
Naive Bayes & EM Algorithm
(Ch. 20)



Review: Bayesian Networks

Bayes nets:
(1) Directed
(2) Acyclic
(3) Have tables: P(x | parents(x))

A

B

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0



Review: Bayesian Networks

Bayes nets:
(1) Directed
(2) Acyclic
(3) Have tables: P(x | parents(x))

A

B

C

P(a) ???

P(b|a) ???

P(b|¬a) ???

P(c|a,b) ???

P(c|a,¬b) ???

P(c|¬a,b) ???

P(c|¬a,¬b) ???

Now we need to learn
these tables

Still need this structure & examples for learning



Choose Hypothesis

We have assumed that learning data has
been i.i.d. (independent and identically
distributed), and we will continue to do so...

Independent(examples don’t effect each other):

Identically distributed (no example bias):
jth example



Choose Hypothesis

Suppose you are registering for classes next
semester and classes come in two types:

Hard classes = 25% easy HW, 75% difficult
Joke classes = 80% easy HW, 20% difficult

These are the two possible hypotheses that
we are allowing for this problem



Choose Hypothesis

Hard classes = 25% easy HW, 75% difficult
Joke classes = 80% easy HW, 20% difficult

Let’s say your first 3 HW are: easy, easy, diff
Assume 40% of classes in department easy

Answer me these questions three:
1. After the 3 HW, what probability hard class?
2. What is probability of 4th HW being easy?
3. What if department distribution unknown?



Choose Hypothesis

1. After the 3 HW, what probability hard class?
Hard: 0.25^2*0.75*0.6 = 0.028125
Easy: 0.8^2*0.2*0.4 = 0.0512
Normalize: 64.54% easy class

2. What is probability of 4th HW being easy?
0.6454*0.8 + 0.3546*0.25 = 60.5%

3. What if department distribution unknown?
0.25^2*0.75 vs 0.8^2*0.2



Choose Hypothesis

Let’s put what you just did into math/Greek

For part 2, we want to find:

Where we can choose hypothesis using Bayes:

Using i.i.d. assumption:

prob of easy/difficult HW only depends on class type/hypothesis not previous HW



Choose Hypothesis

If you don’t know the original distribution
of classes in the department, you can just
assume uniform distribution (i.e. 50/50)
(called maximum-likelihood hypothesis)

Since you will normalize it away, you can just 
drop this multiplication if doing this way

Can also use        for “model complexity”:
more complex = smaller prob (to overfit less)



Choose Hypothesis

Another option is called maximum a posteriori
which uses most likely hypothesis as truth

So instead of computing 4th HW easy as:
0.6454*0.8 + 0.3546*0.25 = 60.5%

... Since “Joke class” is more likely hypothesis
it would simply estimate 4th HW easy as:
1.0*0.8 + 0*0.25 = 0.8



Choose Hypothesis

While all of this might seem like “general
probability” (like we did at start of semester)

You actually were picking between two
(simple) Bayesian networks:

HW?

P(HW?) 0.75

(“hard class” model)

HW?

P(HW?) 0.2

(“joke class” model)



Generating Hypothesis

However, we don’t need to restrict ourselves
to just two possibilities

We could allow the probability to be anything
and find what works best for data

In the case where we had:
easy, easy, difficult

... what should “ez” be? (i.e. P(HW?=easy))

HW?

P(HW?) ez

variable



Generating Hypothesis

To formally find this, we just go back to
our equations:

So using our “ez” variable with 3 HW:

We want “ez” to best fit, so it is just an 
optimization problem:

could think of as h(ez), a function too



Generating Hypothesis

Let’s transform this into a more easily 
solved problem (with same optimum)

Originally want:

... same solution as:
(book calls this the log likelihood or               )

A logarithm might seem like a weird choice...
until you do the derivative!



Generating Hypothesis

Before:
Now:

Much easier as don’t need to use product rule,
(still use chain though):

Algebra (multiply by ez*(1-ez)): 

... or ez = 2/3, which makes sense as 2 of our
3 examples/data had easy homework



Generating Hypothesis

Let’s aim a bit higher, instead of:

... make our Bayesian network more advanced:

What changes from previous time (other than
more variables to solve for)?

HW? P(HW?) ez

HW?prof

P(prof) x

P(HW? | prof=nice) y

P(HW? | prof=¬nice) z



Generating Hypothesis

Only real difference is:

Assume you took three classes:
Class 1: prof = nice, HW = {easy, easy}
Class 2: prof = nice, HW = {easy, hard}
Class 3: prof = jerk, HW = {hard, easy, hard}

... what are x, y and z?

“given h
i
” just means we know the variables x, y, and z

HW?prof



Generating Hypothesis

This can be extended to any size/complexity
Bayesian network pretty easily

Assuming we are doing “supervised learning”
(i.e. have all info in examples), you can 
break each example into:

Then, just multiply all examples together
and optimize parameters (after taking log)



Naive Bayesian Classifier

The problem with this is, how do you build
a network?

