
Support Vector Machines 
(Ch. 18.9)



SVM Basics

Support Vector Machines (SVMs) try to do our 
normal linear classification (last few lectures), 
but with a couple of twists

1. Find the line in the 
middle of points with 
the largest gap 
(called maximum 
margin separator)



SVM Maximum Separation

The idea for having the largest gap/width
is to avoid misclassification

If we drew the line close to a known example,
we have a greater chance of classifying it
the opposite type, 
despite being close



To define the separator, let’s represent “w” as 
the normal vector to the plane (in 2D, a line)

To allow the (hyper-)plane to not pass through
the origin, we will add an offset of “b”

Thus our separator is:

Now we need to find how to make the gap
as big as possible in terms of “w” and “b”

SVM Maximum Separation



Let’s classify all the points above the line as
+1 and all the points below the line as -1

Then our separator 
needs:
if 
then y = +1

if
then y = -1 

SVM Maximum Separation



We can combine these two conditions into:
                     ... as condition for every point

Now that we have the requirements for our
separator, need to represent “maximum gap”

The distance between a hyper-plane and a
a point (a line in the case with just x,y):

SVM Maximum Separation

(for higher dimension:                      )



Since we want the closest points to be exactly

The distance to these
points and the line
is just:

So to maximize gap,
we want min |w|

SVM Maximum Separation



Thus we have an optimization problem:

At this point we could use our old friend
gradient descent...

... but instead people tend to take a much more
math-y option!

SVM Maximum Separation



Rather than solve that optimization directly,
we will instead solve the dual problem
(i.e. a different but equivalent problem)

If we were trying to “maximize profit” a
dual could be framed as “minimizing loss”

Typically they are not exact opposites like this,
and we have actually seen something similar
in this class before 

Side note: Duality



In MDPs, we wanted to find the utility of
each state/cell... 

Doing this directly (with Bellman equations)
is value iteration

The “dual” would be to realize finding the
“correct” utilities is identical to finding
the “correct” actions (policy iteration)

Side note: Duality



So for MDPs we would have:

Side note: Duality

Primal problem Dual problem



We can note that our optimization is quadratic
(as                                                                   )

So there will be a single unique point for
the minimum, but we have a constraint so the
global minimum might not be possible

Let the minimum (with constraint) be “d” 

SVM Maximum Separation

change to min: |w|2... or actually 0.5 |w|2



We can then say that the derivative with
respect to the constraint is in the same/opposite
direction as the derivative of |w| (min goal)

If they were not scalar
multiples of each other,
you could “head closer”
than “d” to minimum

SVM Maximum Separation



This is called the Lagrangian dual (or function)
So if function “f” is our min/max goal
and “g” is our constraints:

The constraint is a bit annoying as it is an
inequality... let’s cheat and rewrite as:
                          

SVM Maximum Separation

equality is only true for points directly 
on “gap”... more on this later

goal becomes...
max: f(x,y...) - λ g(x,y...)



Thus we have:

... where the derivatives are zero (we get
to control “w” and “b” for hyperplane)

partial wrt. w:

partial wrt. b:

SVM Maximum Separation
constraint for each point, so sum (math reasons)

our book calls this α... doesn’t matter, it’s a scalar



Plugging these back into equation:

... at this point, we can minimize λ (only var)

SVM Maximum Separation

FOIL

... these are same...
actually a “maximize”
as like: c – 1/2 a x2 

(Lagranian duals change type)



... erm, that was a lot

Let’s do an example!
Suppose we have 3 points, find the best line:
(0,1), y=+1
(1,2), y=+1
(3,1), y=-1

SVM Maximum Separation

find



SVM Maximum Separation

jam this into some optimizer



SVM Maximum Separation

jam this into some optimizer



At this point, we solve for the λ
i
 for each point

λ
i
 will actually be zero for all points not on

the gap (because we dropped the inequality)

This actually leads to the second useful
fact of SVMs:
They only need to remember a few points
(the ones on the gap) 

SVM Efficient storage



So regardless about the number of examples
you learn on, you only need to store the ones
closest to the separator

Thus the stored examples are proportional
to the number of input/attributes (dimensions)

If you find a new example that is inside the
gap, recompute separator... otherwise you 
don’t need to do anything

SVM Efficient storage



So in this case, you only need to find λ
i
 for

these four point (they define “w” and “b”)

SVM Efficient storage

λ
this

 = 0



This third trick might seem a bit weird as we
often say how higher dimensions cause issues

But it can actually be helpful as there is this
useful fact:

You can (almost) always draw an N-1
dimensional (hyper)plane to perfectly separate 
N points
... what does “(almost)” mean?

SVM Dimensional Change



The book gives a good example of this:

SVM Dimensional Change

2D, no good line 3D, good plane!
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The book gives a good example of this:

SVM Dimensional Change
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This change of dimension is called a kernel
(not to be confused with the other “kernels”)

Let’s review some equations before going deep

... we said you can use the above to find λ
i
s,

once you have λ
i
s, you can find “w” & “b”

to classify...

SVM Dimensional Change

(for points on gap)



However, if you have λ
i
s, you actually don’t

need to go back to “w” and “b” (they represent
the same thing)

Turns out you can classify directly as:

Also need to solve:

... we need to be able to use both of these 
equations in the higher dimension as well

SVM Dimensional Change

if positive, y
new

=+1
else (neg), y

new
=-1



Both of these equations use the dot product
of our X’s (original domain)

So we want to use kernels/dim-change where:

... then all of our equations are the same, 
we just need to change what “points” we
are working with 

SVM Dimensional Change



This example indeed has:
... where:

SVM Dimensional Change
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Proof:

SVM Dimensional Change

same



There are a number of different dimension
changing functions you could use

Common ones are:
Polynomial:
RBF:

The polynomial one is especially nice as
the number of terms in sum after FOIL = new 
dimension (grows very fast, like billions)

SVM Dimensional Change

(mapping drops one point coordinate 
and square roots constant)



So far we have looked at the perfect
classification only, but this can overfit

You can reuse the same complexity trade-off
function we discussed in linear regression:

This is called “soft margin” where you trade
accuracy for size of gap (|w|), but the overall
approach is basically the same

SVM Miscellaneous

different λ constant



This third property of SVMs (dimension
change) you can actually use anywhere
you are doing dot products

So you could also apply this technique to
linear regression or neural networks

SVM Miscellaneous
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