
Passive Learning
(Ch. 21.1-21.2)

Reinforcement Learning

So far we have had labeled outputs for our
data (i.e. we knew the homework was easy)

We will move from this (supervised learning)
to where we don’t know the correct answer,
just if it was good/bad (reinforcement)

This is much more useful in practice as for
hard problems we often don’t know the correct
answer (else why’d we ask the computer?)

Reinforcement Learning

We will start by looking at passive learning,
where we will not be taking actions, but just
observing outcomes (because easier)

Next time we will move into active learning,
where we can choose how we want to act
to find the best outcomes/learn quickly

For now we want something we can observe,
but see outcomes (i.e. rewards) for actions

Reinforcement Learning

To do this, we will go back to our friend MDP

However since this is passive learning,
we will only use the actions/arrows shown

(T’s are terminal states, so no actions)

T

T

Reinforcement Learning

How is this different than before?
(1) Rewards of states not known
(2) Transition function not known

(i.e. no 80%, 10%, 10%)

Instead we will see examples
of the MDP being run
and learn the utilities

T

T

Reinforcement Learning

Suppose we start in bottom row, left-most
column and take the path shown

This will be recorded as (state)
reward

:
(4,2)

-1
↑(3,2)

-1
→(4,2)

-1

↑(3,2)
-1
→(2,2)

-1
↑(1,2)

50

... then repeat this for more
examples to better learn

T

T

1 2 3 4
1
2
3
4

Direct Utility Estimation

(4,2)
-1
↑(3,2)

-1
→(4,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(1,2)

50

The first (of three) ways to do passive learning
is called direct utility estimation using reward:

Given this sequence, we can calculate the
rewards at each step (starting from end):
(1,2) has reward 50
Then (2,2) is one less, so 50-1 = 49... so on

assume γ=1 for simplicity

Direct Utility Estimation

This gives us:
(4,2)

-1
↑(3,2)

-1
→(4,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(1,2)

50

 45 46 47 48 49 50

Then we just find the average reward
(4,2) visited twice (45,47)... average = 46
... and so on
(1,2) visited once... average reward = 50

Then update averages with future examples

Direct Utility Estimation

So let’s say you go straight to goal:
(4,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(1,2)

50

 47 48 49 50

Then we update old averages with new data
(only need store counts):
(4,2) visited once (47)... new average = 47

(1,2) visited once... new average = 50,
so running total average now (50+50)/2=50

Direct Utility Estimation

Given that we are sampling the actions, this
should lead to the correct expected utilities
just by simple average

(This is not quite full reinforcement learning,
as the actions are fixed so just learning utility)

But we can speed this up (i.e. learn much
faster) by using some information
What info have we not used?

Adaptive Dynamic Prog.

We didn’t include our bud Bellman!

Thus, if we can learn the rewards and
transitions, we can use our normal ways
of solving MDPs (value/policy iteration)

This is useful as we can combine information
across different states for faster learning

no max over actions (a),
as in passive actions are fixed

Adaptive Dynamic Prog.

So given the same first example:
(4,2)

-1
↑(3,2)

-1
→(4,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(1,2)

50

We’d estimate the following transitions:
(4,2) + ↑ = 100% ↑ (2 of 2)
(3,2) + → = 50% ↑, 50% ↓
(2,2) + ↑ = 100% ↑
... and we can easily see the rewards from
sequence, so policy/value iteration time!

better as actions fixed no iteration

Adaptive Dynamic Prog.

This method is called adaptive dynamic
programming

Using the relationship between utilities
(i.e. neighbors cannot change too much)
allows us to learn quicker

This can be sped up even more if we assume
all actions have the same outcome (i.e. going
“up” has same probability for any state)

Temporal-Difference

The third (last) way of doing passive learning
is temporal-difference learning

This is a combination of the first two methods,
we will keep a “running average” of each
state’s utility, but also use Bellman equation

Instead of directly averaging rewards to find
utility, we will incrementally adjust them
using the Bellman equation

temporal = “time”

Temporal-Difference

Suppose we saw this example (bit different):
(4,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(1,2)

50

Using the direct averaging we would get:
U(4,2) = 45, U(3,2) = 47

However the sample(s) so far: (4,2)↑ is
always (3,2), so we’d expect (from Bellman):

Temporal-Difference

This would indicate our guess of U(4,2)=45
is a bit low (or U(3,2) is a bit high)

So instead of direct average, we will do
incremental adjustments using Bellman:

So whenever you take an action, you update
the utility of the state before the action
(final terminal state does not need updating)

learning rate/constant

Temporal-Difference

Let’s continue our example:
(4,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(3,2)

-1
→(2,2)

-1
↑(1,2)

50

So from first example: U(4,2)=45, U(3,2)=47
If second example starts as:
(4,2)

-1
↑(3,2)

-1
→...

We’d update (4,2) as: (assume α=0.5)

could use TD learning on
first example too... new states
have U(s) = R(s), then do updates
as described

Recap: Passive Learning

What are pros/cons between the last two
methods? (adapt. dyn. prog. vs temporal-diff.)

Which do you think is faster at learning
in general?

Recap: Passive Learning

What are pros/cons between the last two
methods? (adapt. dyn. prog. vs temporal-diff.)
-Temporal-difference only changes a single

value for each action seen
-ADP would re-solve a system of linear

equations (policy “iteration”) for each action
Which do you think is faster at learning
in general?
As ADP uses Bellman equations/constraints
in full it learns better (but more computation)

Recap: Passive Learning

From the book’s example:

ADP TD

	Slide 1
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

