Content and contention aware video analytics system for
the edge,” arXiv preprint arXiv:1909.02068, 2019.

[12] K.-J. Hsu, K. Bhardwaj, and A. Gavrilovska, “Couper: Dnn model
slicing for visual analytics containers at the edge,” in Proceedings of
the 4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 179–194.

[13] S. M. George, W. Zhou, H. Chenji, M. Won, Y. O. Lee, A. Pazarloglou,
R. Stoleru, and P. Barooah, “Distressnet: a wireless ad hoc and sensor
network architecture for situation management in disaster response,”
IEEE Communications Magazine, vol. 48, no. 3, pp. 128–136, 2010.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

[14] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural network,” in
Proceedings of 2017 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2017, pp. 1396–1401.

[15] J. Mao, Z. Yang, W. Wen, C. Wu, L. Song, K. W. Nixon, X. Chen,
H. Li, and Y. Chen, “Mednn: A distributed mobile system with enhanced
partition and deployment for large-scale dnns,” in Proceedings of the
36th International Conference on Computer-Aided Design. IEEE, 2017,
pp. 751–756.

[16] Z. Xu, Z. Qin, F. Yu, C. Liu, and X. Chen, “Direct: Resource-aware
dynamic model reconfiguration for convolutional neural network in
mobile systems,” in Proceedings of the International Symposium on Low
Power Electronics and Design. ACM, 2018, p. 37.

[17] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[18] R. Hadidi, J. Cao, M. Woodward, M. Ryoo, and H. Kim, “Musical
chair: Efficient real-time recognition using collaborative iot devices,”
arXiv preprint arXiv:1802.02138, 2018.

[19] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convo-
lutional neural networks with low rank expansions,” arXiv preprint
arXiv:1405.3866, 2014.

[20] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[21] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[22] M. Wang, B. Liu, and H. Foroosh, “Factorized convolutional neural
networks,” in ICCV Workshops, 2017, pp. 545–553.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[24] S. Changpinyo, M. Sandler, and A. Zhmoginov, “The power of sparsity
in convolutional neural networks,” arXiv preprint:1702.06257, 2017.

[25] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, 2018, pp. 389–400.

[26] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,” in
Proceedings of Annual International Conference on Mobile Computing
and Networking (MobiCom). ACM, 2018, pp. 115–127.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] Q. Ning, C.-A. Chen, R. Stoleru, and C. Chen, “Mobile storm: Dis-
tributed real-time stream processing for mobile clouds,” in Proceedings
of 2015 IEEE 4th International Conference on Cloud Networking
(CloudNet). IEEE, 2015, pp. 139–145.

[30] M. Chao, C. Yang, Y. Zeng, and R. Stoleru, “F-mstorm: Feedback-based
online distributed mobile stream processing,” in Proceedings of 2018
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2018, pp.
273–285.

[31] D. O’Keeffe, T. Salonidis, and P. Pietzuch, “Frontier: resilient edge
processing for the internet of things,” VLDB Endowment, vol. 11, no. 10,
pp. 1178–1191, 2018.

[32] S. Fan, T. Salonidis, and B. Lee, “Swing: Swarm computing for
mobile sensing,” in Proceedings of the 38th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 1107–
1117.

[33] M. Chao and R. Stoleru, “R-mstorm: A resilient mobile stream process-
ing system for dynamic edge networks,” in 2020 IEEE International
Conference on Fog Computing (ICFC). IEEE, 2020, pp. 64–72.

[34] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[35] Z. Chen, K. Fan, S. Wang, L.-Y. Duan, W. Lin, and A. Kot, “Lossy
intermediate deep learning feature compression and evaluation,” in
Proceedings of the 27th ACM International Conference on Multimedia,
2019, pp. 2414–2422.

[36] J. Emmons, S. Fouladi, G. Ananthanarayanan, S. Venkataraman,
S. Savarese, and K. Winstein, “Cracking open the dnn black-box: Video
analytics with dnns across the camera-cloud boundary,” in Proceedings
of the 2019 Workshop on Hot Topics in Video Analytics and Intelligent
Edges, 2019, pp. 27–32.

[37] H. Choi and I. V. Bajić, “Deep feature compression for collaborative
object detection,” in 2018 25th IEEE International Conference on Image
Processing (ICIP). IEEE, 2018, pp. 3743–3747.

[38] S. Luo, Y. Yang, Y. Yin, C. Shen, Y. Zhao, and M. Song, “Deepsic: Deep
semantic image compression,” in International Conference on Neural
Information Processing. Springer, 2018, pp. 96–106.

[39] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: an efficient
training and inference engine for intelligent mobile cloud computing
services,” IEEE Transactions on Mobile Computing, 2019.

[40] Z. Chen, W. Lin, S. Wang, L. Duan, and A. C. Kot, “Intermediate deep
feature compression: the next battlefield of intelligent sensing,” arXiv
preprint arXiv:1809.06196, 2018.

[41] H. Choi and I. V. Bajić, “Near-lossless deep feature compression for
collaborative intelligence,” in Proceedings of 20th IEEE International
Workshop on Multimedia Signal Processing (MMSP), 2018, pp. 1–6.

[42] Z. Chen, K. Fan, S. Wang, L. Duan, W. Lin, and A. C. Kot,
“Toward intelligent sensing: Intermediate deep feature compression,”
IEEE Transactions on Image Processing, vol. 29, pp. 2230–2243, 2019.

[43] “Keras: The python deep learning library,” https://keras.io/, accessed:
2020-04-10.

[44] “Tensorflow: An end-to-end open source machine learning platform,”
https://www.tensorflow.org/, accessed: 2020-04-10.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of 2009 IEEE
conference on computer vision and pattern recognition. IEEE, 2009,
pp. 248–255.

[46] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[47] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Proceedings of European Conference on Computer Vision, 2016, pp.
525–542.

[48] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5058–5066.

[49] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253–266.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 14:21:04 UTC from IEEE Xplore. Restrictions apply.

