
Active Learning
(Ch. 21.3-21.5)

Reinforcement Learning

Last time we looked at passive reinforcement
learning (i.e. policy/actions decided already)

We used an MDP (but they are pretty general
with “states” and “actions”)

T

T
Assume arrows,
learn action outcomes
& estimate utility

Reinforcement Learning

This time, we need to find the best actions
(active learning) in addition to estimating the
utility along the way

This may seem much more difficult, but it
can be reduced down to one additional part:

Balancing exploitation and exploration
taking the greedy choice
(best action known)

trying new actions to see
if they are any good

Reinforcement Learning

The balance between exploitation and
exploring is quite delicate

If the agent only exploits,
once any “solution” is found
they will keep doing it
(even if bad)

For example, comparing two
webpages with a single tab

Multi-Armed Bandit

On the other hand, an agent that explores
100% of the time will have a great idea
of the problem, but will cost a lot

One of the famous ways
about thinking of this
is the multi-armed bandit
(i.e. multiple slot
machines)

Multi-Armed Bandit

Suppose you walk into a casino see 3 types
of slow machines (low, med and high risk)

Suppose playing all three machines will
make you money overall (not realistic)

Do you play the one that gave the best average
outcome so far?(exploitation, probably “low”)

Do you play each 1/3 of the time? (explore)

Multi-Armed Bandit

The common way to measure this is regret:

In other words, if we play the 3 machines N
times... we want to get as close to the possible
maximum reward if we knew machine payouts

(i.e. minimize equation above... which is hard
to do exactly so we will approximate)

Multi-Armed Bandit

The theory is a bit easier in the case where
N=∞ (i.e. can play forever)

In this case you want the regret per round
to be zero:

This means that you have to play each slot
machine an infinite amount of times (or else
there is a non-zero probability your estimates
were just “unlucky” for some machine)

Multi-Armed Bandit

A fairly simple strategy (that does not
accomplish this) is called ε-greedy:

(1) Generate random number [0,1]
(2) If random < ε: play random machine
(3) Else: play best machine

Since you will play each machine (with 3
machines) an infinite amount of times:
... but the probability of play suboptimal is ε

Multi-Armed Bandit

A slight modification of ε-greedy can cause
the regret per round to be zero:

Instead of having ε as a fixed value, have
ε decrease over time (like ε/i for round i)

Each machines is still played infinite:
Yet per round (lots of math):

Multi-Armed Bandit

While ε-greedy with decreasing ε has better
theoretical bounds, in practice it is quite often
slow to converge (exploits a bit too much)

Quite often basic ε-greedy is used or...
SoftMax:

Upper Confidence Bound (UCB):

 is the estimated
reward up to this point

probabilistic... will pick best exponentially more

N=total times
played (so far)

n
i
=times played

machine i (so far)

Multi-Armed Bandit

Multi-Armed Bandit problem research is quite
deep... so we will stop here

Here are some good links to info:

https://sudeepraja.github.io/Bandits/
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html

Reinforcement Learning

Now that we can balance exploit & explore,
we can modify the two passive algorithms:

Specifically, Adaptive Dyn. Prog. (ADP):
Count transitions to estimate P(s’|s,a)
Use Bellman:

Temporal-difference (TD):
Localized Bellman (estimate utility directly)

solve system linear equations for
all states when P(s’|s,a) changes

https://sudeepraja.github.io/Bandits/
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html

Recap: ADP

So given the same first example:
(4,2)

-1
↑(3,2)

-1
→(4,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(1,2)

50

We’d estimate the following transitions:
(4,2) + ↑ = 100% ↑ (2 of 2)
(3,2) + → = 50% ↑, 50% ↓
(2,2) + ↑ = 100% ↑
... and we can easily see the rewards from
sequence, so policy/value iteration time!

better as actions fixed no iteration

Modified ADP

Unlike before, we have to pick the arrows
first... but then it reduces down to past ADP

To choose arrows, we just need any balance
between exploit & explore into Bellman:

... where f(utility, explore) can be any
multi-armed bandit function

value iteration update
start initial guesses high
to encourage exploration

(book suggests
something simple)

utility=normal Bellman update

Modified ADP

Before we were calling the inputs to
the bandit problems “rewards”

In the MDP setting we deal with multiple
rewards (i.e. utilities), but same idea
“expected utility” instead of “average reward”

The theoretical bounds no longer apply with
multiple steps, so approximate methods are
often used (ones we discussed)

Modified ADP

Let’s do a simple MDP where we have run
it a bit and have P(s’|s,a) as shown: (for s=b)