You could hand-craft it or learn/search a good 
network on top of the current learning task

Another approach is to just assume 
conditional independence into the network
(called a naive Bayesian classifier)



Naive Bayesian Classifier

So if you had 3 “inputs”: A, B and C
... then you would build the following bay-net:

This might seem a bit “backwards” as the
output “determines” the input

output

A B C



Naive Bayesian Classifier

However, think back to our movie example
where output=genre, A=violence, B=funny...

Does the movie genre determine if it’s funny?
Or does a movie being funny determine genre?

Both seem plausible and it is much more
efficient to store as Bayesian network in
second way (linear) than first (exponential)



Naive Bayesian Classifier

After we use examples to learn table
probabilities, we can simply classify new data:

The assumption that inputs are conditionally
independent is a bit strong, but still works
decent in practice

Naive Bayesian classification is also robust
to noisy or missing data

“new” is root, so this is normal bay-net formula: P(n | parent(n))



EM Algorithm

We will do the same thing as before to make
stuff more complicated: add hidden variables
(general Bayesian networks for now)

Assume instead of having known information
(the prof), the homework difficulty is based
on something you can’t see: my mood

Just seeing the difficulty of HW,
can you estimate my mood?

HW?mood



EM Algorithm

Actually, yes (to some extent)

How does this work if you can’t see “mood”?
Our favorite friend: guess and iterate

We did a similar thing in policy iteration (and
to a lesser extent in Gibbs sampling)

use utility estimates 
to find best actions

use actions to find best
values for utility



EM Algorithm

This algorithm is called the expectation-
maximization algorithm and does:
1. Start with initial guess (reasonable)
2. Estimate unknowns with current parameters
3. Update parameters to best-fit unknowns
4. Repeat steps 2. and 3. until convergence

Step 2. is often called E-step (pretend know
parameters and find expected outcome) 
and step 3. is “M-step” (maximize param’s)



Step 1. EM Algorithm

For an example, let’s go back to the original
data but convert for hidden:
P(mood) = 0.5
P(HW=easy | mood) = 0.8
P(HW=easy | ⌐mood) = 0.25

... saw 3 HW: easy, easy, hard

Step 1. is done (initialize parameter guess
as the above probabilities)

HW?mood



Step 2. EM Algorithm

Step 2: estimate unknown

In other words we need to find P(mood|data)

In the case where all variables were visible,
this would just have been: 
[number of positive mood] / total

However, since we can’t see which ones,
we have to estimate using parameters

HW?mood



Step 2. EM Algorithm

If “N” is our total, then we let “   ” be our 
estimate count, where: (Bayes rule)

So in our 2 easy, 1 difficult example:

So our new estimate is 1/N that or:

more easy HW estimate I’m in a good mood

just Bayes rule:
P(A|B) = P(A,B)/P(B)
=P(B|A)P(A)/[P(A,B) 
+ P(~A,B)]
... A=mood, B=HW



Step 3. EM Algorithm

Step 3: find best parameters

Now that we have P(mood) estimate,
we use it to compute table for P(HW? | mood)

Again, we have to approximate the number
of homework that came from good/bad mood:

(same as before, but don’t include “hards”)



Step 3. EM Algorithm

So before we used this to calculate the total
number of stuff caused by a good “mood”:

Now if we want to find a new estimate
for number of easy homeworks caused by
mood, ignore the hard part

0



Step 3. EM Algorithm

This means we estimate 1.628 of the “easy”
HW happened when in a good mood

We just estimated that P(mood) = 0.5781, so
with 3 examples “mood” happens 1.734
(same number as original sum) 

an increase from
our original 0.8
P(hw=easy|mood)Thus:

like P(easy|mood) = P(easy,mood)/P(mood)



Step 4. EM Algorithm

Then we go off and do a similar equation to
get a new estimate for P(HW=easy | ¬mood)

After that, we just iterate the process, so
with new value recompute P(mood)

Recompute: P(HW=easy | mood) and
P(HW=easy | ¬mood) using new P(mood)

Re-recompute: P(mood)...

More complex example at bottom:
http://pages.cs.wisc.edu/~dpage/cs760/BNall.pdf



EM Algorithm

You can also use the EM algorithm on HMMs,
but you have to group together all transitions
(since they use the same probability)

The EM algorithm is also not limited to just
all things Bayesian, and can be generalized:

step 2. assume parameters, θstep 3. maximize outcomes



EM Algorithm

The EM algorithm is a form of gradient
descent (or hill-climbing, but no α)

Real distribution
Some samples EM algorithm

reverse-eng.

http://pages.cs.wisc.edu/~dpage/cs760/BNall.pdf