Tried → 10 times: Tried ↑ 2 times:
P(c|b,→) = 0.8 P(T

0
|b,↑) = 1.0

P(T
0
|b,→) = 0.2

a b c T
1

T
0

terminal

start

Modified ADP

Tried → 10 times: Tried ↑ 2 times:
P(c|b,→) = 0.8 P(T

0
|b,↑) = 1.0

P(T
0
|b,→) = 0.2

Assume we found U(T
0
) = -1, U(c)=0.7,

and we’re at “b” in another training example

If we use the UCB bandit trade-off:
Value for (b ,↑) =
Value for (b ,→) =

a b c T
1

T
0

larger,
so go→

bit off as UCB made for [0,1]... meh (can rescale)

Modified ADP

Thus we do (b ,→) and say we end up in T
0
:

Tried → 11 times: Tried ↑ 2 times:
P(c|b,→) = 0.73 P(T

0
|b,↑) = 1.0

P(T
0
|b,→) = 0.27

We then update utility of b:

... and run value iteration a bit (has seed value)

a b c T
1

T
0

exploration function “f”
wanted to go right

Q-Learning = Modified TD

Next we will modify the TD update:

This is commonly called q-learning and uses
a Q-function that is very related to utility:

This modifies Bellman equations to be:

Q-functions defined in terms of
both a state and action (pair)

“max” missing in Bellman,
as used later to get utility
same as: r+max(a) = max(r+a)

Q-Learning = Modified TD

Thus we change our update... “old” TD one:

“New” Q-learning one:

... sure...

Once again we just need to incorporate
the bandit trade-off (exploit vs. explore)

Q-Learning = Modified TD

This makes the overall algorithm:

(0) Initialize Q(s,a) to anything (for all s & a)
(1) Pick action based on Multi-Armed Bandit
(2) Once you have action, use Q-update

on the state that you just left:

(3) Repeat from step 1 until end

Q-Learning = Modified TD

Let’s go back to our simple example:

... but this time let’s do ε-greedy with ε=0.05

Suppose we have Q-values as:
Q(a,→) = 1 Q(b,→) = 1.5
Q(a, ↑) = 0.5 Q(b, ↑) = -0.8

a b c T
1

T
0

Q-Learning = Modified TD

Q(a,→) = 1 Q(b,→) = 1.5
Q(a, ↑) = 0.5 Q(b, ↑) = -0.8

Assume R(a) = -0.2
Start in “a” and generate random number:
0.472 > 0.05, so take “greedy” choice (a,→)

Say we end up in “b”, then (α=0.5, γ=1):

1.15

Q-Learning = Modified TD

Q(a,→) = 1.15 Q(b,→) = 1.5
Q(a, ↑) = 0.5 Q(b, ↑) = -0.8

Assume R(b) = -0.2
Now we in “b” and generate random number:
0.028 < 0.05, so “explore” (random action=↑)

Say we end up in “T
0
”, then (α=0.5, γ=1):

-1

Q-Learning vs. SARSA

A slightly different update is called SARSA
(state-action-reward-state’-action’):

(Compared to original:)

This update is a bit different as:
Q-learn: in state, need find action, result state
SARSA: in state, need find action, result state

and next action

bye, bye max

Q-Learning vs. SARSA

In the “exploitation” phase of the bandit
problem, this should be the same

However, in “exploration” things differ as:
Q-learn: assumes you will take “best” action
SARSA: update based on action actually taken

Given you know the Q(s,a) values, you can
decide what policy you want to follow
(randomly introducing exploration)

Q-Learning vs. SARSA

SARSA updates Q(s,a) values based on this
policy you decide you want to follow
(thus called on-policy)

Q-learning sorta ignores the policy you are
following (off-policy) and still updates off
the best action (even if that is not next action)

SARSA works better if you are not in full
control of the policy (like bandit explore)

Q(a,→) = 1 Q(b,→) = 1.5
Q(a, ↑) = 0.5 Q(b, ↑) = -0.8

Assume R(a) = -0.2 = R(b), α=0.5, γ=1

In our Q-learning, we updated the Q(s,a)
values as shown above (previous slides)

SARSA would disagree on the update for
Q(a,→), as it would find max = (b,→), but
we did (b, ↑) due to ε-greedy exploration

1.15
-1

Q-Learning vs. SARSA

Q(a,→) = 1 Q(b,→) = 1.5
Q(a, ↑) = 0.5 Q(b, ↑) = -0.8

Assume R(a) = -0.2 = R(b), α=0.5, γ=1

Thus SARSA would do:

... which is a bit more pessimistic

1.15
-1

Q-Learning vs. SARSA

0

Q-Learning vs. SARSA

A simple mouse & cheese example is here
which demonstrates difference graphically:

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

